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ABSTRACT
Data cubes allow users to discover insights from their data
and are commonly used in data analysis. While very useful,
the data cube is expensive to compute, in particular when
the input relation is very large. To address this problem,
we consider cube computation in MapReduce, the popular
paradigm for distributed big data processing, and present
an efficient algorithm for computing cubes over large data
sets. We show that our new algorithm consistently performs
better than the previous solutions. In particular, existing
techniques for cube computation in MapReduce suffer from
sensitivity to the distribution of the input data and their
performance heavily depends on whether or not, and how
exactly, the data is skewed. In contrast, the cube algorithm
that we present here is resilient and significantly outperforms
previous solutions for varying data distributions. At the
core of our solution is a dedicated data structure called the
Skews and Partitions Sketch (SP-Sketch for short). The SP-
Sketch is compact in size and fast to compute, and records
all needed information for identifying skews and effectively
partitioning the workload between the machines. Our algo-
rithm uses the sketch to speed up computation and mini-
mize communication overhead. Our theoretical analysis and
thorough experimental study demonstrate the feasibility and
efficiency of our solution, including comparisons to state of
the art tools for big data processing such as Pig and Hive.

1. INTRODUCTION
Data cube [23] is a powerful data analysis tool, allowing

users to discover insights from their data by computing ag-
gregate measures over all possible dimensions. Imagine an
analyst that is given a database relation describing prod-
ucts sold by a company in various cities in the world over
the years. Using the data cube, it is possible to group the
data by every combination of attributes and compute the
aggregate over the different groups (e.g. product, year, lo-
cation, and subsets thereof) and discover interesting trends
as well as anomalies.
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While very useful, the data cube is expensive to compute,
in particular when the input relation is large. Consequently,
much research has been devoted for developing efficient al-
gorithms for cube computation [15, 22, 31, 36, 30]. Such
efficient computation becomes even more intricate and more
critical in a big data scenario, where information is spread
over many machines in dedicated platforms employed for en-
abling parallel computation over huge amounts of data. New
cube algorithms that best exploit the properties of these
platforms must be developed. Our work focuses on one such
popular platform - MapReduce [19]. We present here a new
efficient algorithm for computing data cubes over large data
sets in MapReduce environments and show that it consis-
tently performs better than the previous solutions.

Before describing our results, let us briefly explain how
the MapReduce framework operates and what are the weak-
nesses of previously developed cube algorithms for this frame-
work. MapReduce programs use two functions, map and re-
duce, that are executed in a cluster in two phases. In the first
phase, all machines run the map function and generate in-
termediate data which is delivered to the appropriate reduc-
ers. Then, in the second phase, all machines run the reduce
function on their input to compute output. A MapReduce
algorithm is typically built using a series of such MapRe-
duce rounds. The key difficulty in efficient programming
in MapReduce is to minimize network traffic between the
machines while at the same time balancing their workload.
This is particularly challenging in cube computation because
some of the aggregated groups as well as the computed cube
itself may be very large and thus balancing computation
and avoiding the generation of large intermediate data is
not trivial.

Several algorithms for data cube using MapReduce have
been developed, e.g. [26, 8, 33, 25]. Some have even been
implemented in Pig [5] and Hive [4] - engines that provide a
database interface over MapReduce and allow users to query
data in an SQL-like syntax. For instance, Pig implements
the data cube algorithm from [26]. However, to our knowl-
edge, all previous solutions, including those in Pig and Hive,
suffer from sensitivity to the distribution of the input data
and their performance heavily depends on whether or not,
and how exactly, the data is skewed. Intuitively, skews yield
large groups that need to be aggregated. For example, if an
extremely large number of laptops were sold in 2012, they
may not all fit (e.g. for their costs to be aggregated) in a sin-
gle machine’s main memory. Managing the aggregation of
such big groups alongside many smaller ones is challenging.
While some of these algorithms, e.g. [26], make an attempt
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to handle skews, the solution that they propose (to be ex-
plained later) is insufficient, and still existence of skewed
groups affects the performance.

In contrast, our new cube algorithm gracefully handles
mixtures of skewed and non skewed groups and consistently
outperforms previous solutions for varying data distribu-
tions. The key idea underlying our solution is that to opti-
mize performance, data must be analyzed at the group gran-
ularity. Note that by the definition of the cube, every subset
of tuples that agree on the value of some group-by attributes
contributes (after aggregation of its measure attribute) one
tuple to the cube. We call each such tuple a cube group
(c-group for short). While skewed c-groups have many tu-
ples belonging to them, this large data is “compressed” by
the aggregation and yields relatively small output. On the
other hand, non-skewed c-groups are each small, but the
cube computation may generate very many of them. To re-
duce network traffic it is thus beneficial to perform as much
of the aggregation of skewed c-groups already at the map
phase, whereas for non skewed ones it is better to postpone
their materialization to the reduce phase. Our algorithm
employs careful optimization to factorize, when possible, the
computation across multiple c-groups, determine which c-
groups should be computed where, and partition the work
in a balanced manner among the available machines.

To support this we have developed a novel data struc-
ture called the Skews and Partitions Sketch (SP-Sketch for
short). The SP-Sketch has two nice properties. On the one
hand, it is very compact in size and fast to compute. On
the other hand, it captures all needed information for iden-
tifying skewed c-groups and for effectively partitioning the
processing of skewed and non skewed c-groups between the
machines.

To understand the novelty of our approach, let us briefly
contrast with the state of the art algorithm in [26]. The
algorithm in [26] also uses sampling to obtain information
about the data properties. However, a major disadvantage
is that it makes a decision about the existence of skews at the
granularity of a full cuboid. If a skewed group is detected, it
aborts computation for the cuboid that contains this group,
and recursively splits the cuboid. It then checks again, at
each recursive iteration, for skews at the granularity of the
full given partition, and if detected aborts the computation
and splits the data again, and so on. The number of rounds
thus depends of the skewness level, which makes the algo-
rithm sensitive to data distribution. In contrast, our novel
approach, and the use of SP-Sketch, allows us to determine,
in a single round, skewness at the c-group granularity, for
all c-groups in all cuboids. Neither recursion nor aborts are
thus required by our algorithm, making it faster and re-
silient to any data distribution. The crux of our efficient
solution is that we managed to prove that the for practical
settings the number of skewed c-groups is in fact bounded
and information on all of them can be kept simultaneously
in main memory. While working at the c-group granularity
was indeed mentioned in [26] as a desirable future direction
that may allow for performance improvement, it is only this
result of ours that made this idea practically feasible. The
SP-Sketch, our use of it for data partitioning, the particular
split of work between mappers and reducers, as well as fac-
torized processing at the c-group granularity in the reducers,
are all novel ideas.

Our main contributions are the following:

Formal Model. Our first contribution is a formal model
defining the notion of (skewed) c-groups. We highlight the
challenges that must be addressed by an efficient cube al-
gorithm by analyzing a naive MapReduce algorithm. We
formally define the notion of (skewed) c-groups and show
why skewed c-groups need to be specially treated and why
the relationship between c-groups must be exploited to avoid
redundant network traffic.

SP-Sketch. Our second contribution is a novel data struc-
ture called SP-Sketch, that summarizes the important in-
formation for efficiently computing the cube. We start by
presenting a utopian view of the SP-sketch, which is too
expensive to compute. Then we describe an algorithm for
building an approximated variant of the SP-Sketch. The al-
gorithm is based on data sampling and is used to efficiently
compute an approximated variant of the SP-Sketch. We
prove the sketch to have high accuracy as well as being small
enough to entirely fit in a single machine main-memory.

SP-Cube Algorithm. Our third contribution is an efficient
algorithm that utilizes the previosly computed SP-Sketch, to
efficiently split work between mappers and reducers: map-
pers will perform partial aggregation of skewed c-groups and
determine which non-skewed c-groups may be processed to-
gether (and by which reducer). Reducers then process effi-
ciently their assigned non-skewed c-groups and globally ag-
gregate the (partially aggregated) skews.

Theoretical analysis. Our fourth contribution is a theo-
retical demonstration of the efficiency of our algorithm in
terms of the size of machines’ memory and the intermedi-
ate data transferred between the mappers and the reducers.
We show that in an extreme (synthetic) case the amount of
data that is transferred may be exponential in the number of
cube dimensions. However, we prove that in common cases
the size of the transferred data is only polynomial in the
number of dimensions thereby enabling efficient processing.
Regarding memory, we prove that the SP-Cube workload is
balanced between the machines.

Experimental Analysis. Our fifth contribution is a thor-
ough experimental analysis that matches our theoretical re-
sults. We experiment with two real-life data sets as well
as synthetic data and examine the various steps of our al-
gorithm and its performance as a whole. We compare the
performance of SP-Cube to existing algorithms implemented
in Pig and Hive. Working on varying data distributions,
we show that SP-Cube consistently outperforms other al-
gorithms, achieving between 20%-300% better running time
and smaller network traffic.

Throughout the paper, assume the aggregate function to
be applied is count, i.e the cardinality of every c-group . In
Section 7 we discuss different types of aggregate functions
to charactierize our algorithm in the general case.

Outline. We start in Section 2 by providing the necessary
background and definitions. Section 3 then highlights the
challenges in cube computation via a naive cube algorithm.
Section 4 presents the SP-Sketch and analyzes it. Section 5
then describes our SP-Cube algorithm that uses the sketch
and studies its properties. Our experimental study is pre-
sented in Section 6 and related work is discussed in Section
7. Finally, we conclude is Section 8. For space constraints,
some proofs and experiments are deferred to the Appendix.
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2. PRELIMINARIES
We start by providing the basic definitions for data cube

and the additional notions that will be used in the rest of
the paper.

