
Ontology Assisted Crowd Mining

Yael Amsterdamer1, Susan B. Davidson2, Tova Milo1, Slava Novgorodov1, and Amit Somech1

1Tel Aviv University, Tel Aviv, Israel
2University of Pennsylvania, Philadelphia, PA, USA

ABSTRACT
We present OASSIS (for Ontology ASSISted crowd mining), a
prototype system which allows users to declaratively specify
their information needs, and mines the crowd for answers.
The answers that the system computes are concise and rel-
evant, and represent frequent, significant data patterns. The
system is based on (1) a generic model that captures both
ontological knowledge, as well as the individual knowledge
of crowd members from which frequent patterns are mined;
(2) a query language in which users can specify their in-
formation needs and types of data patterns they seek; and
(3) an efficient query evaluation algorithm, for mining se-
mantically concise answers while minimizing the number of
questions posed to the crowd. We will demonstrate OASSIS

using a couple of real-life scenarios, showing how users can
formulate and execute queries through the OASSIS UI and
how the relevant data is mined from the crowd.

1. INTRODUCTION
Consider the following scenario: Ann is planning a vaca-

tion in New York City with her family. She is interested
in finding combinations of popular child-friendly activities
and a nearby restaurant to eat at afterwards, and related
advice (e.g., whether to walk or rent a bike). She immedi-
ately thinks of two options: searching the web, or posting a
question on some forum to receive input. However, both of
these options have drawbacks.

Web search may return valuable information, but if Ann
queries for child-friendly activities or for good restaurants
she would still need to sift through the results to identify the
appropriate combinations: not all good restaurants, even if
child-friendly, are appropriate after a sweaty outdoor activ-
ity; a restaurant may be geographically close to some attrac-
tion but not easy to access; and so on. Moreover, much of
the information is text-based so finding related advice (e.g.,
walk or bike) may be time consuming. Finally, the particular
information she is looking for may not be recorded anywhere
and obtaining it may require asking people. Alternatively,

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Thing

PlaceActivity

subClassOf subClassOf

RestaurantCity

NYC

instanceOf

Maoz
Veg.

Pine

instanceOf

nearBy
nearBy

instanceOf

Feed a
monkey

Sport

subClassOf

Water
Sport

Biking
Ball

Game

subClassOf

Food

Falafel Pasta

subClassOf
subClassOf

Basketball Baseball

subClassOf

Swimming
Water
Polo

subClassOf

Attraction

Outdoor Indoor

Swimming
pool

subClassOf

Zoo Park

Madison
Square

Central
Park

Bronx
Zoo

subClassOf

subClassOf

instanceOf

subClassOf

InsideinstanecOf

Figure 1: Sample ontology

Ann can post a question on a forum, which is more likely
to yield detailed answers relevant to her question. How-
ever, she would again receive a number of (wide-ranging)
text-based results, which she would then have to manually
examine and aggregate, to extract the desired information.

We present OASSIS (Ontology ASSISted crowd mining),
a prototype system which broadens traditional crowd-based
data-sourcing by enabling users to declaratively specify their
information needs, and obtain, using the crowd, concise, rel-
evant answers that represent frequent, significant patterns.

Note that to answer Ann’s question, one has to com-
bine general, ontological knowledge (e.g., the locations of
NYC attractions and restaurants) with personal, perhaps
unrecorded information about people’s habits (e.g., which
are the most common combinations matching Ann’s needs).
This challenge arises in many other contexts where per-
sonal knowledge is required. E.g., a dietician may wish to
study the culinary preferences in some population, focus-
ing on food dishes rich in fiber. While nutritional facts can
be recorded in a knowledge base, relevant habits of people
may not be. Similarly, a medical researcher may wish to
study the usage of particular ingredients for self-treatments
of bodily symptoms, which also involves documented and
undocumented data.

In order to retrieve and analyze such mixed data, we
allow users to declaratively formulate their data needs in
OASSIS-QL, a new query language that extends the query
language SPARQL [9] with crowd mining features. OASSIS’s
friendly UI assists users in constructing queries quickly and
easily, and then the system executes them while exploiting
two types of data sources: an ontology and crowd-provided

data. The ontology is used to find candidate data patterns
based on general knowledge, e.g., combinations of nearby at-
tractions and restaurants. Then, the system automatically
generates and poses questions to the crowd through a dedi-
cated crowdsourcing platform, to identify which patterns are
common or preferable. The question generation algorithm
dynamically decides what to ask next by analyzing the col-
lected data, to minimize the number of posed questions.

The ontology can be chosen out of many publicly avail-
able large knowledge bases. Consider the sample ontology in
Figure 1, which illustrates facts by labeled nodes and edges.
E.g., the fact “Maoz Veg. is nearby Central Park” is modeled
by a “nearby” edge between the relevant nodes. Such an on-
tology can be used by the system for finding combinations
of restaurants and attractions relevant to Ann’s query.

