
CrowdPlanr: Planning Made Easy with Crowd
Ilia Lotosh Tova Milo Slava Novgorodov

School of Computer Science
Tel-Aviv University

{ilialoto,milo,slavanov}@post.tau.ac.il

Abstract—Recent research has shown that crowd sourcing
can be used effectively to solve problems that are difficult for
computers, e.g., optical character recognition and identification
of the structural configuration of natural proteins [1]. In this
demo we propose to use the power of the crowd to address yet
another difficult problem that frequently occurs in a daily life -
planning a sequence of actions, when the goal is hard to formalize.
For example, planning the sequence of places/attractions to visit
in the course of a vacation, where the goal is to enjoy the resulting
vacation the most, or planning the sequence of courses to take
in an academic schedule planning, where the goal is to obtain
solid knowledge of a given subject domain. Such goals may be
easily understandable by humans, but hard or even impossible
to formalize for a computer.

We present a novel algorithm for efficiently harnessing the
crowd to assist in solving such planning problems. The algorithm
builds the desired plans incrementally, optimally choosing at
each step the ‘best’ questions so that the overall number of
questions that need to be asked is minimized. We demonstrate
the effectiveness of our solution in CrowdPlanr , a system for
vacation travel planning. Given a destination, dates, preferred
activities and other constraints CrowdPlanr employs the crowd
to build a vacation plan (sequence of places to visit) that is
expected to maximize the ”enjoyment” of the vacation.

I. INTRODUCTION

Planning is a problem of defining a sequence of actions that
gets one from some initial state to some goal state. Automated
planning is a branch of artificial intelligence that tries to solve
this problem using a computer [2]. However, there is a large
class of planning problems that we meet in our daily life
that is difficult for a computer to solve, not only because of
the involved computational complexity, but because the goal
state (as well as the consequence of individual actions) is
hard or even impossible to formalize. In contrast, in many
of these problems, the goal (and the effect of actions) is
intuitively understandable by humans, making the planning
humanly possible.

As a simple example, consider a vacation trip planning. A
person may have some tentative start and end dates for her
vacation, a preference of what she likes to do and a geographic
area where she wants to travel. Based on this data she now
needs to compile a potential set of places and attractions to
visit and, from this set build a vacation schedule (essentially an
ordered subset of the original set). A typical goal here may be
to enjoy the vacation the most and/or to expand horizons. Such
a goal is naturally subjective and hard to formalize (relevant
factors may include total travel distances, attractions along the
way, price and many more). However, people sharing similar
taste/interests are likely to have the same notion of objective

function and their experience and opinion can assist in the
planning.

In general we are targeting here problems where one has a
large set of items from which she needs to choose a subset
and then order this subset in a sequence that will give the
best value. The ”value” definition is domain-specific, hard to
formalize but easy to comprehend by humans. The vacation
planning example above is one such instance. Another example
is academic schedule planning, where the goal for instance is
to obtain solid knowledge of a given subject area.

Solving such problems require expertise in the domain of
the problem, which is often gained by experience, solving
instances of the same (or similar) problems. Since many
people deal with similar planning problems, it is reasonable to
assume that the crowd may provide useful insight here. Indeed,
several attempts were made in this direction. For example,
for academic schedule planning, the CourseRank system [3]
allows students to rate courses and provides a convenient
tool to compile recommended courses into schedule. Another
example is the Cross-Service Travel Engine for Trip Planning
[4] that allows harvesting POIs (points of interest) from
various traveling recommendation sites and provides a tool
to compile a trip schedule from these POIs. Theses systems
however focus on identifying the set of relevant items (courses,
POIs), but the non-trivial task of ordering them in an ideal
way, to form an actual plan, is left to the user.

Assisting the user in this fairly challenging task is the goal
of the present work. We refer below to an ordered list of
items as a plan and present CrowdPlanr , a system that
employs the crowd to build “good” plans (w.r.t some abstract
quality criteria) for specific tasks. It takes as input a set of
relevant items (that can be obtained from the existing systems
mentioned above) and intelligently asks users from the crowd
series of simple questions (about possible 1-step continuations
of given partial plans), using the answers to identify the plans
preferred by the crowd.