2.1 Data Cube, Cuboids, and Cube Groups
Given a domain 𝒜 of attribute names, consider a relation

𝑅(𝐴1, 𝐴2, . . . , 𝐴𝑑, 𝐵) with a set 𝐴 = {𝐴1, . . . , 𝐴𝑑} ⊆ 𝒜 of
attributes called dimensions, and an additional disjoint at-
tribute 𝐵 ∈ 𝒜 called the measure attribute. W.l.o.g we will
assume that the set of attributes names in 𝑅 is ordered, and
denote a tuple in 𝑅 by 𝑡 = (𝑎1, . . . , 𝑎𝑑, 𝑏), meaning that the
value of attribute 𝐴𝑖 (resp. 𝐵) in 𝑡 is 𝑎𝑖 (𝑏). We also assume
that the measure attribute takes a numeric value. Finally,
we assume that the value of the attributes (as well as com-
puted aggregates over the measure attribute) can fit in a
fixed number of memory bytes, and take this as a constant
in our complexity analysis.

We will often be interested in only a subset 𝐴′ ⊆ 𝐴 of the
dimensions, and then replace the attribute names of 𝑅 that
are not in 𝐴′ by *. Similarly, we will often be interested in
the projection of a tuple 𝑡 to a subset 𝐴′ of the dimensions.
We will then replace the value of the dimension attributes
not in 𝐴′ by * and omit the measure value 𝑏.

Example 2.1. As a simple running example, we consider
a relation 𝑅 describing the products sold by a company in
various cities in Europe over the years. 𝑅 has three dimen-
sion attributes: 𝐴1 = 𝑛𝑎𝑚𝑒, 𝐴2 = 𝑐𝑖𝑡𝑦, 𝐴3 = 𝑦𝑒𝑎𝑟, and a
measure attribute 𝐵 = 𝑠𝑎𝑙𝑒𝑠. A tuple in 𝑅 records the num-
ber of sales for a given product name, in a specific city and
year. For instance, the tuple 𝑡 = (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, 2012, 2000)
describes the fact that that 2000 𝑙𝑎𝑝𝑡𝑜𝑝𝑠 where sold in 𝑅𝑜𝑚𝑒
at 2012. The projection of 𝑡 to the dimensions 𝑛𝑎𝑚𝑒 and
𝑦𝑒𝑎𝑟 is denoted (𝑙𝑎𝑝𝑡𝑜𝑝, *, 2012).

First introduced in [23], the data cube of a relation 𝑅 is a
set of relations, capturing of all possible group-by’s that can
be computed over a subset 𝐴′ ⊆ 𝐴 of the dimensions of 𝑅,
w.r.t some given aggregate function. Examples of common
aggregate functions include sum, count, and max.

The result of each such group-by is given in a separate
table called a 𝑐𝑢𝑏𝑜𝑖𝑑. We often overload notation and denote
a given cuboid by the set 𝐴′ of dimensions on which its
group-by was performed. Each subset of tuples in 𝑅 that
agree on the value of the group-by attributes contributes
(after aggregation of its measure attributes) one tuple to the
cuboid. We call each such tuple a cube group (c-group for
short). For a given c-group 𝑔, we will often be interested
only in the values of its dimension attributes, and will then
denote 𝑔 by its projection to these attributes. Finally, we
refer to the set of tuples of 𝑅 that was grouped together
to generate 𝑔 as the set of 𝑔, denoted 𝑠𝑒𝑡(𝑔). We say that
a tuple 𝑡 in 𝑅 contributes to a cube group 𝑔 if 𝑡 ∈ 𝑠𝑒𝑡(𝑔).
Note that by definition each tuple 𝑡 contributes to multiple
such cube groups, each corresponding to a projection over
some subset of its dimension attributes.

Example 2.2. To continue with our running example, the
data cube of 𝑅 consists of 8 cuboids, including for instance
the cuboids 𝐶1 = (𝑛𝑎𝑚𝑒, *, 𝑦𝑒𝑎𝑟) and 𝐶2 = (*, *, *). The
cuboid 𝐶1 is obtained by grouping the tuples in 𝑅 by prod-
uct 𝑛𝑎𝑚𝑒 and 𝑦𝑒𝑎𝑟, applying the aggregation function to the
measure attribute of each group. Two c-groups in 𝐶1 may

(name,city,year)

(name,city,*)

(name,*,*)

(name,*,year) (*,city,year)

(*,city,*) (*,*,year)

(*,*,*)
Figure 1: Cube lattice

(laptop,Rome,2012)

(laptop,Rome,*) (laptop,*,2012) (*,Rome,2012)

(laptop,*,*) (*,Rome,*) (*,*,2012)

(*,*,*)
Figure 2: Tuple lattice

be 𝑐1 = (𝑙𝑎𝑝𝑡𝑜𝑝, *, 2012) and 𝑐′1 = (𝑙𝑎𝑝𝑡𝑜𝑝, *, 2015). 𝑐1 (resp.
𝑐′1) is generated by aggregating the set of tuples 𝑠𝑒𝑡(𝑐1) (resp.
𝑠𝑒𝑡(𝑐′1)) of 𝑅 that includes all tuples describing laptop sales
in 2012 (2015). The cuboid 𝐶2 consists of a single value 𝑐2
obtained by aggregating the measure attribute of the all tu-
ples in 𝑅. Here 𝑠𝑒𝑡(𝑐2) consists of all the tuples in 𝑅. Note
that the tuple 𝑡 = (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, 2012, 2000) contributes to
both 𝑐1 and 𝑐2.

2.2 The Cube and Tuple Lattices
Inspired by [12] we employ here two notions of a lattice

graph - the cube lattice and the tuple lattice, that capture
respectively the relationships between different cuboids and
cube groups.

Definition 2.3 (The cube lattice). Given a relation
𝑅, the nodes of the cube lattice - 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑅) are the cuboids
of 𝑅. In this lattice, a cuboid 𝐶′ is a descendant of a cuboid
𝐶 iff its set of group-by attributes is obtained from that of 𝐶
by omitting one attribute. We say that 𝐶 is an ancestor of
𝐶′ iff 𝐶′ is a descendant of 𝐶.

An example of the cube lattice for the relation in our
running example is given in Figure 1.

Definition 2.4 (The tuple lattice). Given a tuple
𝑡 in 𝑅, the nodes of the tuple lattice - 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑡) are all pos-
sible projections of 𝑡 on subsets of the dimension attributes.
A projection 𝑡′′ is a descendant of a projection 𝑡′ iff 𝑡′′ is
obtained from 𝑡′ by omitting one attribute. 𝑡′ is an ancestor
of 𝑡′′ iff 𝑡′′ is a descendant of 𝑡′.

Consider the tuple 𝑡 = (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒,2012, 2000). The lat-
tice for 𝑡 is given in Figure 2. Note that the nodes in the
tuple lattice correspond precisely to the c-groups to which 𝑡
contributes.

Two simple observations on theses lattices will be helpful
in the sequel. The first, used already in previous work [26],
concerns the cube lattice.

Observation 2.5. For each cuboid 𝐶 in the lattice and
each descendant 𝐶′ of 𝐶, 𝐶 can be easily derived from the
tuple sets of the cube groups in 𝐶′ by partitioning the tuples
in each set w.r.t the added attribute of 𝐶′, then generating
one aggregated tuple per partition.
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This observation is the basis for the traditional BUC data
cube algorithm [15], which processes the lattice bottom up,
computing each cuboid from one of its descendants. The
specific descendant from which each cuboid is computed is
chosen using some heuristics for optimizing performance.

We observe here that an analogous situation holds for the
tuple lattice.

Observation 2.6. For every c-group 𝑔 in the tuple lat-
tice and every descendant 𝑔′ of 𝑔, the set of tuples that is
aggregated for generating 𝑔, is a subset of the set used to
generate 𝑔′. Namely, 𝑠𝑒𝑡(𝑔) ⊆ 𝑠𝑒𝑡(𝑔′).

This observation will be useful in our group-focused al-
gorithm. Recall that each node in 𝑙𝑎𝑡𝑖𝑐𝑒(𝑡) corresponds to
some c-group 𝑔 to which 𝑡 contributes. If all tuples that con-
tribute to a given cube group 𝑔 (tuples in 𝑠𝑒𝑡(𝑔)) are sent to
the same machine (e.g. the tuples in 𝑠𝑒𝑡((𝑙𝑎𝑝𝑡𝑜𝑝, *, *))), the
machine can also use them to compute locally the ancestors
c-groups in the lattice ((𝑙𝑎𝑝𝑡𝑜𝑝, *, 2012), (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, *),
and (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, 2012)), using e.g. the BUC algorithm,
applied locally to the given tuples subset.

2.3 MapReduce Settings
We specify here the MapReduce cluster settings that will

be used in the rest of the paper. Consider a relation 𝑅
with 𝑛 tuples and 𝑑+1 attributes. Working in a distributed
environment, suppose we have 𝑘 machines, and assume each
one can run a single map or a single reduce function in every
map or reduce phase, respectively. We assume that the 𝑛
tuples of the input are equally loaded to the machines at the
beginning of the algorithm. We additionally assume that the
machines have a main memory that is in the order of their
input size. We mark 𝑚 = 𝑛

𝑘
and assume that a machine

main memory size is 𝑂(𝑚). In addition, we assume that all
machines share a distributed file system, in which 𝑅 is read
from and to which the output data cube will be written. To
conclude this section, we formally define skewed c-groups in
terms of their freuquency relative to a machine memory size.

Definition 2.7. a c-group 𝑔 is skewed if the cardinality
of its tuples set is larger than 𝑚, namely |𝑠𝑒𝑡(𝑔)| > 𝑚.

Note that the threshold of skewed c-groups depends on a
machine memory size, 𝑚. For performance considerations,
we generally want c-groups to be computed in main mem-
ory. As skewed c-groups do not fit in a single machine main
memory, efficient treatment for them is challenging, and we
explain later in the paper how our novel algorithm overcomes
these difficulties.

