
Asking the Right Questions in Crowd Data Sourcing

Rubi Boim 1 Ohad Greenshpan 1 Tova Milo 1 Slava Novgorodov 1 Neoklis Polyzotis 2 Wang-Chiew Tan 3,2

1Tel-Aviv University 2University of California, Santa Cruz 3IBM Research - Almaden

Abstract—Crowd-based data sourcing is a new and powerful
data procurement paradigm that engages Web users to collec-
tively contribute information. In this work we target the problem
of gathering data from the crowd in an economical and principled
fashion. We present AskIt! , a system that allows interactive data
sourcing applications to effectively determine which questions
should be directed to which users for reducing the uncertainty
about the collected data. AskIt! uses a set of novel algorithms for
minimizing the number of probing (questions) required from the
different users. We demonstrate the challenge and our solution
in the context of a multiple-choice question game played by
the ICDE’12 attendees, targeted to gather information on the
conference’s publications, authors and colleagues.

I. INTRODUCTION

In this work, we target the problem of effective crowd data
sourcing, namely gathering data from the crowd in an econom-
ical and principled fashion. Specifically, we present AskIt! ,
a system that allows interactive data sourcing applications to
effectively determine which questions should be directed to
which users in order to minimize the uncertainty about the
collected data. This is essential in a variety of applications, as
illustrated by the following three examples.

Consider an online marketplace where customers can rate
the sellers from whom they purchased goods. (A concrete
example is Amazon’s service at http://www.amazon.com/gp/
seller/sell-your-stuff.html .) Clearly, all parties can benefit
from having representative ratings for every seller. But since
dissatisfied customers are more likely to voluntarily provide
their ratings, the obtained distribution of ratings for a given
seller may be skewed, and hence there is a strong incentive
to contact customers and explicitly request ratings for their
recent transactions. In this example, the crowd comprises the
customers, the data (and correspondingly the questions for
customers) comprises the sellers’ ratings, and the problem is
to understand which customers to contact in order to maximize
the information gain from the obtained user answers. As
another example, consider an image-tagging service such as
tagasauris (http://www.tagasauris.com/). In this scenario, the
crowd comprises paid workers, the data (and corresponding
questions) comprises the tags associated with images in a
specific corpus, and the goal is to intelligently assign images to
workers for tagging. The underlying optimization problem is
similar to the above but in addition every request to the crowd
involves a monetary reward. Hence, it may be desirable to
select only a limited number of the most useful requests based
on a total monetary budget. Finally, one more example is the
GUESS system from IBM Research, which engages users in
a Trivia-like game and uses their answers for Trivia questions

to maintain and curate a knowledge base. The nature of the
game introduces an interesting constraint: each user typically
plays only for a limited time hence cannot be asked too many
questions. This further complicates the optimization problem.

The above examples involve an optimization across several
dimensions. First, not all customers are equal: in the sellers
rating example, each customer can provide ratings solely
for the sellers with whom there was a transaction; different
customers may be more or less likely to provide ratings; and,
there may be constraints on how often a customer can be
contacted (e.g., a customer may be more likely to reply to a
rating request if they are not contacted too often). Second, not
all questions/answers (ratings in this example) are equal. As a
simplified example, assume that each seller is rated as either
“GOOD” or “BAD”, and consider two sellers A and B with
the following ratings: seller A has three “GOOD” ratings and
one “BAD” rating, whereas seller B has two “GOOD” ratings
and two “BAD” ratings. One more rating for seller B cannot
shift the overall distribution much, whereas one more rating
for A can make a larger difference (it will lead to either a 4/1
split, i.e., strong positive majority, or a 3/2 split, i.e., almost
equal split of opinions). In this sense, an additional rating
for A is more beneficial. Overall, these observations reveal a
complex optimization problem that is not likely to be solved
effectively by requesting ratings at random.