Intuitively, the set of all possible plans (ordered lists) that
can be built from a given set of items can be modeled as a
tree, where each node is an item, its ancestors are the items
preceding it in the plan and its children are the items that
may follow it. A root-to-leaf path in this tree represents a
plan. One may rate (and correspondingly rank) plans by the
probability of a person to consider a given plan as the best
(w.r.t to the given abstract criteria). As the size of this tree may
be extremely large (exponential in the size of the items set), it
is clearly impractical to ask the crowd about each possible

plan. Instead, we employ in CrowdPlanr a novel efficient
algorithm that traverses this tree incrementally. It carefully
restricts attention to the more promising plans - ones with
highest maximum potential score (to be formally defined in the
sequel) and optimally chooses at each step the ‘best’ questions
(about possibly continuation), so that the overall number of
questions that the crowd needs to be asked is minimized.

Outline of the demonstration: We demonstrate the plan-
ning problem described above, along with our solution, in the
context of a question-answer game played by the ICDE‘13
attendees, whose goal is to assist users in vacation planning.
The vacation may be planned at different levels of granularity
- countries to visit, cities within a country, attractions in a
given city. We start by building a coarse-grained plan then
refine it, focusing on Brisbane as an example. To motivate
users to answer questions, players will be allowed to view the
constructed sightseeing plans only after answering a minimal
number of questions. We show how CrowdPlanr incremen-
tally chooses what questions to ask, and how the gathered
answers are analyzed so that the sightseeing plan preferred by
crowd (conference attendees) is identified1.

II. TECHNICAL BACKGROUND

We begin with an informal presentation of the model
underlying CrowdPlanr , then describe the algorithm used
for choosing the questions to be posed to the crowd.

Complimentary components: We assume that we are
given an initial finite set S of potential items to build a
plan from. This set already reflects the preferences the user
has defined when she requested a plan. We will use this
set to suggest to the user possible answers when we ask a
question. Some of these items may become irrelevant as we
progress, which will be reflected by the users not selecting
them as answers. There are multiple tools that can be used
for identifying this initial set S of items, e.g. TripAdvisor [5]
for vacation planning, CourseRank [3] for academic schedule
planning. We use the former in our demo.

As a simple running example we will use below the plan-
ning of a vacation in Italy (at the city granularity), starting
from Rome. The set of items S in this case includes commonly
visited Italian cities, e.g., {Milan, Venice, Verona, Florence,
Pisa, Trento, Bologna, Naples, ...}.

Note that, in general, not every user can answer every
question. Indeed users that have never visited/read/heard va-
cation stories about Italy cannot help much in planning a
vacation there. The targeting of questions to relevant users
is by itself a challenging problem that may be addressed by
a variety of methods (e.g. using semantic knowledge about
users [6], employing collaborative-filtering based techniques
[6], [7], etc.). In principle, any such black-box algorithm can
be plugged into our system. Specifically, in our demo we will
simply assume all conference participants to be relevant crowd.

1We note that the demo focuses only on sightseeing. Other complementary
issues of trip planning (e.g. hotels selection, transportation, etc.) are naturally
complementary and may be added to the plan using existing services.

Fig. 1. An example of a tree representing a set of plans

Model: CrowdPlanr allows users to plan vacations at
different levels of abstraction, zooming in and out between
levels. For space constraints we focus below on a single level
and explain things intuitively in this simplified context. Given
a set S of items, a plan is an ordered subset of S 2. We will
use two special items not in S - † to mark the beginning
of the plan and ‡ to mark an end of the plan. A complete
plan is an ordered sequence of items (†, a1, . . . , ak, ‡), with
no repetitions, starting with a beginning marker and ending
with an end marker. We also consider partial plans - prefixes
that can be expanded by adding new items; these do not have
an end marker. The set of all possible plans may be represented
by a tree, called a decision tree, where the root is labeled by
the start marker, internal nodes are labeled by items from S,
leaves are labeled by the end marker, and each internal node
vi represents a partial plan pi = (†, a1, . . . , ai), corresponding
to the labels of nodes on the path from the root to vi.