3. GUIDELINES FOR EFFICIENT CUBE
COMPUTATION WITH MAPREDUCE

Before presenting our algorithm for cube computation, let
us first consider a naive basic MapReduce-based algorithm,
and then use it to highlight the challenges addressed by our
solution. Note that the naive algorithm we present has been
improved by previous work, but our goal here is not to serve
as baseline but rather, because of its simplicity, for highlight-
ing the challenges that a good algorithm needs to address.

3.1 MapReduce Cubing - Naive Approach
We assume that the tuples of the relation 𝑅 are read from

a distributed file system and are equally split among the

Algorithm 1: Naive MapReduce Cubing Algorithm

1 Map(t)
2 groups = Nodes(lattice(t))
3 measure = measure-attribute(t)
4 for g ∈ groups do
5 emit(g,measure);
6 end

7 Reduce(g,values)
8 result = agg(values)
9 emit(g,result)

given set of mappers in an arbitrary manner. A pseudo
code of the naive cube algorithm is shown in Algorithm 1.

The algorithm starts by a map phase (lines 1-6) where
each tuple 𝑡 is projected on every subset of its dimensions.
This is done by constructing the tuple lattice 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑡) and
retrieving its nodes, which are precisely these projections
(line 2). For each such projection, a (key,value) pair is
emitted (line 5), where the key is the projected tuple and
the value is the measure attribute of 𝑡 (retrieved by the
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 function). All pairs are then sent to
a reducer that is in charge on all tuples with the same key.
Observe that by this construction all tuples belonging to a
given cube group are sent to the same reducer. The specific
reducer for each group is implicitly chosen by the MapRe-
duce framework, by hashing the key (c-group value).

Next, in the reduce phase (lines 7-9), for every c-group,
the reducer that received its corresponding tuples applies the
aggregate function on the set and writes the resulting tuple
(the c-group and its corresponding aggregate value) - back
to the distributed file system (line 9). Note that for simplic-
ity of presentation, the algorithm writes the c-groups to the
distributed file system in an arbitrary order. If one wishes to
generate one file per cuboid, the code can be slightly modi-
fied so that tuples of distinct cuboids are written to distinct
files (with the files generated by the different reducers con-
catenated to form the full cuboid). We omit this here.

Let us discuss the problems with this naive algorithm.

3.2 Skews
The first problem with the naive algorithm is its sensi-

tivity to heavy skews in the data. Consider a relation 𝑅
where many tuples agree on the value of some subset of the
attributes. For instance, suppose that many tuples have the
value (*, 𝑃𝑎𝑟𝑖𝑠, 2010) when projected on the 𝑐𝑖𝑡𝑦 and 𝑦𝑒𝑎𝑟
attributes. If the cube group for (*, 𝑃𝑎𝑟𝑖𝑠, 2010) is larger
than what can fit in a reducer’s main memory, the corre-
sponding reducer will not be able to perform the aggregation
in main-memory and performance will suffer.

As we have stated, 𝑚 denotes the machines’ partial input
size. Recall that a c-group 𝑔 is skewed if the cardinality of
its tuples set is larger than 𝑚. Since skewed groups can-
not fit in the reducer main memory, the computation in the
reduce phase will involve I/Os between main-memory and
disk, making the overall computation slower. To avoid this
delay, our optimized algorithm detects all skewed groups and
partially aggregates them already at the map phase, before
being sent to the relevant reducer. Interestingly, we will
show that the number of skewed groups is not large, and
thus this partial aggregation does not weigh heavily on the

1154



mappers. The formal upper bound for the number of skewed
groups is proved in Section 4.

3.3 Load Balancing
In the MapReduce framework, work is distributed among

reducers by implicitly applying some partitioning function
to the 𝑘𝑒𝑦 of each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pair and directing it to the
resulting reducer. This can be a generic hash function, but
also a pluggable customized one. Whether the resulting load
is balanced or not depends on the compatibility of the par-
titioning function and the keys distribution. To alleviate
the sensitivity to data distribution and assure that work is
always evenly distributed, our optimized algorithm plugs a
partitioning function that exploits the lexicographical order
of cube groups. Intuitively, for a given cuboid, the relation
tuples are (virtually) partitioned into 𝑘 partitions of equal
size, 𝑘 being the number of reducers, such that the tuples
in partition 𝑖, when projected on the cuboid dimensions,
are lexicographically smaller than those of partition 𝑖 + 1.
The (projected) tuples of partition 𝑖 are then assigned to
reducer 𝑖. We will explain in the next two sections how (to-
gether with skews detections) this partitioning is efficiently
achieved and exploited by our algorithm for load balancing
the reducers work.

3.4 Network Traffic
The naive algorithm treats each c-group independently

and does not exploit the relationships between different groups.
Indeed, for each of the 𝑛 tuples of the input relation, Al-
gorithm 1 generates 2𝑑 projections, 𝑑 being the number of
dimensions, yielding an overall number of 𝑛 · 2𝑑 key-value
pairs, sent over the network to the relevant reducers. As we
will show in Section 5, much of this redundant communica-
tion may be avoided by exploiting the Observation 2.6. In-
tuitively, projections whose corresponding cube groups may
be computed from descendants in the tuple lattice, need not
be resent and instead can be computed by the reducer as-
signed to the smallest (non-skewed) descendant. We will
explain this in more details in Section 5.

4. THE SP-SKETCH
We present our optimized cube algorithm in two steps.

First we describe in this section the SP-Sketch data struc-
ture used by our algorithm. The sketch contains information
that allows to (1) identify skewed cube groups (in section
3.2 we defined that a group 𝑔 is skewed if |𝑠𝑒𝑡(𝑔)| > 𝑚) and
(2) partition the relation tuples for balancing the reducers
workload. Hence the name SP-sketch. Then, in the fol-
lowing section we explain how the SP-sketch is used by our
cube algorithm to ensure efficient computation with reduced
network traffic.

We start by presenting a utopian view of the SP-sketch,
which is too expensive to compute. Then we describe an
approximated yet accurate enough variant, that can be ef-
ficiently computed. We note that the SP-Sketch captures
the properties of the input relation and is independent of
the aggregate function to be used. Consequently, once con-
structed, the same SP-Sketch can be used to efficiently com-
pute multiple aggregated functions.

4.1 Data Partitioning
We first define some useful auxiliary notions. Consider a

relation 𝑅 and a cuboid 𝐶 of 𝑅. For two tuples 𝑡1, 𝑡2 in 𝑅,

we say that 𝑡1 <𝐶 𝑡2 (resp. 𝑡1 =𝐶 𝑡2) if, when restricted to
the dimension attributes of 𝐶, 𝑡1 is lexicographically smaller
than 𝑡2 (resp. equals 𝑡2). We denote by 𝑠𝑜𝑟𝑡𝑒𝑑(𝑅,𝐶) a
sorted version of 𝑅 where the tuples are ordered w.r.t <𝑐

(equal tuples are ordered arbitrarily). Let 𝑛 be the number
of tuples in 𝑅, let 𝑘 be the number of available machines
and let 𝑚 be the size of a machine’s memory. Recall that
we assume that 𝑚 ≥ 𝑛

𝑘
, namely that the relation tuples

can altogether fit in the memories of the given 𝑘 machines.
We can partition the tuples in 𝑅 into 𝑘 subsets, using the
𝑘− 1 partition elements in 𝑠𝑜𝑟𝑡𝑒𝑑(𝑅,𝐶). We now define the
partition elements of every cuboid.

Definition 4.1. The partition elements of 𝑅 w.r.t 𝐶 are
the tuples in positions 𝑖𝑛

𝑘
, 𝑖 = 1 . . . 𝑘 − 1, in 𝑠𝑜𝑟𝑡𝑒𝑑(𝑅,𝐶).

Given partition elements 𝑡1, . . . , 𝑡𝑘−1, the first partition
contains all tuples 𝑡 s.t. 𝑡 ≤ 𝑡1. The 𝑖𝑡ℎ partition, 𝑖 =
2 . . . 𝑘 − 2, contains the tuples 𝑡 s.t. 𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1. Finally,
the 𝑘𝑡ℎ partition contains the tuples 𝑡 s.t. 𝑡𝑘−1 < 𝑡. The
resulting split has two nice properties that will be useful in
the sequel.

Proposition 4.2. The following two properties hold -

1. For each non-skewed c-group 𝑔 in 𝐶, all its tuples fall
in the same partition, and

2. Omitting the members of skewed c-groups , all parti-
tions are of size 𝑂(𝑚).

In our algorithm, each partition (excluding its skewed
groups) is assigned to a machine. The first property will
guarantee that for each c-group all its tuples will be sent
to the same machine, while the second guarantees bounded
machines load.

4.2 Building the SP-Sketch
The (utopian) SP-Sketch is a graph with a structure

similar to the cube lattice described in Section 2. For each
cuboid node 𝐶 in the lattice, the SP-sketch records two
items: The first, denotes 𝑠𝑘𝑒𝑤𝑠(𝐶), records the set of skewed
c-groups in this cuboid. The second, denoted 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 −
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝐶) records the partitions elements of 𝑅 w.r.t 𝐶.

Example 4.3. Figure 3 depicts the SP-Sketch for our run-
ning example. It details part of the information kept for
three of the cuboids. For each of the three cuboids we see
(part of) its skewed c-groups and partition elements. Note
that as the cuboid (*, *, 𝑦𝑒𝑎𝑟) is a descendant of the cuboid
(𝑛𝑎𝑚𝑒, *, 𝑦𝑒𝑎𝑟), all instances of a skewed c-group in the lat-
ter are also instances of the corresponding c-group in the
former, making it skewed as well. For instance, the groups
(𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑, *, 2009), (𝑝𝑟𝑖𝑛𝑡𝑒𝑟, *, 2011) and (𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛, *, 2012)
are skewed c-groups in the cuboid (𝑛𝑎𝑚𝑒, *, 𝑦𝑒𝑎𝑟), and thus
(*, *, 2009), (*, *, 2011) and (*, *, 2012) are also skewed in
the cuboid (*, *, 𝑦𝑒𝑎𝑟) (which also as an additional skewed
c-group - (*, *, 2014)).