Next, the system would mine the crowd in order to dis-
cover which combinations are indeed common, as well as
related tips and advice. For instance, it may generate a
concrete question asking crowd members whether and how
often do they bike in Central Park. The system may pose
such a question to several crowd members, aggregate the
answers, and make further inferences based on semantic de-
pendencies that we derive from the ontology. E.g., if bike
riding in Central Park is infrequent, so must be sub-types of
it, such as mountain-bike riding. To speed up data collec-
tion, the system may also ask specialization questions, where
the crowd is asked to specify a relevant habit, related to the
one in question. For example, it may ask “What else do you
do in Central Park?” to find other prominent activities that
are done together with biking in Central Park.

A full description of the formal model underlying OASSIS,
as well as its query generation algorithm, are given in [2].
We briefly overview these in Section 2, to illustrate the oper-
ation of our prototype system. We will demonstrate OASSIS

using the travel domain and culinary domain examples men-
tioned above, to show its applicability for various data do-
mains where the crowd serves as a main source of knowledge.
We will show how users describe their information needs in
OASSIS-QL using a dedicated UI (and based on an ontol-
ogy), and how the relevant data is mined from the crowd
to answer the query. Audience members will be invited to
actively participate in both query formulation and question
answering. See details in Section 3.

Related Work. Crowd data-sourcing has attracted much re-
search interest in the past few years (e.g., [6, 8, 10]). In this
paper, we focus on the topic of crowd mining, which we re-
cently introduced in [3]. We extend [3] in two ways: first, we
allow users to define their information needs using a declar-
ative query language; and second, we take advantage of se-
mantic relations in order to compute a comprehensive yet
concise set of data patterns. For the latter, we employ tech-
niques developed in our previous work [1], but query-driven
crowd mining is a new development. OASSIS-QL combines
capabilities from SPARQL [9] for processing the RDF ontol-
ogy, with ideas from data mining query languages such as
DMQL [4], and enhances them to obtain a query language
for crowd mining.

2. SYSTEM OVERVIEW
We next discuss the query language OASSIS-QL and our

crowd mining algorithm, and detail the system architecture.

1 SELECT FACT-SETS
2 WHERE
3 {$w subClassOf* Attraction.
4 $x instanceOf $w.
5 $x inside NYC.
6 $x hasLabel "child-friendly".
7 $y subClassOf* Activity.
8 $z instanceOf Restaurant.
9 $z nearBy $x}

10 SATISFYING
11 {$y+ doAt $x.
12 [] eatAt $z.
13 MORE}
14 WITH SUPPORT = 0.25

Figure 2: Sample OASSIS-QL Query

2.1 Query Language
An OASSIS-QL query has three parts: 1) a SELECT clause

which defines the output of the query; 2) a WHERE clause
which is evaluated against the ontology; and 3) a SATISFYING

clause, which defines the data pattern to be mined from
the crowd. An example of a query 𝒬 is given in Figure 2,
which expresses the scenario presented earlier: “Find a pop-
ular combination of activities in a child-friendly attraction
in NYC, and a good restaurant nearby (plus other relevant
advice)”. The answer to 𝒬, in natural language, would in-
clude, e.g., “Go biking in Central Park and eat at Maoz Veg.
(tip: rent the bikes at the Boathouse)”, “Play ball games in
Central Park and eat at Maoz Veg.” and “Feed a monkey
at the Bronx Zoo and eat at Pine Restaurant”.

We use 𝒬 to illustrate the semantics of OASSIS-QL; full
details of the language can be found in [2].

The SELECT clause (line 1) specifies that the output should
be significant fact-sets, i.e., set of facts that co-occur fre-
quently, in RDF format. (We note that the language further
allows to project the query results only on certain facts or
variables.) The WHERE clause (lines 2-9) defines a SPARQL-
like selection query on the ontology. In short, it consists of
a fact-set (here each fact is given in a separate line) over
the ontology elements such as NYC or Activity. The facts
contain variables ($w, $x, . . .), and the selection returns all
the variable bindings such that the resulting fact-set exists
in the ontology. The SPARQL syntax also allows paths of
relations to be specified. E.g., subclassOf* (line 3) defines
a path of length zero or more of subclassOf relations con-
necting the elements.

The SATISFYING clause (lines 10-14) defines the data pat-
terns (fact-sets) to be mined from the crowd along with a
support threshold, which sets the minimal frequency of sig-
nificant fact-sets (line 14). For example, the fact-set []

eatAt $z. $y doAt $x (we ignore, for now, MORE and the
+ next to $y in Figure 2) combined with the binding 𝜙($z)
= Maoz Veg., 𝜙($y) = Sport, and 𝜙($x) = Central Park

corresponds to the concrete crowd question “How often do
you eat at Maoz Veg. while also doing a sport in Central
Park?”. $y+ specifies, intuitively, that we are also inter-
ested in multiple values (in this case multiple activities)
that co-occur together, e.g., Biking and Baseball. Finally,
the MORE keyword is used as syntactic sugar for a set of zero
or more unrestricted facts, which captures related advice.
To set the threshold, one can convert the user answers to
support values. For example, we can configure the UI to let
crowd members choose their habit frequency out of Never,

Rarely, Sometimes, Often or Very Often with imputed sup-
port values 0, 0.25, 0.5, 0.75, and 1 resp. Answers from
different crowd members to the same question are averaged,
and thus, a threshold of, e.g., 0.25 would imply that signifi-
cant fact-sets occur at least rarely for the average user.