The decision tree is built incrementally by asking the crowd
questions on the nodes already in the tree (at the beginning
the tree consists only of the root). Given a node vi (and its
corresponding partial plan pi) we ask the users questions of
the form ”Given a plan pi which item should we add to it?”.
The user will answer with an item to add, or indicate that
the plan should stop at this item. Answers to these questions
define a probability distribution on the children of every node.
We use these distributions to define a score for every node - a
score of a node is its probability to follow its parent in node’s
partial plan. A score of a (partial) plan is then a multiplication
of scores of the nodes composing it.

To continue with our example, a portion of the tree de-
scribing (partial) Italy vacation plans is depicted in Figure 1.
Assume that 20 questions were asked for the root and 10 for
each of the other shown nodes and that the labels on incoming
edges denote the nodes score. Thus the scores of following
partial plans are:
• (Rome, Florence, Bologna) - 0.36
• (Rome, Naples, Milan) - 0.2
• (Rome, Milan, Bologna) - 0.14

The previous definitions do not place an upper bound on
the number of users that need to be asked in order to compute
the probability distribution for a given node. In principle we
could ask all available users for each node, but this exhaustive
approach can be prohibitively expensive in practice. Instead,

2More generally, one may also want to consider partially ordered subsets.
For simplicity we ignore this here

we expect applications to place a limit on the number of
obtained answers. For this purpose, we define a threshold N
that denotes the desired number of users to be probed for a
node. (This may be determined, e.g., based on the desired
sampling error bounds [8].) Thus, in principle, by asking N
questions on all of the (incrementally added) nodes (until no
more new nodes are added) we can obtain a final tree TO
from which we can find the best plan - pO 3. Note however
that, since the size of this tree may be exponential in the size
of the items set, it is clearly impractical to build it fully and
ask the crowd about each of its nodes. Instead, we employ
an efficient algorithm that intelligently traverses the tree and
processes only the minimal necessary parts.

The core algorithm: The key observation underlying our
solution is that finding pO exactly is not really necessary - as
the quality criteria is anyway abstract, two plans having almost
the same score are reasonably equally good. Thus we define a
correct answer to be a plan p s.t. score(pO)− score(p) ≤ ε,
where ε is a given allowed error constant.

As we ask the crowd questions, we incrementally discover
TO and its nodes score. Note that we can return a plan p as
an answer as soon as we are sure that its score in TO (that has
been only partially discovered so far) is at least score(pO)−ε.
To be certain that a plan p is indeed a correct answer one has
to prove that there is no other plan p′ in TO with a score
significantly higher than score(p). Since a full tree has not
been discovered, this requires showing that in every possible
completion of the current tree T (and the user answers obtained
thus far), p has the highest score up to ε. The notion of possible
completion is defined in the intuitive manner, looking at all
possible trees that may be constructed by continuing asking
all possible questions (and obtaining all possible combinations
of answers) from the given state.

Our algorithm works in a greedy manner as follows. At each
point it (1) computes for the existing partial plans their highest
potential score, namely the maximal score that it can have in
some possible completions of the given tree, then (2) selects a
plan having maximal such potential sore, and (3) ask questions
on the closest-to-the-root not-yet-exhausted node of this plan
(i.e. a node where we haven’t yet asked N questions). It stops
when it finds a plan whose minimal potential score is smaller
by less than ε than the maximal potential score of all other
plans.

We conclude with two remarks, one regarding the complex-
ity of the algorithm and the other regarding its optimality.
Remark 1 First, it is important to note that the maximal and
minimal potential scores of a plan (and thus also the stopping
condition), can be computed in time polynomial in the size
of the current tree, without having to materialize its missing
parts, or consider all possible combinations of missing user
answers. Indeed one can show that a maximum potential score
for a plan is achieved if from now on all the answers are in
favor of that plan. Similarly, a minimum potential score is

3Recall that S is finite and that each item appear in a plan only once, hence
TO is finite.