A naive but too expensive algorithm for building the SP-
Sketch would build 𝑠𝑜𝑟𝑡𝑒𝑑(𝑅,𝐶) for all cuboids, then derive
from the sorted lists the skewed cube groups and the parti-
tion elements.

Instead, we adopt here sampling techniques from [32] and
[26] to build an approximated version to the SP-sketch. We
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(name,city,year)

(name,city,*)

(name,*,*)

(name,*,year) (*,city,year)

(*,city,*) (*,*,year)

(*,*,*)

Skews: (keyboard,*,2009), (printer,*,2011),..., (television,*,2012)
Partitioning: (air-conditioner,*,2000), ,(toaster,*,2014)

Skews: (keyboard,*,*), (printer,*,*),..., (television,*,*)
Partitioning: (air-conditioner,*,*), ,(mouse,*,*)

Skews: (*,*,2009), (*,*,2011),..., (*,*,2012), (*,*,2014)
Partitioning: (*,*,2007),(*,*,2008), ,(*,*,2015)

Figure 3: The SP-Sketch for our running example

sample tuples from 𝑅 with probability 𝛼 (to be defined be-
low) for each tuple, independently of the others. Then, we
build the SP-sketch based on this data sample. The sam-
pling technique in [32] is a standard technique for sketching
a data using uniform sampling. However, our use of the
sample is novel. We use the sample to detect the skewed
groups and partition elements of each cuboid (for building
the SP-Sketch), whereas [32] uses the sketch to find bucket-
ing elements for sorting. Algorithm 2 is a MapReduce-based
implementation of this approximation algorithm, which we
run in the first round in our cube algorithm (to be presented
in the next section).

In the map phase (lines 2-5) the relation tuples are loaded
from the distributed file system, equally split among the 𝑘
mappers. Each mapper samples its tuples, and each tuple
is taken into the sample independently of the others, with
probability 𝛼 = 1

𝑚
𝑙𝑛(𝑛𝑘) (𝛼 is the probability to pass the if

test in line 4). The specific value of 𝛼 = 1
𝑚
𝑙𝑛(𝑛𝑘) is chosen

for ensuring a small sample size, for in-memory computa-
tions. However, we need the sample to be as informative
as possible, as we use it to build the sketch. Therefore, it
should contain enough tuples from the original data. Our
mathematical development (see the proofs of Propositions
4.4, 4.5, and 4.6) have led us to derive that this chosen
value of 𝛼 achieves this desired tradeoff. The entire sample
is then delivered to a single reducer that builds the SP-sketch
(lines 7-10). Namely, this MapReduce algorithm uses 𝑘 ma-
chines in the map phase, but only one is needed in the reduce
phase. In the reduce phase, the SP-Sketch is built over the
sample. The invoked build-sketch procedure (not detailed
in the figure) implements a brute-force approach for build-
ing the SP-sketch, using in-memory computation, as follows
(We will prove later that the sample is small enough to allow
this):
Skews: For determining the skewed c-groups , we compute
a cube over the sample and employ count as the aggregate
function.1 We then record as skewed the c-groups whose
count value is larger than 𝛽 = 𝑙𝑛(𝑛𝑘). Our choice of 𝛽 is
justified using the following tradeoff. If its value is too large,
we might miss some skewed groups. If it is too small, we

1Our implementation employs here the classic BUC algo-
rithm [15] but any cube algorithms will do.

Algorithm 2: Approximated SP-Sketch

1 // k mappers
2 Map(t)
3 pick at random 𝛼 ∈ [0, 1]

4 if 𝛼 ≤ 1
𝑚
𝑙𝑛(𝑛𝑘) then

5 emit(0,t);

6 // 1 reducer, only 0 key, values - sampled tuples
7 Reduce(key,values)
8 sample = values
9 sketch = build-sketch(sample)

10 emit(0,sketch)

might consider too many groups as skewed, and the sketch
would be too large to fit in a machine main memory. Our
particular choice of 𝛽 was designed such the SP-Sketch suc-
cessfully captures all skewed groups in the cube (with high
probability), but is still small to fit in all machines main
memory. Its specific chosen value is formally justified in the
proof of Proposition 4.5.
Partitions: For determining the partition elements, we
sort the sampled tuples w.r.t to each cuboid 𝐶, and compute
for each sorted list its 𝑘 − 1 partition elements: If 𝑛′ is the
number of samples, then the partition elements here are the

tuples in positions 𝑖𝑛
′

𝑘
, 𝑖 = 1 . . . 𝑘 − 1.

Once computed, the SP-Sketch is stored in the distributed
file system (to be later cached, in the second MapReduce
phase of our cube algorithm, by all machines).

4.3 SP-Sketch Properties
We conclude this section by analyzing the size of the sam-

ple and the generated sketch, as well as its accuracy.
As mentioned above, the sampling technique that we use

is inspired by [32] and [26]. [32] uses sampling to devise
efficient sorting in MapReduce, whereas [26] uses samples to
determine whether a given cuboid contains some skews. Our
use of the samples, as dictated by the needs of the SP-Sketch,
is slightly different - we only wish to partition the data and
not to fully sort it, and we are interested in identifying all
skewed c-groups and not just in determining whether some
exist. Nevertheless, we can adapt some of the proofs from
[32, 26] to our context, as we show below.

We first show that with high probability, the sample size
is small enough to fit entirely in a machine’s memory. Recall
that we use 𝑛 to denote the number of tuples in 𝑅, 𝑘 the
number of machines and 𝑚 the size of a machine’s memory.

Proposition 4.4. Assume every tuple is independently
taken into the sample with probability 𝛼 = 1

𝑚
𝑙𝑛(𝑛𝑘). Then,

with probability of at least 1−𝑂( 1
𝑛

) the sample size is 𝑂(𝑚).

The proof follows the same simple probabilistic analysis
as in [32] where elements are sampled independently with
the same probability 𝛼. We thus omit this here.

We next show that the SP-sketch generated from the sam-
ple has high accuracy. The first proposition shows that the
SP-Sketch successfully captures skewed groups.

Proposition 4.5. Let 𝑑 be the number of dimensions and
assume 2𝑑 · 𝑘 = 𝑂(𝑚). Then, with probability of at least
1 −𝑂( 1

𝑘
), the algorithm detects all skewed groups.

We note that the assumption that 2𝑑 * 𝑘 = 𝑂(𝑚) is rea-
sonable and typically holds in a MapReduce environment:
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The memory of a reducer, 𝑚, is in the order of Gigabytes,
whereas 𝑑 is a small constant, and 𝑘, the number of ma-
chines, is in the order of hundreds or thousands.

The second proposition shows that the SP-Sketch success-
fully captures the partitioning elements of every cuboid.

Proposition 4.6. Let 𝑑 be the number of dimensions and
assume 2𝑑 · 𝑘 = 𝑂(𝑚). Then, with probability of at least

1 − 𝑂( 2𝑑

𝑛
), omitting the members of skewed c-groups , all

partitions are of size 𝑂(𝑚).

Finally, we show that the computed SP-sketch is small
enough and can entirely fit in the main memory of every
machine in the cluster.

Proposition 4.7. Let 𝑑 be the number of dimensions and
assume 2𝑑 * 𝑘 = 𝑂(𝑚). Then, with probability of at least
1 − 1

𝑘
, the SP-sketch size is 𝑂(𝑚).

5. THE SP-CUBE ALGORITHM
We are now ready to describe our cube algorithm, called

SP-Cube. The algorithm is composed of two MapReduce
rounds. In the first round, the SP-Sketch is built. In the sec-
ond round the cube is computed efficiently using the sketch.
We now explain this second round.

Recall that the SP-Sketch records 𝑘 partitions for each
cuboid, 𝑘 being the given number of machines. Correspond-
ingly, when sent to reducers, tuples from the 𝑖𝑡ℎ partition,
𝑖 = 1 . . . 𝑘, of any cuboid will be assigned to reducer 𝑖. For
simplicity of presentation, we assume an additional given re-
ducer, numbered 0, that will be in charge of aggregating the
partial aggregates of skewed groups. (Otherwise this work
can be assigned to one of the existing reducers).

Note that the SP-Sketch captures all requruired informa-
tion for the algorithm to decide whether a c-group is skewed
or not. This is implemented by maintaining a hash table
in which items correspond to the skewed c-groups. The key
for each item in the hash table is the (concatenated) value
of the dimension attributes of the group. For each such
key, the associated value is the c-group partial aggregated
value. Then, to know whether a group is skewed or not, the
SP-Cube algorithm checks whether the groups’s key (con-
catenated value its the dimension attributes) appears in the
table.

5.1 Algorithm Overview
The pseudo-code of our algorithm is depicted in Algorithm

3. We first explain what mappers do, then the reducers.

Map. The mappers process the tuples in the relation 𝑅 as
follows. For each tuple 𝑡 assigned to the mapper, the tuple
lattice 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑡) is built (line 4). Recall that each node in the
lattice corresponds to one cuboid c-group to which the tuple
belongs. The nodes in the lattice are traversed bottom up, in
BFS (breadth first search) order (line 5). For each unmarked
lattice node (initially all nodes are unmarked) we check, in
the corresponding cuboid node in SP-Sketch node, whether
the tuple’s c-group is skewed or not. If it is skewed then we
perform local aggregation, adding the tuple’s measure value
to the c-group (local) aggregated value, and mark the node
as processed (lines 6-8). Otherwise, if the c-group is not
skewed, we check (again, using the sketch) to which partition
the c-group belongs. We send the tuple to the correspond-
ing reducer, mark the node and all its ancestors and their

ancestors recursively (lines 9-13) as processed, and continue
with the next not marked node in the BFS traversal.

