
NL2CM: A Natural Language Interface to
Crowd Mining

Yael Amsterdamer, Anna Kukliansky and Tova Milo
Tel Aviv University, Tel Aviv, Israel

{yaelamst,annaitin,milo}@post.tau.ac.il

ABSTRACT
The joint processing of general data, which can refer to ob-
jective data such as geographical locations, with individual
data, which is related to the habits and opinions of individu-
als, is required in many real-life scenarios. For this purpose,
crowd mining platforms combine searching knowledge bases
for general data, with mining the crowd for individual, un-
recorded data. Existing such platforms require queries to be
stated in a formal language. To bridge the gap between näıve
users, who are not familiar with formal query languages, and
crowd mining platforms, we develop NL2CM, a prototype sys-
tem which translates natural language (NL) questions into
well-formed crowd mining queries.

The mix of general and individual information needs raises
unique challenges. In particular, the different types of needs
must be identified and translated into separate query parts.
To account for these challenges, we develop new, dedicated
modules and embed them within the modular and easily
extensible architecture of NL2CM. Some of the modules inter-
act with the user during the translation process to resolve
uncertainties and complete missing data. We demonstrate
NL2CM by translating questions of the audience, in different
domains, into OASSIS-QL, a crowd mining query language
which is based on SPARQL.

1. INTRODUCTION
A useful distinction between information needs in real-life

tasks classifies such needs into two types: general informa-
tion needs, which involve data not tied to a particular per-
son, such as the locations of places or opening hours; and
individual knowledge needs, which concerns individual peo-
ple, e.g., their actions and opinions. The first type of data
can often be fetched from standard databases or knowledge
bases, whereas obtaining individual data about the mem-
bers of a certain population often requires posing questions
to (a sample of) the relevant people. As an example, based
on a real question posted in a travel-related forum, consider
a group of travelers who booked a hotel in Buffalo, NY.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright c© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735370.

The group members may be interested in the answer to the
question “What are the most interesting places near Forest
Hotel, Buffalo, we should visit in the fall?” Answering this
question requires processing mixed data: the sights in Buf-
falo and their proximity to Forest Hotel is a general data
that can be found, e.g., in a geographical ontology such as
LinkedGeoData;1 the interestingness of places is an individ-
ual opinion; and which places one should visit in the fall is
an individual recommendation. As another example, con-
sider a dietician wishing to study the culinary preferences in
some population, focusing on food dishes rich in fiber. While
nutritional facts can be found in a (general) knowledge base,
the eating habits of people are individual information.

The example tasks mentioned above could be performed
using standard tools such as web search or forums. However,
these tools have shortcomings in processing mixed general
and individual knowledge: search engines are very efficient
nowadays, but cannot ask people to provide individual data
that is not already recorded in the search engine’s reposi-
tory, when such data is required; web forums allow fetching
individual data from web users, but do not search relevant
general data in knowledge bases; and both tools may incur
post-processing efforts to the user, in manually analyzing
their text-based output, filtering irrelevant results, aggre-
gating answers and identifying consensus, etc. This calls for
a hybrid and automated approach, which involved searching
a general knowledge base, asking and analyzing the answers
of people, and jointly processing the results.

Such an alternative approach is studied in our recent work
about crowd mining [1, 2]. In [2], a novel query language
was defined, OASSIS-QL, whose syntax splits individual in-
formation needs from general ones. This allows OASSIS-QL
queries to be evaluated by an efficient, crowd-powered query
engine, such that general query parts are evaluated against
a knowledge base (ontology) and the individual parts are
evaluated with the help of the crowd of web users.

While existing crowd mining tools such as OASSIS-QL are
a major step towards processing mixed general and individ-
ual information needs, one cannot expect näıve users (like
the travelers in our first example above) to write complex
queries in a formal language. To overcome this, we introduce
NL2CM. This prototype system allows users to express their
requests in natural language (NL), identifies and isolates
specific general and individual information needs, and au-
tomatically translates these needs into well-formed queries.
We exemplify the operation of this framework for OASSIS-QL,
which is evaluated over RDF-modeled data. However, the

1LinkedGeoData. http://linkedgeodata.org/

1433

http://linkedgeodata.org/

principles we develop and the modular architecture of NL2CM,
may cater for other crowd mining platforms that support
query languages over, e.g., relational or XML data.