CrowdPlanr

Crowd

U
se

r
In

te
rf

ac
e

Plan Builder

DB

Complete plan

Crowd Manager
Questions

 Answers

Targeting
information

Possible answers

Questions Answers

 Data

 Data
 updates

Targeted
questions
 Answers It

e
m

s
p

o
o

l (
3

rd
 p

ar
ty

)

Users online

Request

Plan

Items
info

Plan request

Fig. 2. CrowdPlanr architecture

achieved if from now on all the answers are against that plan.
And thus both can be calculated in PTIME.

To illustrate, consider again the tree depicted in Figure 1.
Suppose that N = 20, thus no node in the tree is exhausted yet
(except for root). Maximum score for a plan is achieved if for
all remaining questions all answers match this plan, maximum
potential scores for some of the partial plans in this tree are:
• (Rome, Florence, Bologna) - 8

20 ·
19
20 = 0.38

• (Rome, Naples, Milan) - 8
20 ·

15
20 = 0.3

• (Rome, Milan, Bologna) - 4
20 ·

17
20 = 0.17

The plan that has the highest maximum potential score is
(Rome, Florence, Bologna) and thus our algorithm will ask
a question about highest non-exhausted node of this plan -
Florence.
Remark 2 A dominant cost factor in crowd sourcing applica-
tions is the number of questions being asked. This is because
answering may be slow and possibly incur monetary cost.
We show in the full version of the paper that our algorithm
is extremely efficient with that respect. Following [9], define
an algorithm to be instance-optimal if for any possible input
instance, its cost of operation (in terms of number of questions
posed to the crowd) is at most the same order of magnitude
as that of any other correct algorithm. Indeed, we are able
to show that our algorithm is instance-optimal. We omit the
proof for space constraints.

Related Work: Using crowd as a source of knowledge has
become popular in the last years. Some research (e.g. [10])
deals with the development of a unified language and model
to allow data collection from both humans and machines while
other (e.g. [11], [12]) concentrate on ways to process this data,
clean it and extract insights from it. Other related work (e.g.
[7], [13]) is directed to optimizing expected cost (number of
questions) and expected error. Our work is also concerned with
minimizing the number of questions, but requires a different
approach as the result consists of an ordered list, entailing
inherent dependency between questions and answers.

III. SYSTEM OVERVIEW

CrowdPlanr is implemented in PHP and uses a MySQL
database. Figure 2 illustrates the system architecture.

Plan Builder receives requests for building a plan and
executes our algorithm to build it. Questions generated by
the algorithm are forwarded to the Crowd Manager. Once the
algorithm decides to stop, plan is returned to the requesting
user.

Crowd Manager constantly receives an updated list of online
users from UI and targeting information from the DB. Once a
question is received from the Plan Builder, it is enriched with

Fig. 3. CrowdPlanr user interface

a set of possible answers from the Items pool and presented
to a selected user via UI. Received answer is passed back to
Plan Builder.

DB stores answers collected from the crowd, targeting
information and general information about the locations.

Items pool is completely 3rd party and stores information
about the locations and used for initial filtering of the options
and possible answers.

UI module is used to interact with users (both requesting a
plan and contributing to it). Figure 3 shows a screenshot of this
operation. In this example user from crowd faced with question
”Trip in Australia”, where two previous places that already
proposed were (Canberra, Australia) and (Sydney, Australia).

CrowdPlanr can also run as a service, by disabling UI and
invoking it with system calls, which is useful for web sites
that want to keep their own UI.