Note that if the given c-group is not skewed so are all its
ancestors in the tuple lattice. Furthermore, following Obser-
vation 2.5, the reducer to which the tuple is sent will have
all the needed information not only for computing the given
c-group but also all its ancestors. This is why the ancestors
are recursively marked as well and skipped (thereby reduc-
ing communication overhead).

Finally, once all tuples are processed, the mapper sends its
partial aggregates of skewed c-groups to reducer in charge
on skewed c-groups (lines 16-20).

Example 5.1. To illustrate the Map phase, let us con-
sider the tuple 𝑡 = (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, 2012, 2000) and assume
that the aggregate function is 𝑠𝑢𝑚. The tuple lattice of 𝑡,
depicted in figure 2, is constructed and traversed bottom up
in BFS order, starting from the node (*, *, *). As this c-
group aggregates the values of all database tuples, it will be
found in the SP-sketch as skewed, and thus the mapper per-
forms local aggregation for the c-group and adds 𝑡’s measure
attribute (2000) to the so-far-computed sum. The node is
marked and the mapper continues to (𝑙𝑎𝑝𝑡𝑜𝑝, *, *) - the next
node in the BFS order.

Assume this c-group is not skewed and that, according to
the (𝑛𝑎𝑚𝑒, *, *) of the SP-Sketch, the tuple belongs to the
second partition (as (𝑙𝑎𝑝𝑡𝑜𝑝, *, *) is lexicographically between
(𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑, *, *) and (𝑝𝑟𝑖𝑛𝑡𝑒𝑟, *, *)). Thus it is sent to re-
ducer 2 and (𝑙𝑎𝑝𝑡𝑜𝑝, *, *) as well as its ancestors in the lattice
- (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, *), (𝑙𝑎𝑝𝑡𝑜𝑝, *, 2012), and (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, 2012)
- are marked as processed.

Next the mapper continues to (*, 𝑅𝑜𝑚𝑒, *). Assume this
c-group is also not skewed. Then the tuple is sent to the
reducer in charge of the corresponding partition, and both the
c-group (*, 𝑅𝑜𝑚𝑒, *) and its (non marked so far) ancestor
(*, 𝑅𝑜𝑚𝑒, 2012) are marked. Finally the mapper processes
(*, *, 2012). Assume this c-group is skewed (as it appears in
the skewed c-groups list of (*, *, 𝑦𝑒𝑎𝑟) in Figure 3), and thus
the algorithm adds 2000 to the local partial sum maintained
for (*, *, 2012).

Once all tuples are processed, local partial sums computed
e.g. for (*, *, *), and (*, *, 2012) are sent to reducer 0.

Reduce. We are now ready to describe what reducers do.
For skewed c-groups , the responsible reducer aggregates the
local aggregated values it received from the mappers (lines
24-27). For instance, to continue with the above example, it
sums up, respectively, the partial sums obtained for each of
the c-groups (*, *, *) and (*, *, 2012).

Note that for every skewed group, there are at most 𝑘 val-
ues of partially aggregated tuples coming from the 𝑘 map-
pers. The actual aggregation computation performed by the
reducer depends on the aggregate function. If, for instance,
as in the above example, the aggregate function is sum, then
the reducer should simply compute the sum of the partial
sums. For another example, if the aggregate function is avg,
then the reducer should get from each mapper both the lo-
cal sum and count and combine them to compute the global
average, summing the partial sums and dividing the result
by global sum of the local counts.

For non-skewed c-groups the reducer computes, given the
set of tuples of a c-group 𝑔, not only the aggregate value for
𝑔 but also of its ancestor c-groups, using a standard cube
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Algorithm 3: Cube computation

1 // k mappers, SP-Sketch in main-memory
2 Map(t)
3 for 𝑡 ∈ mapper-input do
4 L = lattice(t)
5 for 𝑔 = NextUnmarkedBFS(L) do
6 if skewed(g,SP-Sketch) then
7 partially-aggregate(g)
8 mark g

9 else
10 key = partition(g,SP-Sketch)
11 emit(key,measure(t))
12 mark g and its ancestors (recursively)

13 end

14 end

15 end
16 for 𝑔 ∈ partially-aggregated-groups do
17 key = 0
18 value = Pair(g,aggregate-value(g))
19 emit(key,value)

20 end

21
22 // k+1 reducers , SP-Sketch in main memory
23 Reduce(key,values)
24 if skewed-group-reducer then
25 g = decode-group(values)
26 value = aggregate-func(values)
27 emit(g,value)

28 else
29 key = decode-group(key)
30 compute BUC over ancestors

31 end

32

algorithm (we use BUC [15] in our implementation). For
instance, the reducer responsible for (𝑙𝑎𝑝𝑡𝑜𝑝, *, *) computes
also the aggregated values for the c-groups (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, *),
(𝑙𝑎𝑝𝑡𝑜𝑝, *, 2012), and (𝑙𝑎𝑝𝑡𝑜𝑝,𝑅𝑜𝑚𝑒, 2012).

Note however that some optimization is required to avoid
redundant processing. Some c-groups have common ances-
tors, and so we should avoid computing these common an-
cestors multiple times. We thus assign the computation of
each c-group to its smallest (in the BFS traversal order)
non-skewed descendant. For instance, in our running ex-
ample (𝑙𝑎𝑝𝑡𝑜𝑝, 𝑟𝑜𝑚𝑒, *) is an ancestor of both (𝑙𝑎𝑝𝑡𝑜𝑝, *, *)
and (*, 𝑟𝑜𝑚𝑒, *). (𝑙𝑎𝑝𝑡𝑜𝑝, *, *) preceded (*, 𝑟𝑜𝑚𝑒, *) in our
lattice BFS traversal and thus (𝑙𝑎𝑝𝑡𝑜𝑝, 𝑟𝑜𝑚𝑒, *) and is com-
puted as part of the cube computation for (𝑙𝑎𝑝𝑡𝑜𝑝, *, *).

We conclude the presentation of our algorithm by analyz-
ing its efficiency in terms of the size of the intermediate data
transferred between the mappers and the reducers.

5.2 Intermediate Data Transfer
By the definition of the cube, the size of the output may

be exponential in the number of dimensions, and so is not
surprising that in extreme cases the amount of data that is
transferred may be exponential as well. However, we show
that in common cases the transferred data size is polynomial
in the number of dimensions thereby enabling efficient pro-
cessing (recall that in the Naive algorithm presented in Sec-

tion 3 the transferred data is exponential in the dimensions
number). This will also be confirmed by our experiments on
real-life as well as synthetic data. For space constraints, all
proofs are deferred to the Appendix.

We start by considering skewed c-groups . The proof of
the following proposition (as well as of the other results in
this section) can be found in the Appendix.

Proposition 5.2. Assume 2𝑑 · 𝑘 = 𝑂(𝑚). Then, with
probability of at least 1 − 𝑂( 1

𝑘
), the amount of data trans-

ferred for computing skewed c-groups is 𝑂(𝑑𝑛).

From now on, assume Proposition 5.2 holds. We next
consider non-skewed c-groups. We first show that in the
worse case, data transfer may be exponential in the number
of dimensions.

Theorem 5.3. There exists a relation on which the SP-
Cube algorithm generates network traffic size of 𝜃(2𝑑 · 𝑛)

However, such extreme situations are unlikely to occur in
practice. We prove that in common cases the transferred
data size is polynomial in the number of dimensions.

We start by defining some useful notions. Consider a c-
group 𝑔. By definition, if 𝑔 is skewed, then every subset
of 𝑔 must be skewed as well. However, the opposite is not
necessarily true. Namely, it may be the case that all subset
of 𝑔 are skewed, whereas 𝑔 itself is not. We call relations
where such situations do not occur skewness-monotonic.

Definition 5.4. A relation 𝑅 is skewness-monotonic
if for every c-group 𝑔, 𝑔 is skewed if and only if all of its
sub-groups are skewed. For databases without skews, the def-
inition of skewness-monotonic is vacuously true.

We show the following.

Proposition 5.5. For every skewness-monotonic re-
lation 𝑅, the amount of network traffic generated by SP-Cube
when applied to 𝑅 is 𝑂(𝑑2 · 𝑛)

Even for databases that are not skewness-monotonic, traf-
fic is still often bounded. Consider a database in which at-
tributes values are taken independently from some skewed
distribution. Namely, for every attribute, it has some given
probability of having a skewed value. Then, there is a smaller
probability for having skews in higher levels of the cube lat-
tice. Therefore, in such databases, there are instances of
non-skewed c-groups that all of their sub-groups are skewed.

Proposition 5.6. Let 𝑅 be a relation and consider its
cube. Assume all attributes in 𝑅 are independently dis-
tributed. Let 𝑐 be a cuboid of 𝑙 attributes. Let 𝑡 ∈ 𝑅 be a
tuple. If the probability that 𝑡 contributes to a skewed group

in 𝑐 is at most
𝑙+1√

𝑑
𝑑

, then the total network traffic of the

SP-Cube algorithm is bounded by 𝑂(𝑑3 · 𝑛).