To address and solve the above issues, we developed AskIt! ,
a real time system that carefully selects which questions to
ask in order to reduce the uncertainty of the current data and
also minimize the number of probes (questions) at different
users. The optimization problems handled by AskIt! address a
wide range of real-world applications in our target domain (in-
cluding the three examples mentioned above). It is intuitively
formalized as follows. We consider a universe U of users (the
crowd) and a universe Q of questions. The information that is
gathered from the crowd is represented by a |U | × |Q| matrix
M , where an entry M [u, q] contains the answer of user u to
question q or the special value ∅ if u has not answered q. For
instance, in the seller ratings application, q represents a seller,
u represents a customer and M [u, q] is the rating given by u
to q (or ∅ if u has not rated q). Hence, asking the crowd for
data means resolving some of the ∅ cells to concrete values.
We develop a metric (described in the following section) to
characterize the quality of the information in M based on the
uncertainty caused by ∅ cells. Uncertainty as we define it can
only decrease as more ∅ cells are resolved, and the decrease
depends on the choice of which cells are resolved. (This is in
accordance to the example we presented earlier with the two

sellers A and B.) Using this foundation, we can formalize
the optimization problem as follows: Given M and a set of
constraints on which ∅ cells can be selected, identify the cells
that satisfy the constraints and provide the highest reduction
in uncertainty.

Outline of the demonstration: We demonstrate the prob-
lem described above along with our solution in the context
of a multiple-choice question game played by the ICDE’12
attendees. The game is used to collect qualitative information
about the conference’s publications and authors. We show
how AskIt! chooses what questions to ask and to which
person (player), such that the overall uncertainty about the
answers’ distribution (or, alternatively, the information gain) is
minimized (maximized). To make the game more entertaining
and whimsical (and thereby motivate users to participate in
our demo), AskIt! will also ask questions about humorous
characteristics of the conference attendees, such as which
celebrity they resemble or how funny they are. Participating
players will then be allowed to view the crowd’s answers about
themselves and their colleagues, but only after they themselves
answer a minimal set of questions.

II. TECHNICAL BACKGROUND

We start with a formal statement of the optimization prob-
lem solved by AskIt! and a brief description of the principles
underlying the algorithms used to solve it, and then consider
some practical aspects regarding the input data (users, ques-
tions and answers).

Problem statement and algorithms: We are given a set
of users U and a set of questions Q. We define a |U | × |Q|
matrix M that holds the answers of users to specific questions.
Specifically, M [u, q] takes any value in the set Aq ∪ {∅},
where Aq = {aq1, . . . , aq|Aq|} is a set of possible answers
for question q, and ∅ denotes an unknown answer, i.e., the
fact that user u has not provided an answer for question q. For
simplicity, we henceforth assume that Aq = A = {a1, . . . , an}
for all q ∈ Q, i.e., all questions have answers in the same
domain. We will use (u, q) and c interchangeably to denote a
cell in the matrix.

We use a measure of entropy to quantify the uncertainty
in the current answers of some question q. Formally, let
p1, . . . , pn denote the probability distribution over the current
answers of q. The entropy for q is computed as −

∑
pi log pi.

We are not interested in minimizing the entropy of q, given
that entropy depends solely on the answers provided by the
crowd and this is something that we cannot control. Instead,
we are interested in minimizing the uncertainty that we have in
the entropy of q due to the existence of ∅ cells. We define this
formally next. We define t as a matrix-specific threshold that
denotes the desired number of users to answer question q. For
instance, if we use a majority vote to derive an overall answer
for each q, then t may express the size of the quorum (e.g.,
majority out of at least 5). Let v denote the number of users
who answered q. Let vi denote the number of users among
them who gave the answer ai ∈ A, and w.l.o.g., assume that

v1 ≥ v2 ≥ · · · ≥ vn. A set of t answers for q may be achieved
by asking t−v users to provide an answer. Depending on these
answer, q may have different entropy. The following is easy
to verify.
• The minimum entropy for q is achieved if the remain-

ing entries are all resolved as answer a1 (the current
majority).

• In contrast, the maximum entropy is achieved if we
allocate xi hypothetical votes for answer ai so that the
constraint vj +xj +1 ≥ vj−1+xj−1 holds for j ∈ [k, n]
and k is minimized.