IV. DEMONSTRATION

In this demonstration, CrowdPlanr will engage the ICDE13
attendees to build a comprehensive crowdsourced database of
travel plans at different granularity levels (countries, cities,
attractions in a given city) . This will be done via a multiple-
choice questions game where users are shown partial travel
plans, along with a set of possible continuation, and are asked
to select the best one (according to given abstract criteria).
The list of possible answers is predefined (implemented via
user-friendly auto-completion mechanism) but not limited, and
users can also type in new place to visit. The generated
database consists, correspondingly, of travel plans for different
locations in the world, including in particular Australia and
Brisbane. To encourage participation, players will be allowed
to view the constructed travel plans and request new ones, but
only after they themselves answer a minimal set of questions
per such view.

The data set used in the demo will be initialized with
a set of geographical locations/attractions divided to three
categories: countries, cities in those countries and attraction
places in those cities. In order to not start the demo with
an empty set of travel plans we will partially fill it by fake,
yet realistic (partial) plans, using information extracted from
TripAdvisor. We will also add to the database a list of ICDE’13
participants, extracted from the conference program, including
the cities and countries of the participants universities. This
will allow CrowdPlanr to target questions on given countries
to corresponding users (if such currently play).

We start the demonstration by explaining the game, its
goal and rules. Then, we let our audience play it on several
laptops allocated for that. In parallel, we will explain how
CrowdPlanr works (repeatedly, so that players who finished

Fig. 4. Statistics page
playing can join, allowing others to play). We will show, on
an Administrator screen, the current state of the data: how
many (partial) vacation plans exist, how many user answers
we already collected, which questions were recently asked,
and what are the current (partial) plans with potential high
score. An example for one of the Administrator views that
we will show is depicted in Figure 4. We then request one of
the attendees that played the game earlier to log-in again into
the system (users log-in with their real name). We will first
view her previous answers (if she agrees) then start the game
again and follow its course. We will examine the questions that
CrowdPlanr poses to the user and her answers, and reveal, in
parallel, on an Administrator screen, what is happening under
the hood. We will describe our algorithm and explain why
these specific questions were chosen by the system. We will
also explain the effect that the given answers have on the
system’s state and how the system determines that sufficient
information has been collected to determine the best plan for
a given request.

ACKNOWLEDGMENT
This work has been partially funded by the European

Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013) / ERC grant MoDaS,
agreement 291071, by the Israel Ministry of Science, and by
the US-Israel Bi national Science foundation.

REFERENCES

[1] A. J. Quinn and B. B. Bederson, “Human computation: a survey and
taxonomy of a growing field,” in CHI, 2011, pp. 1403–1412.

[2] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory
and practice. Elsevier, 2004.

[3] “Courserank,” http://courserank.stanford.edu/.
[4] G. Chen, C. Liu, M. Lu, B. C. Ooi, S. Ying, A. Tung, D. Zhang, and

M. Zhang, “A cross-service travel engine for trip planning,” in SIGMOD,
2011, pp. 1251–1254.

[5] “Tripadvisor,” http://www.tripadvisor.com/.
[6] G. Adomavicius and A. Tuzhilin, “Towards the next generation of

recommender systems,” IEEE TKDE, 2005.
[7] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W.-

C. Tan, “Asking the right questions in crowd data sourcing,” in ICDE,
2012, pp. 1261–1264.

[8] R. Groves, F. J. Fowler, M. Couper, J. Lepkowski, E. Singer, and
R. Tourangeau, Survey Methodology. John Wiley and Sons, 2009.

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” J. Comput. Syst. Sci., vol. 66, no. 4, pp. 614–656, 2003.

[10] A. G. Parameswaran and N. Polyzotis, “Answering queries using hu-
mans, algorithms and databases,” in CIDR, 2011, pp. 160–166.

[11] D. Deutch, O. Greenshpan, B. Kostenko, and T. Milo, “Using markov
chain monte carlo to play trivia,” in ICDE, 2011, pp. 1308–1311.

[12] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: answering queries with crowdsourcing,” in SIGMOD, 2011.

[13] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom, “Crowdscreen: algorithms for filtering data
with humans,” in SIGMOD, 2012, pp. 361–372.