In accordance with the above results, our experiments on
both real-life and synthetic data always exhibit moderate
data transfer. They show that the intermediate data size
was always significantly smaller than that of the competi-
tor algorithms. We leave for future work the full charac-
terization of relations over which traffic is guaranteed to be
polynomial.
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Figure 4: The Wikipedia Statistics dataset
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Figure 5: The USAGOV dataset

6. EXPERIMENTS
We tested the performance of the SP-Cube algorithm in an

extensive series of experiments. We ran the experiments on
Amazon’s cloud environment, AWS [2]. We rented a cloud
of 20 virtual machines of type m3.xlarge, each machine hav-
ing 4 cores, a memory of size 15GB, and a 80GB of SSD.
In the experiments we used two real-life datasets and two
synthetic datasets that we have generated. We wrote our
algorithm in Java and ran it on top of Hadoop [3], version
2.4.0. We ran our algorithm against Apache Pig Cube al-
gorithm, version 0.12.0 and Apache Hive Cube algorithm,
version 0.13.1. To assure that we compete against a good,
optimized implementation of the competitors, we chose to
run against the code developed by the actual authors of the
competing algorithms. The [26] authors directed us to use
Pig cube operator. Their algorithm is shipped as a feature
in Pig since version 0.11.0. In [26], the algorithm’s perfor-
mance is demonstrated and shown to outperform previous
cube algorithms implemented on top of MapReduce and we
therefore do not compare SP-Cube to them. Regarding Hive
cube algorithm, as any algorithm in Hive, it is compiled into
a query plan that is computed according to some Hive poli-
cies, for instance having heuristics for map-side aggregations
and choosing which aggregates should be computed before
others. We refer below to the two cube algorithms as Pig
ad Hive respectively.

The measures that we use to present our results are the to-
tal running time, the average running time of a mapper and
a reducer in a single job, and the intermediate data size,
which is the size of traffic in the cluster that is delivered
between mappers and reducers. Note that in every exper-
iment we computed all measures however we omit some of
the graphs. In all cases where omitted a graph, this is be-

cause it showed similar trends to previous graphs, and thus
for space constraints we just point to a previous graph to
see the trend.

6.1 Real World Datasets
We use two real datasets for checking the performance of

the algorithms on real-world data distributions. The use of
two distinct datasets from different sources allows to exam-
ine different real-life data distributions. One dataset that
we use is large while the other one is smaller. This allows
us to examine what effect the data size has on the relative
performance of the algorithms. In addition, to have a closer
look at the affect of data size within each data distribution,
we also considered for each of the two datasets subsets of
varying sizes, selected by random sampling.

The first dataset that we use is the Wikipedia Traffic
Statistics Dataset [7] containing statistics about user browser
requests to Wikipedia pages. The dataset is 150GB in size,
and contains about 12 billion records. We run our experi-
ments on a random sample of 300 million records of it. The
dataset has 4 dimension attributes and we calculate the cube
over them. In retrospect we have found approximately 180
million c-groups in the data, and around 50 of them were
skewed, of cardinality 5%-30% of the original tuples num-
ber.

The second dataset is the USAGOV dataset [1], contain-
ing log files of all clicks of users entering USA government
websites between the years 2011-2013. This dataset is of size
22GB and we run our experiments on random sample of 30
million records out of it. We have found that this dataset
contains around 30 of groups were skewed with cardinal-
ity of 2-8 million (6%-25% of the original tuples number).
The total number of c-groups in this dataset was around 20
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million. The dataset has 15 dimension attributes. As we
wanted to compare the results to what was obtained for the
Wikipedia dataset we built our cubes over 4 of them with
similar settings to the Wikipedia traffic dataset. We also ex-
perimented with building cubes for more than 4 attributes,
and the algorithms showed similar trends.

Wikipedia Traffic dataset. To examine the effect of the
data size on the algorithm behavior, we took random sam-
ples of varying sizes out of the 300 million tuples, and an-
alyzed the performance of the algorithm as the data grows.
We further examined additional parameters that may ex-
plain the behavior. The results are depicted in Figure 4.
Regarding running time, SP-Cube was 20% faster than Hive
and 300% faster than Pig. This is shown in Figure 4a. (The
Pig curve is shown here only partially as it ran out of scale
for larger datasets).

Trying to explain the results, we examined closely the map
and reduce times in the different algorithms. The average
reduce times are shown in Figure 4b. We can see that Pig’s
average reduce time is both longer than those of SP-Cube
and Hive. Hive’s reduce time is close to that SP-Cube (and
even slightly shorter). However, its map time was much
larger than that of SP-Cube. The average map time shows
a trend similar to what seen in Figure 4a and thus omitted.

We additionally examined the size of the intermediate
data size. As can be seen in Figure 4c, much less data is
transferred between the machines in SP-Cube compared to
Pig and Hive. The growth rate of intermediate data size
of SP-Cube is the slowest, and for 300 million tuples it is 5
times smaller than Pig and 6 times smaller than Hive. As we
previously explained, in MapReduce, the amount of network
traffic highly influences the running time of the algorithms.
Regarding the SP-Sketch size, it was 6 orders of magnitudes
smaller than the original dataset size, and we omit its graph
due to space constraints.

USAGOV dataset. Here again we examine the algorithm
behavior for growing data sizes. The results are shown in
Figure 5. Figure 5a shows that, again, the SP-Cube algo-
rithm performs significantly better than its competitors. In
this experiment, Hive performs worse and we see a 300% rel-
ative speedup for CP-Cube even on small subsamples of the
order of ten million tuples. We also see that SP-Cube has a
speedup of 30% compared to the Pig algorithm. (The Hive
curve is partial as it ran out of scale for larger datasets).

We tracked some measurements in the experiment and
found that the exhibited running time is highly affected by
the average map time. This is shown in Figure 5b. In this
graph, we see that the Pig and Hive algorithms have a longer
average map time as data size grows. The Pig algorithm
map time is worse than that of our SP-Cube by almost 30%,
whereas the Hive map time is much longer, which explains
the long time for running Hive on this dataset. As it turns
out, the SP-Cube optimized computation not only reduces
data transfer but also allows the mappers to save work (and
time) by not scanning redundant cube groups. Regarding
the average reduce time, there was no significant difference
between all three algorithms.

Looking closer at the Wikipedia and USGOV datasets,
and in particular at the algorithms running time for sub-
sets of similar sizes (10M-30M), we can note that unlike Pig
and Hive that behave very differently on the two data sets,

SP-Cube demonstrates similar performance (around 150 sec-
onds) for two data distributions.

Finally, we have also examined the size of the SP-Sketch
computed for the two datasets. As the trend is similar we
show here only the results for USAGOV. In our implemen-
tation, the sketch is implemented as a java class, and we use
java serialization engine to create a serialized stream of bytes
for representing the sketch object. This file is delivered to
all machines using the distributed file system. Each machine
de-serializes the file and thus getting the sketch object. Fig-
ure 5c shows the sketch size as a function of the number of
tuples. We see that the size grows linearly with a small gra-
dient. It is worth mentioning that the growth is due to the
fact that more skewed c-groups are identified. However, in
all of the experiments, the sketch size is negligible compared
to the original dataset size. Where the data is in the order
of tens of Gigabytes, the sketch size is in the order of tens
of Kilobytes, thus smaller by 6 orders of magnitude.

Note that the running time of SP-Cube includes the con-
struction of the SP-Sketch and the actual cube computation.
While the construction of the SP-Sketch is negligible com-
pared to the cube computation time for large data sets, it
is more noticeable for small data and this yields the slightly
slower performance of SP-Cube. Note however that such
small size of data is anyhow not a practical candidate for
MapReduce computation, as the cube could be computed
by a single machine using standard algorithms, and we show
these results here only for completeness. In general, we con-
clude from our experiments that the SP-Cube consistently
outperforms both Pig and Hive, with the performance gain
increasing significantly for large datasets.

6.2 Synthetic Datasets
The next set of experiments involves two synthetic datasets

that allow to isolate the effect of different properties of the
data, and in particular examine the sensitivity of the algo-
rithms to the data distribution. We name the the datasets
gen-binomial and gen-zipf. We describe below the genera-
tion process of each dataset and then explain some interest-
ing insights obtained from running the three algorithms on
it. We ran the experiments for datasets with varying num-
ber of dimension attributes. As the trends were similar we
show here a sample of the results for cubes with 4 dimension
attributes. This allows to relate them to the results obtained
for the real-life datasets.

gen-binomial dataset. The generation process for this dataset
is as follows. Tuples were generated independently with the
following probabilities. With probability 𝑝, We uniformly
pick a number 𝑖 ∈ 1, . . . , 20, and create a tuple having 𝑖 in all
of its attributes (namely the tuples (1, 1, . . . , 1), (2, 2, . . . , 2),
and so on). With probability 1 − 𝑝, we draw each attribute
uniformly as a 32-bit integer. Intuitively, in the generated
dataset, a fraction 𝑝 of the tuples contribute to skews in each
cuboid. The other 1 − 𝑝 of the tuples are likely not to form
skews. We ran two sets experiments using these settings. In
the first set of experiments, we fixed the size of the database
and measured the algorithms performance for varying val-
ues of the probability 𝑝. We describe below a representative
sample of the results.

Figure 6 shows the results for a dataset containing 300
million tuples with four dimension attributes and varying 𝑝
values. Running time results are shown in Figure 6a. We
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Figure 6: gen-binomial: Varying skewness
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Figure 7: gen-zipf: Zipfian Distribution

can see that SP-Cube outperforms Pig and Hive and shows
stable running time. Regarding Hive, it did not manage to
handle heavy skews in the data: For 𝑝 ≥ 0.4 it got stuck as
some reducers got out of memory. For Pig we found that it is
highly affected by the value of 𝑝. Its performance decreased
by a factor of 2 as 𝑝 grows form 0 to 0.75.

These results can be explained by examining the size of
the intermediate data, shown in Figure 6b. We can see that
the map output in Pig is larger for non skewed data and
is in general much larger than that of SP-Cube. The size
of intermediate data decreases as 𝑝 grows in both Pig and
SP-Cube because the total number of c-groups is getting
smaller. Hive’s intermediate data is the largest and it ap-
pears that when 𝑝 is large there are reducers that get too
much information, and therefore get stuck. We also exam-
ined the average map and reduce times; their trend is similar
to what we see for the size of the intermediate data and we
therefore omit the graphs.