We define the uncertainty of q as the difference between
these two extreme entropies: uncertainty(q) = maxEnt(q)−
minEnt(q).

Example 2.1: Consider a question q such that n = 3
(number of possible answers), t = 5 (number of desired
users to answer q), and the distribution of current answers
is v1 = 2, v2 = 1, v3 = 1, i.e., one more ∅ entry needs
to be resolved. The minimum entropy minEnt(q) is achieved
when the remaining entry goes to the majority answer a1,
and hence the probability distribution is p1 = 3/5, p2 = 1/5
and p3 = 1/5. The maximum entropy is achieved when
the remaining answer is assigned to a2, in which case the
distribution is p1 = 2/5, p2 = 2/5 and p3 = 1/5. The
uncertainty of q is equal to uncertainty(q) = 0.21.

Assume now that the current votes are distributed as follows:
v1 = 2, v2 = 2 and v3 = 0. In this case, the uncertainty in q is
equal to uncertainty(q) = 0.08. The reason for this reduction
is that the one remaining ∅ entry cannot change the distribution
too much. However, in the first case, there can be either a clear
majority for a1 or a near-split vote.

Having defined an uncertainty metric for each question q,
we introduce an aggregate metric for the uncertainty of M .
We consider two cases:

uncertaintymax(M) = max
q∈Q

uncertainty(q) (1)

uncertaintysum(M) =
∑
q∈Q

uncertainty(q) (2)

The first metric bounds the uncertainty of every question
in the matrix, whereas the second measures the overall uncer-
tainty of all questions. The choice of metric depends on the
target application and our system supports both. We can now
define formally the problem we want to solve.

Definition 2.2 (Problem Statement): Given a matrix M , a
choice X ∈ {max, sum} and a set of constraints, identify a
set C of matrix cells such that:
• ∀c ∈ C : M [c] = ∅ (only ∅ cells are selected).
• C satisfies the constraints.
• maxM ′∈MC

uncertaintyX(M ′) is minimized, where MC

contains all possible matrices that we can derive from M
by resolving solely the cells in C.

We will define shortly the classes of constraints that we
consider. It is important to stress that the problem defini-
tion involves a worst-case analysis: we want to identify the

unknown cells, such that their resolution will minimize the
overall uncertainty in the worst case, i.e., under any possible
assignment of answers to cells. We resort to this approach
since we do not make any assumptions about the distribution
of answers or how the users behave.

We distinguish four classes of constraints. Intuitively, they
capture parameters such as how many questions overall we
wish to ask (e.g., in the case of budgetary constraints), which
users can answer which questions (e.g., only users who bought
items from a given seller can provide rating for her), how many
questions a given user can be asked (e.g., when game players
play only for a limited amount of time) and how many times
a given question can be asked (e.g., when there are budgetary
constraints for individual questions).

A The constraints are defined through a set S of unre-
solved matrix cells and a positive integer k. Set C
satisfies the constraints iff C ⊆ S and |C| = k, i.e.,
we wish to select exactly k unresolved cells.

B Similar to the above except that k now bounds the
number of probes allocated for each user rather than
the overall number of probes, i.e., C ⊆ S and |{q :
(u, q) ∈ C}| ≤ k for all u ∈ U ,

C Similar to the previous case, except that k applies to
the number of probes per question, i.e., C ⊆ S and
|{u : (u, q) ∈ C}| ≤ k for all q ∈ Q.

D This is a combination of B and C. We are given a
set S and two positive integers k1 and k2, and we
enforce C ⊆ S and |{u : (u, q) ∈ C}| ≤ k1 for all
q ∈ Q and |{q : (u, q) ∈ C}| ≤ k2 for all u ∈ U .