The problem of developing NL interfaces to query en-
gines has been studied in previous work for queries over
general, recorded relational/XML/RDF data (e.g., [5, 6, 7,
12]). However, the mix of individual and general informa-
tion needs in the scenarios we consider add new challenges
to the problem. For instance, individual and general infor-
mation needs may be mixed in an intricate manner in an NL
question. Until now, no existing tools could account for dis-
tinguishing the different types of needs, which is necessary
for the translation process. Existing NL tools can identify
only individual expressions of sentiments and opinions, but
do not account, e.g., for individual habits. Moreover, näıve
approaches, such as checking which parts of the query do
not match to the knowledge base, cannot facilitate this task
since most knowledge bases are incomplete.

Our solution to these challenges consists of (i) a modu-
lar architecture, reusing existing NL tools where possible;
(ii) a newly-developed module for distinguishing individual
information needs from general ones; and (iii) seamless in-
tegration of individual and general query parts into a well-
formed query. The translation process can be outlined as
follows. First, off-the-shelf NL tools are instrumented for
parsing the free text and converting it into well-defined data
structures, which represent the semantic roles of text parts.
These structures then undergo decomposition into their gen-
eral and individual parts by our new module, which employs
means of declarative pattern matching and dedicated vocab-
ularies. Each part is separately processed, and in particular,
an existing General Query Generator is used to process the
general query parts, whereas the individual parts are pro-
cessed by new modules. The processed query parts are in-
tegrated to form the final output query. NL2CM implements
these ideas and further interacts with the user in order to
deal with uncertainties and missing details (e.g., “Buffalo” is
ambiguous) in the user request.

We next provide a brief overview of the demonstration
of NL2CM and of related work. Section 2 explains the de-
sign and the techniques used in the translation framework.
The implementation details of these ideas, along with the
interaction of the user with the system are explained in Sec-
tion 3. An elaborate demonstration scenario is described in
Section 4.

Demonstration Overview. We will demonstrate the oper-
ation of NL2CM in three stages, to gradually introduce it to
the audience members. First, we will demonstrate the trans-
lation of real-life NL requests collected from web forums into
OASSIS-QL queries, and observe the correspondences between
different query parts and parts of the original NL sentence.
Second, we will invite the audience members to contribute
questions on any topic that interests them. These NL re-
quests will also be translated into OASSIS-QL, and we will
execute some of the queries via the OASSIS query engine,
to gain further intuition about the semantics of the gener-
ated queries and their results. Last, we will demonstrate
the interaction of NL2CM with the user in cases when either
rephrasing the question or adding information is required.
In parallel, we will gain an insight into the system operation
through its administrator mode screen. See Section 4 for
full details.

1 SELECT VARIABLES
2 WHERE
3 {$x instanceOf Place.
4 $x near Forest_Hotel,_Buffalo,_NY}
5 SATISFYING
6 {$x hasLabel "interesting"}
7 ORDER BY DESC(SUPPORT)
8 LIMIT 5
9 AND

10 {[] visit $x.
11 [] in Fall}
12 WITH SUPPORT THRESHOLD = 0.1

Figure 1: Sample OASSIS-QL Query, Q

Related Work. A recent line of work studies the use of
crowdsourcing platforms for performing different data pro-
cessing tasks with the help of the crowd (e.g., [3, 4, 9, 13,
14]). The idea of ontology-based crowd mining was originally
introduced in [1], and extended to support the evaluation of
user-specified declarative queries in [2], by the OASSIS sys-
tem. NL2CM forms an important enabling tool for crowd min-
ing systems like OASSIS, since it makes them accessible to
the public, and allows any user to formulate even complex
queries in an intuitive manner. Previous work includes a
line of NL interfaces to declarative systems, e.g., [5, 6, 7,
12], many of which employ interactive request refinement as
is done in NL2CM. In particular, FREyA [5] translates NL
into SPAQRL, and interacts with the user to resolve unrec-
ognized or ambiguous terms. We employ it for processing
general information needs, as described in Section 3. How-
ever, to our knowledge, no prior work can account for NL
requests concerning individual data.

2. TECHNICAL BACKGROUND
The process of automated query translation can be viewed

as converting between two types of data representations,
namely, the source and target languages. In our setting,
we use NL parsing tools to generate a standard representa-
tion of the source NL text (see below). This representation
allows processing the text to detect and isolate the general
and individual query parts, and eventually convert them to
the representation of the target query language.