Finally, the SP-Sketch sizes for this experiment are de-
picted in Figure 6c. We can see that the sketch size is al-
ways very small and always less than 200KB (approximately
6 orders of magnitude smaller than the input data size). It
gets smaller for large values of 𝑝 as most of the data con-
tributes to the given set of predefined skews and thus fewer
additional ones are generated.

In the second set of experiments we fixed 𝑝, and changed
the database size. We got similar trends. Due to space
constraints, these results are shown in the Appendix.

gen-zipf dataset. In the gen-zipf experiment we tested the
SP-Cube performance against a data with attributes drawn
from a Zipfian distribution. We generated 150 million tu-
ples independently. Inside each tuple all attributes were also
drawn independently. Two of the attributes were generated

using a zipf data generator, with 1000 elements and an ex-
ponent factor of 1.1. The other two attributes were drawn
from a uniform distribution having 1000 elements. In this
experiment we had groups of various sizes. Namely, for some
cuboids, there were c-groups with a cardinality of 30 million
(20% of the tuples) together with c-groups that created from
a small number of tuples (dozens of tuples). We checked the
algorithm behavior on subsamples of this dataset. Some of
the results are shown in Figure 7. In 7a we show an improve-
ment of 100% over Hive and 150% over Pig. We explain the
behavior on smaller sets as in previous experiments - the
preprocessing time of computing the sketch becomes more
dominant. In this experiment, the map average time had a
similar trend to the running time graph and thus omitted.
The results of the average reduce time are shown in Fig-
ure 7b. Note that in this measure Hive performs the best,
and SP-Cube and Pig perform quite similarly. However, we
have found that the most dominant measure here was the
map output size, that is presented in Figure 7c, in which
SP-Cube has an improvement of 400% over Pig and 600%
over Hive, and therefore had the best running times. Re-
garding SP-Sketch, its size was always bounded by 200KB,
a 6 orders of magnitudes smaller than the original data.
This graph is omitted as it has similar trends to previously
presented sketch graphs.

We conclude by mentioning the performance of SP-Cube
in terms of parallelism. In all of our experiments, SP-Cube
achieved a good balancing between reducers, with the re-
ducers’ output data files being of similar sizes.

7. RELATED WORK
Sequential Cube Algorithms. The Cube Operator was orig-
inally presented in [23]. Many efficient sequential cube al-
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gorithms have been developed over the years, e.g. [12, 22,
31, 24, 30, 34]. The cube lattice is often used in these algo-
rithms. Some employ bottom up traversal over the lattice,
as BUC [15], whereas others prefer top-down traversal [12].
We adopt the bottom up approach as it allowed us to achieve
a two phases MapReduce algorithm, compared to previous
top down MapReduce algorithm [25] that computes the cube
using multiple rounds (to be further explained below). As
the size of the cube may be exponential in the size of the
input, some algorithms deal with full materialization of the
cube, whereas others deal with partial materialization of the
data and on-demand computation of cuboids [22].

Parallel Cube Algorithms and MapReduce. The fact that
the data cube is expensive to compute, in particular when
the input relation is large, has motivated the study of par-
allel algorithms for cube computation. [27] presented some
parallel algorithms for cube computation that work for small
clusters. More recently, dedicated platforms such as MapRe-
duce are employed for enabling parallel computation over
huge amounts of data, with much work dedicated to their
implementation and efficiency [20, 28, 21]. The implemen-
tation of database operators over MapReduce has received
much attention, suggesting efficient algorithms for Join [11,
35, 10, 16] and cartesian product [29]. Skewed data has been
shown to be challenging for the computation of such oper-
ators as well [14]. Our work follows this line of works and
proposes an efficient MapReduce algorithm for cube com-
putation, that is resilient to data distribution. A comple-
mentary line of work considers MapReduce as a parallelized
computational model and defines measurements for an effi-
cient MapReduce algorithm [32, 9]. Among them, balanced
workload and small communication overhead are the mea-
surements that our work adopts.

MapReduce is implemented as an open source framework
in Hadoop [3]; a very popular implementation that is highly
used for massive computation. The Pig [5] and Hive [4]
projects were developed on top of Hadoop, and give an ab-
straction of a database and an SQL-like query engine on top
of it. As previously mentioned, the cube algorithm from [26]
is shipped as a feature for implementing the cube in Pig.
Both [26] and SP-Cube follow a bottom up approach and
they both use sampling. However, as explained in the intro-
duction a key disadvantage is that it makes decisions about
the existence of skews in the granularity of a full cuboid and
tails recursion and aborts that yield inferior performance.
Note that the Pig framework adds to the original algorithm
the use of combiners [19] but, as we show the result is still
sensitive to the data distribution.

Another MapReduce cube algorithm is [25] that takes top-
down traversal approach parallelizing the Pipesort algorithm
[12]. This algorithm finds top-down computation paths in
the lattice. This yieds a series of MapReduce rounds. Note
that the more MapReduce rounds, the more are the ram-
to-disk transactions and thus performance is inferior to pre-
viously mentioned algorithms. Furthermore, this algorithm
suffers from the skews problem mentioned in Section 3. In
case of a skewed c-group , the assigned reducer will be heav-
ily loaded and parallelism will not be utilized. Thus, we did
not include it in the experiments section.

Finally, we mention [33] which describes a LinkedIn sys-
tem that contains implementation of cube on top of MapRe-
duce. The algorithm is embedded in an internal system and

exploits the system’s data types and thus unlike SP-Cube
cannot be run on unprocessed data in a generic platform.

Types of Aggregate Functions. Aggregation functions are
traditionally divided into three classes [23]: distributive func-
tions, such as count and sum, where partial aggregation can
be merged to the full one; algebraic functions, like average,
where multiple partial aggregates can be combined to ob-
tain the result (e.g. partial sums and counts can be used
for computing the full average using division); and holistic
functions (like top-k most frequent) that in general cannot
be computed from partial aggregates. [26] defines a sub-
set of holistic measures called partially algebraic measures,
which are functions whose computation can be partitioned
according to one of their attributes’ value. By its behavior,
SP-Cube supports all distributive and algebraic aggregate
functions, and all partially algebraic functions in which the
generated partitions are not skewed. The support of effi-
cient computation of arbitrary holistic aggregate functions
for skewed c-groups is a challenging future work.

Sketching. Sampling-based sketches over large data sets are
used for scalable computation of data properties such as top-
k, distance measures, distinct counting, and various aggre-
gates [13, 18, 17, 32, 26]. As previously mentioned, the sam-
pling approach we use for building our SP-Sketch is inspired
by [32, 26] and we adapt some of their proofs to show it is
both small and accurate. The sampling technique adapted
from [32] is a standard technique for sketching a data using
uniform sampling. However, our use of the sample is novel.
We use the sample to detect skewed groups and partition el-
ements of each cuboid (for building the SP-Sketch), whereas
[32] uses it to find bucketing elements for sorting.

8. CONCLUSIONS
In this paper, we present an efficient algorithm, SP-Cube,

for cube computation over large data sets in MapReduce
environments. Our algorithm is resilient to varied data dis-
tribution and consistently performs better than the previ-
ous solutions. At the core of our solution is a compact data
structure, called SP-Sketch, that records all needed infor-
mation for detecting skews and effectively partitioning the
workload between the machines. Our algorithm uses the
sketch to speed up computation and minimize communica-
tion overhead. Our theoretical analysis and experimental
study demonstrate the feasibility and efficiency of our solu-
tion compared to the state of the art alternatives.

We focus here on aggregate functions that are distributive
or algebraic. The support of arbitrary holistic aggregate
functions is a challenging future work. Another challenge
is exact theoretical characterization of data sets for which
network traffic is guaranteed to be polynomial in the num-
ber of dimension attributes. Skews are problematic also for
other common database operators such as joins. It is inter-
esting to see whether some of the ideas presented here can
be used to reduce network traffic and speed up computation
for such operators. Finally, optimizing cube computation in
other big data processing frameworks, such as Spark [6], is
an intriguing future work.
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APPENDIX
Proofs: We provide below the proofs for Sections 4 and 5.

Proof Proposition 4.5. As in [26] we start by bound-
ing the probability that our algorithm does not detect a
single skewed group. Let 𝑔 be a skewed c-group , and as-
sume its size is 𝑠. The expected size of 𝑔 in the sample is
Ω(𝑙𝑛(𝑛𝑘)) = 𝐶*𝑙𝑛(𝑛𝑘) for some constant 𝐶. Using Chernoff
Bound-

Pr(𝑠 < (1 − 𝛿) * 𝐶 * 𝑙𝑛(𝑛𝑘)) <

𝑒𝑥𝑝−𝐶*𝑙𝑛(𝑛𝑘) 𝛿2

2 =

𝑂(
1

𝑛
)

(1)

The last transition is due to the fact that 𝐶, 𝛿 are small
constants and 𝑘 is very small compared to 𝑛. Now, we need
to consider all c-groups . Each cuboid contains at most
𝑂(𝑘) skewed groups, as the size of a skewed groups is at
least 𝑚 and the database contains 𝑛 tuples. Therefore, the
total number of skewed groups in 𝐷 is bounded by 2𝑑 · 𝑘 =
𝑂(𝑚), summing over all cuboids. Using union bound, with
probability of at least 1 − 𝑂( 1

𝑘
), the algorithm detects all

skewed groups and keeps them in the sketch.

Proof Proposition 4.6. In [32], a bucketing argument
shows that sorting a set of 𝑛 items, then with probability of
at least 1− 1

𝑛
, the partitioning elements divide the input into

partitions of size 𝑂(𝑚) each. We apply the same argument
in our case. Then, for a single cuboid, with probability of at
least 1 − 1

𝑛
, its partitioning elements kept in the SP-Sketch

divide the cuboid (its non-skewed groups) into partitions of
size 𝑂(𝑚). Thus, using union bound, the event happens for

all cuboids with probability of at least 1 − 2𝑑

𝑛
.