We have developed a set of algorithms to solve the optimiza-
tion problem, for the two uncertainty metrics and four types
of constraints mentioned above. The efficient computation
of candidate queries is important in our setting, in order to
maintain short interaction times with the user. As it turns out,
the complexity of the problem differs for the two uncertainty
metrics. For uncertaintymax we were able to design a PTIME
algorithm that operates in a greedy manner and employs at
each step a Max-Flow algorithm (on a network that captures
the users/queries constraints) to ensure satisfaction of the
constraints. For uncertaintysum a PTIME solution (based on
dynamic programming) is possible for constraint classes [A]
and [C]. However, the problem becomes NP-complete for
constraint classes [B] and [D] and we thus employ a greedy
heuristic. We omit details due to space constraints, but we
note that part of the demonstration will be focusing on the
algorithms.

Enriching the initial data set: It is important to under-
stand that a typical data set (matrix) in our setting is often
rather sparse, since each user can typically answer only a
small number of questions. For example, if we look at the
Netflix data set [1] that contains movie ratings, the number of
movies (questions) is more than 17,000 but the average ratings
(answers) per user is only 200. Thus, the number of possible
questions the user can theoretically be still asked is huge. To
reduce sparsity, we preprocess the data with an enrichment

En
ri

ch
m

e
n

t
 M

o
d

u
le

(C
F)

AskIt!

Online Users,
Answers

Crowd

Questions

U
se

r
In

te
rf

ac
e

Constraints
Manager

Prober

DB

Predictions

Data

Active
Users

Answers

Constraints

Data

Questions

Data

Constraints

Fig. 1. AskIt! architecture

phase that comprises two complementary actions:
• Predictions. We apply a prediction algorithm, for each

user, to predict her missing answers. Intuitively, the
questions to which we can predict the answer with high
certainty need not be asked as the predicted value may
be used instead, i.e., inserted directly into the data set to
enrich it (treated as “true” answers).

• Pruning. For the unknown entries for which we cannot
predict the user answers, we apply an analogous predic-
tion algorithm that estimates which questions the user is
unlikely to answer (e.g., would press the skip button in a
game). This information can be added as constraints.

In principle, any prediction algorithms can be applied for
these two tasks. In our implementation, we employ Collab-
orative Filtering (CF) in both cases, as it has been shown
to provide high-quality predictions in practice, especially for
sparse data sets [2].

Related Work: Involvement of humans in generating data
sets in a systematic manner has become popular in the past few
years. A prominent example is Amazon’s Mechanical Turk [3]
service. Some related work [4] deals with the development of
a unified language and model enabling data collection from
both humans and machines while other [5] deals with ways
to process this data [6], clean it and extract insights from it.
Machine Learning techniques were also proposed as methods
for identifying and pruning out low-quality teachers that are
available for an online learning system that is trained on a data
set and thus improve its quality [7]. Predictions generated by
the CF method have been proven to improve recommendations
for user actions [8].

III. SYSTEM OVERVIEW

AskIt! is implemented in Java and PHP and uses a MySQL
database. Figure 1 illustrates the system architecture, divided
into operating modules. The DB includes the actual query
answers given by users, and the generated predictions made
by the Enrichment Module. The Enrichment Module employs
the Collaborative Filtering algorithms from [8] to predict user
answers and determine which users are likely to answer which
questions. Note, however, that the independence between the
module and the rest of the systems allows to plug-in any
alternative prediction technique. Given the ids of the current
active users and the input from the Enrichment Module,
the Constraints Manager generates corresponding constraints
for which questions can currently be posed. The Prober
module uses these constraints and, depending on the chosen

Fig. 2. AskIt! user interface

uncertainty matrix, employs the corresponding algorithm for
determining which questions should be posed to each user
to reduce the uncertainty about data distribution. In the demo
itself (see next section) we use uncertaintymax with constraint
class [B], but also explain how other settings similarly operate.
The questions are posed to the users via the User Interface
(UI). Figure 2 shows a screenshot of this operation. As men-
tioned earlier, in our demo scenario the collected data deals
with ICDE’12 papers and authors, including both technical
and humorous information. The user here is asked some
multiple-choice questions about one of the participants. When
relevant, AskIt! groups and presents related questions together,
to extract more information in a single probe. We finally note
that AskIt! may also be run in a “behind the scenes” mode
which disables the UI and allows it to be invoked as a service.
This mode is used by applications that wish to leverage its
query selection facility but keep their own UI (e.g., in our
sellers rating example, email the questions to users).