Next, we review the design and techniques used in the
NL2CM translation framework. As explained in the Introduc-
tion, this framework is modular and can be adapted to sup-
port different query languages. To make the discussion con-
crete, we describe here the translation of NL to OASSIS-QL,
which is also used in our demonstration scenario. We will
mention throughout the section which parts of the solutions
are specific to OASSIS-QL, and changes that can be made
to support other languages. For background, we start by
briefly explaining the syntax and semantics of OASSIS-QL, a
full description of which can be found in [2]. Then, we de-
scribe the modular architecture of NL2CM, and the interaction
between the framework modules.

2.1 Query Language Overview
As mentioned in the Introduction, OASSIS-QL queries are

evaluated against an ontology of general knowledge as well
as the individual knowledge of the crowd. An RDF model
is used to represent both types of knowledge, and thus, the
syntax of OASSIS-QL is defined as an extension of SPARQL,
the RDF query language, to crowd mining.

An OASSIS-QL query has three parts: (i) a SELECT clause,
which defines the output of the query; (ii) a WHERE clause,

1434

which is evaluated against an ontology; and (iii) a SATIS-

FYING clause, which defines the data patterns to be mined
from the crowd. The returned output is composed of data
patterns that capture the relevant and significant habits
and opinions of the crowd. We briefly review below the
OASSIS-QL syntax, using the example question “What are
the most interesting places near Forest Hotel, Buffalo, we
should visit in the fall?”. Figure 1 displays the query Q,
which is the translation of this NL question into OASSIS-QL.

The SELECT clause (line 1) specifies that the output should
be significant variable bindings, i.e., bindings to the query
variables which yield significant data patterns. In this ex-
ample, Q contains a single variable $x, and its bindings to
places in Buffalo that match the query, e.g., the Delaware
Park and Buffalo Zoo may be returned. The language also
allows projecting the results over a subset of the variables.

The WHERE clause (lines 2-4) defines a SPARQL-like selec-
tion query on the ontology. It consists of triples of the form
entity-relation-entity, which correspond to the RDF ontol-
ogy triple structure. The ontology triples represent general
knowledge facts, e.g., the triple {Delaware_Park instanceOf
Place} signifies that Delaware Park is a name of a place.
The triples in the query WHERE clause may further contain
variables (e.g., $x), and are used to perform a selection over
the ontology facts. This returns all variable bindings such
that the resulting set of triples is contained in the ontology.

The SATISFYING clause (lines 5-12), to which we apply
the previously found variable bindings, defines the data pat-
terns (fact-sets) to be mined from the crowd. Each pattern
appears in a separate subclause in curly brackets (lines 6
and 10-11). Consider, e.g., the fact-set {[] visit $x. []

in Fall}, where [] stands, intuitively, for“anything”. Com-
bined with the binding $x 7→ Delaware_Park, this fact-set
corresponds to a habit of visiting Delaware Park in the fall.
The system can then ask crowd members how frequently
they engage in this habit, if at all. Intuitively, the support of
a data pattern captures a habit frequency or a level of agree-
ment to a statement, aggregated from the answers of several
crowd members. In OASSIS-QL, one can select the patterns
with the k-highest(lowest) support values, using ORDER and
LIMIT (lines 7-8). Alternatively, one can set a minimal sup-
port threshold for the patterns (line 12). Note that neither
the limit nor the support threshold values are specified in
our example NL request. In this common scenario, the sys-
tem can either use default values that are pre-configured at
the system administrator level, or interact with the user to
obtain them (See Section 4.1).

2.2 NL Parsing Modules
We now proceed to describe the modules of the transla-

tion framework. To parse the input user request, two stan-
dard NL tools are used: POS (Part-Of-Speech) tagger and
dependency graph parser. A Part-of-Speech (POS) tagger
assigns a linguistic category to every meaningful unit in a
given text [8]. E.g., in the running example question, “Buf-
falo” is a proper noun and “interesting” is an adjective. A
dependency graph parser produces a directed acyclic graph
(typically, a tree), whose nodes correspond to meaningful
units and its edges are labeled by semantic relationships be-
tween these units [8]. E.g., an edge labeled “subject” may
connect a verb node with its grammatical subject.