Proof Proposition 4.7. As stated in Proposition 4.5,
with probability of at least 1 − 1

𝑘
the algorithm detects all

skewed c-groups. As we have stated earlier, there are at
most 𝑘 skewed c-groups at each node in the lattice, and
𝑘−1 partition elements. Putting it all together, we get that
data size at each node in the SP-Sketch is 𝑂(𝑘). Since there
are 2𝑑 nodes, then the lattice size is bounded by 𝑂(2𝑑 · 𝑘) =
𝑂(𝑚).

Proof Proposition 5.2. We use here Proposition 4.5
which shows that with probability of at least 1 − 𝑂( 1

𝑘
) the

SP-Cube algorithm detects all skewed c-groups. The size of
the key-value pair generated for every such skewed c-group is
𝑂(𝑑). (Recall that the size of attribute values and computed
aggregates are taken as a constant). Each mapper locally
aggregates at most 𝑂(𝑚) skewed c-groups. As there are 𝑘
mappers, we obtain that they all create an intermediate data
for skewed c-groups of size at most 𝑂(𝑑𝑚𝑘) = 𝑂(𝑑𝑛)

Proof Theorem 5.3. We describe how to build such a
relation 𝑅. 𝑅 has 𝑑 dimension attributes, and we describe
how to build them (the value of the measure attribute is not
important). Mark 𝑤 = 𝑚+ 1, and mark by 𝑆 𝑑

2
the set of all

sets of 𝑑
2

numbers between 1 and 𝑑. For every 𝑠 ∈ 𝑆 𝑑
2

, we

add 𝑤 identical tuples to 𝑅, each of the tuples having the

value 1 in all attributes that their index is in 𝑠, and 0 in the
other attributes. By definition of 𝑤, each cuboid in level 𝑑

2
contains a skewed group, which is the group of ones in the
cuboid attribute indexes. In addition, no cuboid of size 𝑑

2
+1

contains a skewed group as there are no 𝑠1, 𝑠2 ∈ 𝑆 that share
the same values in any subset of 𝑑

2
+ 1 attributes. There-

fore, for every tuple, the algorithm consideres each of the
c-groups of 𝑑

2
+ 1 attributes as unmarked and non-skewed.

For each such c-group, an intermediate data is generated.
Summing over all tuples, the network traffic size for 𝑅 is
𝜃(2𝑑 * 𝑛).

Proof Proposition 5.5. Intuitively, such databases are
handled very efficiently by our algorithm: In case there
are no skews other than the most general (*, *, . . . , *) c-
group, all c-groups are generated using the reducers as-
signed to the single attribute c-groups, so each tuple is sent
at most 𝑑 times. For instance, all c-groups of the tuple
𝑡 = (𝑙𝑎𝑝𝑡𝑜𝑝, 𝑃𝑎𝑟𝑖𝑠, 2013, 700) are handled using the reduc-
ers of c-groups (𝑙𝑎𝑝𝑡𝑜𝑝, *, *), (*, 𝑃𝑎𝑟𝑖𝑠, *), and (*, *, 2013).
When skews do exist, they are all “catched”using the sketch,
and then the remaining c-groups can still be efficiently com-
puted as above. We make this argument more formal below.

We have seen that all skews are computed using 𝑂(𝑑𝑛)
intermediate data. Let 𝑡 ∈ 𝐷. 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑡) contains 2𝑑 nodes.
We can ignore all of the nodes that their groups are skewed.
Because 𝐷 is skewness-monotonic, all attributes that are
skewed, must be skewed together. All other attributes which
are non-skewed, cover the rest of the lattice. As the number
of non-skewed attributes is 𝑂(𝑑), each tuple generates at
most 𝑂(𝑑) key-value pairs, each of size 𝑂(𝑑). Summing over
all tuples, we have 𝑂(𝑑2 ·𝑛) intermediate data. Additionally
to the data sent for skewed groups, we get a total size of
𝑂(𝑑2 · 𝑛).

Proof Proposition 5.6. We have seen that handling of
skewed groups requires intermediate data of size 𝑂(𝑑𝑛). We
compute the amount of traffic needed for the rest of the
groups. Let 𝑡 be a tuple. Denote by C (t) the number of
non-skewed c-groups in lattice(t) for which the algorithm
generates intermediate data. These are the groups that the
mapper sends to reducers. Other non-skewed c-groups are
treated in the reduce phase using BUC, and need not a spe-
cial traffic. As 𝑡 is an arbitrary tuple, C (t) is a random
variable. It depends on which projections of 𝑡 are skewed
and which are not. We compute E(C (t)). Denote by 𝐶𝑖(𝑡)
the indicator random variable of the i’th node in lattice(t).
Then -

𝐶𝑖(𝑡) =

{︃
1 c-group in node i not skewed, sent to a reducer

0 elsewhere

Note that for 𝐶𝑖(𝑡) = 1 for non-skewed c-groups that have
a single attribute, or that all of their descendants in lattice(t)
are skewed. We express C (t) as a sum of the 2𝑑 indicator
random variables, of the nodes in lattice(t), and get by lin-
earity of expectation -

E(C (t)) = E(

2d∑︁
i=1

Ci(t)) =

2𝑑∑︁
𝑖=1

E(Ci(t))
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Figure 8: gen-binomial: Varying data size

We compute the expectation of a single indicator variable.
Assume a specific indicator of a node 𝑣 ∈ 𝑙𝑎𝑡𝑡𝑖𝑐𝑒(𝑡), and
assume 𝑣 has 𝑙 ≥ 2 attributes (we later handle 𝑙 = 1). We
mark by 𝑔𝑡 the c-group of 𝑡 in 𝑣, and denote by 𝐴 the event
that all of 𝑔𝑡 descendants in lattice(t) are skewed c-groups.
Then-

Pr(Cv (𝑡) = 1) = Pr(Cv (𝑡) = 1 | 𝐴) * Pr(𝐴)

≤ Pr(𝐴)
(2)

We use the law of total probability, and the fact that if
𝑔𝑡 has a non-skewed descendant in lattice(t), then 𝑔𝑡 is not
sent to a reducer. As 𝑣’s descendants are all cuboids of
𝑙 − 1 attributes, and the attributes in 𝑅 are independently
distributed, we get-

Pr(𝐴) ≤ ∩𝑝 ∈ 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠(𝑔𝑡)Pr(𝑝 𝑖𝑠 𝑠𝑘𝑒𝑤𝑒𝑑)

≤ (
𝑑

1
𝑙

𝑑
)𝑙

=
𝑑

𝑑𝑙

=
1

𝑑𝑙−1

(3)

Therefore, E(Cv (t)) ≤ 1
d l-1 . Recall that the number of

nodes having 𝑙 attributes is
(︀
𝑑
𝑙

)︀
= 𝑂(𝑑𝑙). Therefore, for every

𝑙 ≥ 2, the expected number of non-skewed c-groups with 𝑙
attributes that are sent to reducers is bounded by 𝑂(𝑑).
Summing over the lattice levels from 2 to 𝑑, we get that the
expected number for the entire lattice (except from level 1)
is bounded by 𝑂(𝑑2). For the case of 𝑙 = 1, the number of c-
groups in lattice(t) with one attribute is 𝑑, and therefore the
number of non-skewed c-groups that are sent to reducers
is 𝑂(𝑑). We thus get that for (an arbitrary tuple) 𝑡, the
expected number of non-skewed c-groups that are sent to a
reducer is at most 𝑂(𝑑2). Namely, E(C (t)) = 𝑂(𝑑2). As
the information sent for each non skewed c-group is of size
𝑂(𝑑), we get that the expected size of network traffic that
the algorithm is sending for (an arbitrary tuple) 𝑡 is 𝑂(𝑑3).
Therefore, the entire network for all of the tuples is at most
𝑂(𝑑3 · 𝑛).

Experiments: We now provide our results of the second
set of experiments on the synthetic gen-binomial.

In the second set of experiments we fixed 𝑝, and checked
the algorithms performance for varying database size. Fig-
ure 8 illustrates the results for 𝑝 = 0.1. Regarding running
time, we can again see in Figure 8a that SP-Cube outper-
forms Pig and Hive. We can also see compatibility with the

results obtained for the real-life datasets. On samples of size
50 million, for instance, Hive is worse than Pig similarly to
the USAGOV dataset. For samples of size 300 million, Pig
is worse than Hive, similarly to the Wikipedia dataset.

However, the gaps are dramatically larger in this experi-
ment. For 300 million tuples, SP-Cube achieves a speedup of
about 200% compared to Hive and 300% compared to Pig.
These gaps follow from similar gaps in the average map time
and map output sizes, shown in the graphs in Figure 8b and
8c, respectively. In this experiment the reduce average times
behaved similarly to the total running time, and the sketch
size was bounded by hundreds of Kilobytes, similarly to pre-
vious experiments.

In the second set of experiments we fixed 𝑝, and checked
the algorithms performance for varying database size. Fig-
ure 8 illustrates the results for 𝑝 = 0.1. Regarding running
time, we can again see in Figure 8a that SP-Cube outper-
forms Pig and Hive. We can also see compatibility with the
results obtained for the real-life datasets. On samples of size
50 million, for instance, Hive is worse than Pig similarly to
the USAGOV dataset. For samples of size 300 million, Pig
is worse than Hive, similarly to the Wikipedia dataset.

However, the gaps are dramatically larger in this experi-
ment. For 300 million tuples, SP-Cube achieves a speedup of
about 200% compared to Hive and 300% compared to Pig.
These gaps follow from similar gaps in the average map time
and map output sizes, shown in the graphs in Figure 8b and
8c, respectively. In this experiment the reduce average times
behaved similarly to the total running time, and the sketch
size was bounded by hundreds of Kilobytes, similarly to pre-
vious experiments.
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