IV. DEMONSTRATION

In this demonstration, AskIt! will engage the ICDE’12
attendees to build a comprehensive crowdsourced database
on researchers in the database community and their ICDE’12
publications. This will be done via a multiple-choice questions
game, including both technical and humorous questions (the
latter intending to attract as many participants as possible).
The collected data consists, correspondingly, of technical and
qualitative information about papers and authors as well as
humorous information about the conference attendees. Exam-
ples for the first type include the subdomains to which each
paper is most relevant to, whether it is more theoretical or
systems-oriented, the interest that the paper stimulated in the
conference, the presentation quality, the areas of expertise
of the authors, etc. Examples for the second type include
information about the celebrity to whom various researchers
most resemble to, how serious or tall they are, etc. Each
user plays only for a limited time hence cannot be asked
too many questions. AskIt! is thus invoked to choose what
questions should be posed to which of the current players, so
that the overall uncertainty about the answers’ distribution (or,
alternatively, the information gain) is minimized (maximized).
It is important to note that there is no single “correct” answer
to questions and thus the goal is to approximate as much as
possible the true distribution of answers, given the limited
availability of users. To encourage participation, players will
be allowed to view the distribution of the crowd’s answers to
questions (e.g., about their papers and colleagues), but only

Fig. 3. The Administrator View: Data Set Snapshot

after they themselves answer a minimal set of questions per
such view.

The data set used in the demo will be initialized with a
set of questions by extracting the information from the ICDE
2012 program. The initial set of users will include all the paper
authors. In order to not start the demo with an empty answers
matrix we will partially fill it by fake (yet realistic) answers,
using information extracted from DBLP.

We start the demonstration by explaining the game, its goal
and rules. Then, we let our audience play it on several laptops
allocated for that. In parallel, we will explain how AskIt! works
(repeatedly, so that players who finished playing can join,
allowing others to play). We will first show the current state
of the database, i.e., the questions set, the answers provided so
far and the level of uncertainty the system has about the actual
“real” distribution of answers to these questions. We then
request one of the attendees that played the game earlier to
log-in again into the system (users log-in with their real name).
We will first view her previous answers (if she agrees) then
start the game again and follow its course. We will examine
the questions that AskIt! poses to the user and her answers,
and reveal, in parallel, on an Administrator screen, what is
happening “under the hood”. We will show the uncertainty
level that the chosen questions have, the expected worst-case
decrease of uncertainty and the actual decrease when the
question is answered. We will explain the algorithms operation
and why the specific questions were chosen. An example
for one of the Administrator views that we will show is
depicted in Figure 3, showing the current answers distribution
of the question “Does Tova Milo resemble Madonna ?” as
well as the uncertainty value. We will also describe how our
system periodically updates its predictions, thereby improving
its future selection of questions.

REFERENCES

[1] J. Bennet and S. Lanning, “The netflix prize,” KDD Cup, 2007.
[2] X. Su and T. Khoshgoftaar, “A survey of collaborative filtering tech-

niques,” Advances in Artificial Intelligence, 2009.
[3] “Amazon’s mechanical turk,” https://www.mturk.com/.
[4] A. G. Parameswaran and N. Polyzotis, “Answering queries using humans,

algorithms and databases,” in CIDR, 2011, pp. 160–166.
[5] D. Deutch, O. Greenshpan, B. Kostenko, and T. Milo, “Using markov

chain monte carlo to play trivia,” in ICDE, 2011, pp. 1308–1311.
[6] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,

“Crowddb: answering queries with crowdsourcing,” in SIGMOD, 2011.
[7] O. Dekel and O. Shamir, “Vox populi: Collecting high-quality labels from

a crowd,” in COLT, 2009.
[8] R. Boim, H. Kaplan, T. Milo, and R. Rubinfeld, “Improved recommen-

dations via (more) collaboration,” WebDB, 2010.