The dependency graph along with the POS tags serve for
higher-level data processing by the subsequent modules.

2.3 Individual Expression Detection
In order to distinguish the individual and general parts of

the parsed NL request, we use an Individual eXpression (IX)
Detector. This module identifies and extracts the individual
parts from the dependency graph.

As mentioned in the Introduction, no existing tools can
account for IX detection. Some previous work considers
identifying expressions of sentiment or subjectivity in texts
(e.g., [10]), but these expressions are only a subset of indi-
vidual expressions. For instance, they do not capture indi-
vidual habits such as where people visit, what they cook,
etc. We thus develop a dedicated solution for IX detection,
based on a general technique in NL processing, namely, pat-
tern matching. This technique is simple and transparent (in
comparison with, e.g., machine learning), and by defining
the IX detection patterns in a declarative manner, allows a
system administrator to easily manage, change or add the
predefined set of patterns. By our analysis of user requests
with individual parts, we have identified different IX pat-
terns and classified them into the three following types.
• Lexical individuality stems from a term in the text.

E.g., “interesting” conveys an individual opinion.
• Participant individuality stems from participants

or agents in the text that are relative to the person
addressed by the request. E.g., “you” in “Where do
you visit in Buffalo?” is an individual participant.
• Syntactic individuality stems from the sentence syn-

tax. For example, in“Obama should visit Buffalo”, the
verb auxiliary “should” denotes the speaker’s opinion.

Every IX detection pattern of the above types matches
a connected subgraph within the dependency graph (which
corresponds to a set of semantically related text units). We
define IX detection patterns in a SPARQL-like syntax, in
terms of the POS tags; the dependency graph edges; and
dedicated vocabularies. For lack of space, we will not explain
here the detection pattern syntax but give an intuition about
it via an example: the following simple pattern detects IXs
with a verb that has an individual subject, a particular case
of an individual participant.

1 $x subject $y
2 filter(POS($x) = "verb" && $y in V_participant)

Intuitively, the query above selects a verb ($x) which is
connected by a subject-labeled edge to its subject ($y). The
filter statement enforces that $x is a grammatical verb by
its POS tag, and that $y is in the vocabulary V_participant,
dedicated to individual participants.

More generally, individuality in NL can be very complex,
and almost every expression can appear in a (non-)individual
context. Thus, the IX detection patterns and vocabularies
should be designed to capture expressions which appear in
individual contexts with high probability.

2.4 General Query Generator
The different query parts should now be converted into

the basic building blocks of the query. As mentioned in the
Introduction, since the problem of translating NL to queries
over general data has been studied in previous work (e.g., [5,
6, 7, 12]), it is preferable to reuse an existing tool for this
task. Thus, we embed in the translation framework an off-
the-shelf General Query Generator for processing the general
parts of the query, i.e., the parts of the dependency graph

1435

which were not identified as IXs. In the particular case of
translation to OASSIS-QL, the syntax of the general query
parts is based on SPARQL, and thus a SPARQL Query Gen-
erator such as [5] can be used. From the Generator’s output,
we can extract the SPARQL triples that will form the WHERE

part of the target OASSIS-QL query. The crux in reusing an
existing Query Generator lies in having it translate only the
general request parts rather than the full request. The way
to resolve this issue may depend on the choice of Query Gen-
erator. The particular solution used in our implementation
is described in Section 3.

2.5 Individual Query Parts Creation
While the general parts of the query are translated by a

General Query Generator, translating the IXs is done by
a new module. Unlike the Query Generator, this module
cannot rely on aligning the request parts to the ontology,
since these parts do not correspond to an ontology. In-
stead, a mapping is defined from certain grammatical pat-
terns within the IXs into query parts, according to the syn-
tax of the query language. In the case of OASSIS-QL they
are mapped to query triples. For example, consider the IX
“places we should visit”, which corresponds to a subgraph
where “we” and “places” are, respectively, the subject and
object of “visit”. A mapping would then generate the triple
{[] visit $x}, where $x corresponds to “places”; and []

corresponds to “we”, meaning that this individual partici-
pant is projected out, which is necessary for aggregating the
answers of different crowd members about the same habit.2

2.6 Query Composition
The last module of the architecture combines the gener-

ated individual query parts with the general query parts,
created by the Query Generator. In the case of OASSIS-QL,
forming the query mainly means creating the subclauses of
the SATISFYING clause, aligning the variables of the WHERE

and SATISFYING clause, and creating the SELECT clause. In-
tuitively, the subclause creation phase ensures that every
subclause defines a data pattern to be mined from the crowd
that corresponds to a single event or property. For example,
the visit of Buffalo, in our running example, is described
as occurring in the fall and thus their corresponding triples
are put in the same subclause (lines 10-11 in Figure 1). For
each subclause, either a support threshold or a top/bottom-
k support selection is defined. The alignment of variables
is done such that every reference to a particular term in
the original sentence is represented by an occurrence of the
same variable. By default, the generated SELECT clause is
simple and does not project out any variables (as in Fig-
ure 1), which means that the query returns bindings to all
the variables. In Section 4.1 we discuss interacting with the
user to determine which variables should be projected out.

3. IMPLEMENTATION DETAILS
To complete the picture, we now provide the details of

the implementation of NL2CM. The main system modules
are depicted top-down in Figure 2 according to the formerly
described architecture. In this Figure, the modules and data
repositories painted black are new.

2“should” does not appear in the query, since it is implied
by the fact the SATISFYING clause handles individual data.

 U
se

r
In

te
rf

a
ce

POS tags,
dependency graph

IXFinder

Individual Triple
Creation

formal query

IXCreator

General
Query

Generator

Query
Composition OASSIS-QL triples

Vocabularies

IX detection
patterns

Partial IXs

Completed IXs

SPARQL
triples

NL Parser
NL question/request

Ontologies

interaction

interaction

interaction

Verification

Figure 2: System Architecture

NL2CM is implemented in Java 7, and its graphical user in-
terface is web-based, and written in PHP 5.3 using jQuery 1.x.
Users can write their questions/requests as free text in a
text field (see Figure 3). The text then undergoes a basic
verification process, which checks for certain types of ques-
tions/requests that are not supported by the system. In our
case, one common example is descriptive questions such as
“How to...?” “Why...?” “For what purpose...?”, whose an-
swer semantics is not supported by OASSIS-QL. In the case
that NL2CM detects an unsupported question, it displays an
adequate warning to the user along with a link to an expla-
nation and tips how to rephrase the question.

The questions that pass the verification step are sent to
the NL parsing modules. In NL2CM, we use the Stanford
Parser [8] to obtain both the dependency graph representa-
tion and POS tags of the input request, that are passed on
the subsequent modules (See Section 2.2).

Our newly developed IX Detector is split in Figure 2 into
two components: the IXFinder uses vocabularies and a set
of predefined patterns in order to find IXs within the depen-
dency graph, as described in Section 2.3. We use a dedicated
vocabulary for each type of IX pattern: for lexical individu-
ality, we use the Opinion Lexicon 3, which contains expres-
sions of sentiment or subjectivity. For the other types we use
vocabularies of our own making (hence, some of the vocab-
ularies in Figure 2 are painted black). The second module,
the IXCreator, is responsible for completing the subgraphs
representing the IXs. For example, if some verb is found to
have an individual subject, this component further retrieves
other parts belonging to the same semantic unit, e.g., the
verb’s objects.

The Query Generator is responsible for translating the
general query parts into SPARQL triples. For that, NL2CM
employs the FREyA system [5] as a black-box module. Since
FREyA only accepts full sentences as an input, NL2CM feeds
it with the dependency graph and POS tags of the original
user request, including the IXs. Some of the IXs may be
wrongly matched by FREyA to the ontology and translated
into general query triples. To overcome this problem, the
Query Composition module later deletes generated SPARQL
triples that correspond to detected IXs.

The Individual Triple Creation module receives the IXs,
and converts them, in this case, into OASSIS-QL triples, as
described in Section 2.5. These triples are then composed

3http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html

1436

Figure 3: Enter NL question (UI screenshot)

with the generated SPARQL triples into a well-formed query
by the Query Creation module, as described in Section 2.6.

The UI of NL2CM allows manually editing the output query
(Figure 6). For convenience, the design of NL2CM allows con-
necting it directly to OASSIS, the OASSIS-QL evaluation plat-
form. This further enables the user to submit the query
via the NL2CM UI to be executed with the crowd, track the
progress of the evaluation process through OASSIS’s UI, etc.

4. DEMONSTRATION
The usage of NL2CM includes optional interaction with the

users. Next, we describe this interaction, and then give the
full details about the interactive demonstration scenario.

4.1 User Interaction
Our user studies show that the quality of our developed

translation is high for real user questions even without in-
teracting with the user. Yet, user interaction may still be
useful (i) for manually adjusting certain query parameters
instead of using default values; and (ii) in cases of input
questions that are ambiguous or vague. Thus, as depicted in
Figure 2, some of the translation framework modules may
interact with the user via the UI of NL2CM. The optional
points of interaction are exemplified in Figures 3-6, for the
running example question. To minimize the user effort, the
system may be configured to always skip certain interaction
points, or skip them when there is no uncertainty.

Figure 4 depicts the first possible point of interaction with
the user in NL2CM, by the IX Detection module. An IX de-
tection pattern can be marked as “uncertain”, in which case
the IX Detector asks the user to verify IXs detected by this
pattern. For that, the uncertain individual parts are high-
lighted (each by a different color), and the user can check
the parts about which the crowd should be asked. (For the
sake of the example, in Figure 4 we have marked all the IX
detection patterns as uncertain.)

The General Query Generator may also interact with the
user to align ambiguous NL terms with the ontology con-
cepts. This kind of interaction is already employed by FREyA,
and we have thus plugged it into the UI of NL2CM. For ex-
ample, FREyA can ask the user whether “Buffalo” refers to
Buffalo, NY, USA, to Buffalo, IL, USA, or to other enti-
ties in the ontology that are named Buffalo. The response
of the user is recorded and serves to improve the ranking
of optional entities in subsequent user interactions with the
system [5].

Next, the Query Composition module may interact with
the user to complete missing details that are required for
composing the query. As noted in Section 2.1, user ques-
tions rarely contain explicit values which can be used in the

Figure 4: Verify the IXs (UI screenshot)

LIMIT or THRESHOLD expressions of an OASSIS-QL query.4 In
other cases, the system may either use default values or ask
the user to specify the missing values. In Figure 5, the user
is asked to specify the value of k for the top-k query over in-
teresting places, which sets the value of the LIMIT expression
in the query Q in Figure 1, line 8. The user is also asked to
select the minimal frequency of the “visit in the fall” event,
which is translated to a threshold between 0 and 1, and can
be plugged into the THRESHOLD expression in line 12 of Q.

Last, by default, the SELECT clause does not project out
any variables. In the running example question this makes
sense, since the only variable in Q corresponds to “places”,
and the relevant places are indeed the answer to the orig-
inal question. However, consider the variation “What are
the most interesting places ... we should visit with a tour
guide?”. The user may or may not want to get, along with
each place, the name of the tour guide that recommends it.
Moreover, if we replace “a tour guide” with “locals”, the user
is probably not interested in specific names of locals with
whom to visit Buffalo. Thus, the system can ask the users
for which terms, out of the terms that correspond to query
variables, they want to receive instances (variable bindings).
After this last interaction with the user, the final query is
composed and displayed (Figure 6).

4.2 Full Demonstration Scenario
To introduce NL2CM to the conference participants, we will

demonstrate its translation of NL questions to OASSIS-QL,
its interaction with the users, and the execution of the re-
sulting queries by the OASSIS engine. The demonstration
will be split into three parts: (i) translating real-life NL
questions collected from web forums; (ii) translating NL
questions from the audience members; and (iii) observing
the feedback of the system about questions that could not
be directly translated. We will use three monitors, for the
NL2CM interactive UI, for the OASSIS crowd UI, and for the
NL2CM administrator mode, which will provide the audience
a peek “under the hood” of the system. The system will
use the publicly available general data ontologies Linked-
GeoData and DBPedia.5

For the first step of the demonstration, we have collected
a set of example questions that were originally posted on the
question-and answer platforms Yahoo! Answers [11]. These
questions concern various topics, including travel (“Which
hotel in Vegas has the best thrill ride?”), shopping (“What
type of digital camera should I buy?”), health (“Is chocolate
milk good for kids?”), and others. We will ask the audience

4Note, however, that similar values are likely to be required
by other query languages.
5http://dbpedia.org/About

1437

http://dbpedia.org/About

Figure 5: Select the LIMIT value (UI screenshot)

to choose a topic of interest, and then feed a sample question
about this topic to NL2CM. Then, we will demonstrate the
translation process and inspect the generated query; this will
give us a better understanding of the query structure and
the mapping performed by system. To gain further intuition
about the query semantics, we will instruct the system to
feed some of the generated queries into OASSIS and, via the
second monitor, view the tasks that are generated to the
crowd by the query engine.

In the second step, we will invite volunteers to write ques-
tions of their own and feed them to the system. If a question
does not pass the verification step, the system will point out
to the user where the difficulty occurred, as well as provide
tips on how to rephrase the question, where possible. Oth-
erwise, our volunteer users will be able to interact with the
system, verify the detected IX or provide additional infor-
mation that is necessary for composing the query (as shown
for the running example question in Figures 3-6), and will
finally observe the resulting OASSIS-QL queries.

To complete the picture, in the case that all the questions
in the previous stage passed the verification, we will give
a few examples for real-life questions from Yahoo! Answers
that do not pass the verification. We will explain what is
the reason that certain types of question are not supported,
and show the tips NL2CM provides for rephrasing them. For
instance, “How should I store coffee?” is a descriptive ques-
tion which is not supported, but the similar question “At
what container should I store coffee?” is supported (and for
this example, may capture the original user’s intention just
as well).

While the volunteer users interact with NL2CM, we will also
turn the attention of the audience to the administrator mode
monitor, which will display the intermediate outputs passed
between the NL2CM modules. We will be able to observe the
structure and content of these outputs, and gain additional
intuition about the operation of the system.

Acknowledgements. This work has been partially funded
by the European Research Council under the FP7, ERC
grant MoDaS, agreement 291071 and by the Israel Ministry
of Science.

Figure 6: Final query (UI screenshot)

5. REFERENCES
[1] A. Amarilli, Y. Amsterdamer, and T. Milo. On the

complexity of mining itemsets from the crowd using
taxonomies. In ICDT, 2014.

[2] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov,
and A. Somech. OASSIS: query driven crowd mining. In
SIGMOD, 2014.

[3] A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive
crowdsourcing. In WWW, 2013.

[4] V. Crescenzi, P. Merialdo, and D. Qiu. A framework for
learning web wrappers from the crowd. In WWW, 2013.

[5] D. Damljanovic, M. Agatonovic, H. Cunningham, and
K. Bontcheva. Improving habitability of NL interfaces for
querying ontologies with feedback and clarification
dialogues. J. Web Sem., 19, 2013.

[6] F. Li and H. V. Jagadish. Constructing an interactive
natural language interface for relational databases.
PVLDB, 8(1), 2014.

[7] Y. Li, H. Yang, and H. V. Jagadish. NaLIX: A generic
natural language search environment for XML data. ACM
Trans. DB Syst., 32(4), 2007.

[8] M. D. Marneffe, B. Maccartney, and C. D. Manning.
Generating typed dependency parses from phrase structure
parses. In LREC, 2006.

[9] A. D. Sarma, A. Parameswaran, H. Garcia-Molina, and
A. Halevy. Crowd-powered find algorithms. In ICDE, 2014.

[10] Stanford Sentiment Analysis tool.
http://nlp.stanford.edu/sentiment.

[11] Yahoo! webscope dataset
ydata-yanswers-all-questions-v1 0.
http://research.yahoo.com/Academic_Relations.

[12] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, and G. Weikum. Deep answers for naturally
asked questions on the web of data. In WWW, 2012.

[13] C. Zhang, Z. Zhao, L. Chen, H. V. Jagadish, and C. Cao.
CrowdMatcher: crowd-assisted schema matching. In
SIGMOD, 2014.

[14] L. Zhang, D. V. Kalashnikov, and S. Mehrotra.
Context-assisted face clustering framework with
human-in-the-loop. IJMIR, 3(2), 2014.

1438

http://nlp.stanford.edu/sentiment
http://research.yahoo.com/Academic_Relations

	Introduction
	Technical Background
	Query Language Overview
	NL Parsing Modules
	Individual Expression Detection
	General Query Generator
	Individual Query Parts Creation
	Query Composition

	Implementation Details
	Demonstration
	User Interaction
	Full Demonstration Scenario

	References