The output of OASSIS-QL is defined to be semantically
concise, meaning that only the most specific among the sig-
nificant fact-sets are returned. The notion of “more specific”
is made precise using the ontology subclassOf and instanceOf
relations, based on which a semantic subsumption partial or-
der is defined over fact-sets. For example, Ball Game doAt
Central Park is more specific than Sport doAt Central Park
since Ball Game is a sub-class of Sport. It is also more spe-
cific than Ball Game doAt Park since Central Park is an in-
stance of Park. Hence, if Ball Game doAt Central Park is in
the query results, the more general Ball Game doAt Park,
Sport doAt Central Park, Sport doAt Park, etc. should be ex-
cluded, even though they must also be frequent.

2.2 Crowd Mining Algorithm
We sketch the main principles guiding the algorithm for

dynamic question selection, described in detail in the full
version [2]. The algorithm is used to evaluate the SATISFYING
clause by posing questions to crowd members. It aims to
minimize the number of questions while providing a pleasant
user experience, based, respectively, on theoretical results [2]
and on preliminary user studies we have performed. In par-
ticular, several factors guide the order in which questions
are asked. First, it is natural to start by asking general
questions that identify the person’s areas of interest. For
example, it natural to ask someone if they play sports be-
fore asking whether or not they play basketball. Second,
if a person indicates low support for a fact-set, then ques-
tions about more specific fact-sets do not need to be asked.
For example, if a person never goes to Central Park, it is
useless (and very irritating) to ask them whether they play
basketball in Central Park. Third, users prefer to answer
a sequence of related questions rather than unrelated ones.
For example, if a person indicates that they frequently play
sports in a park then a natural follow-up question would be
“Do you play sports in Central Park?” rather than “Do you
feed monkeys at the Bronx Zoo?”

Recall that the ontology is used to define a partial order
of fact-sets. This order is traversed “top-down” in our eval-
uation algorithm, generating a queue of questions for each
person. When a person indicates that a binding is not fre-
quent, bindings that are more specific are eliminated from
the person’s queue since they cannot be frequent for that
person. Questions may also be removed from a person’s
queue if a binding is “resolved” as either relevant or irrele-
vant to the query result by other crowd members.

Answering a query involves posing questions to many crowd
members. First, we want to guarantee that the answer is
significant in the population and not just for a single mem-
ber. In our implementation, we ask 5 people per binding and
average their answers. More generally, one can use any func-
tion to determine the number of users to be asked and how
to aggregate their answers, including existing techniques for
error estimations, spam filtering and outlier detection, to
ensure high-quality results [2]. Second, several users may be
needed to answer the many questions posed during query
evaluation. Finally, multiple users can work in parallel and
speed up the evaluation process.

as
si

gn
m

en
ts

si
gn

if.
 a

ss
ig

n
.

OASSIS

U
se

r
In

te
rf

ac
e
 results SPARQL result

significant
assignments

crowd question

OASSIS-QL
query request

question

answer

Assign
Generator

SPARQL query

crowd answer

Queue
Manager cached response

cached request

Ontology

CrowdCache

The
Crowd

Figure 3: OASSIS architecture

So far, we have only discussed concrete questions. How-
ever, to speed up query processing, OASSIS can leverage
answers to specialization questions. For example, if it is
known that sports are often played in Central Park and
we wish to determine which particular sports are played,
the crowd could be asked “What type of sport do you do
in Central Park and how frequently?”. They could then
choose, e.g., Water Sport, Biking or Ball Game, along with
the frequency indications as before. Since many ontologies
have a large fan-out per node, and a user typically only does
a few things frequently, this information can be used to find
significant assignments more quickly. It has been observed
in previous work that interleaving both types of questions is
beneficial: while specialization questions allow us to quickly
identify prominent, significant fact-sets, people cannot spon-
taneously recall all of their data; whereas concrete questions
allow us to dig deeper into their memory [3].

2.3 Implementation
OASSIS is implemented in Python 2.7 and uses a MySQL 5.6

database. External libraries used include RDFLIB for han-
dling RDF data and NetowrkX for constructing the fact-sets
partial order.1 The system architecture is depicted in Fig-
ure 3. The user submits requests via a user-friendly query
builder with auto-completion suggestions, through which a
query 𝒬 can be quickly and accurately constructed (Fig-
ure 4). This UI allows the user to choose categories of
interest (e.g., outdoor places one goes to), desired proper-
ties (e.g., selecting only child-friendly places), connections
between categories (e.g., an outdoor place that is nearby
a restaurant) and so on. An advanced user can construct
more sophisticated queries via a text-based OASSIS-QL ed-
itor, also with auto-completion capabilities, to take advan-
tage of the full expressive power of the query language. 𝒬
is then passed to the AssignGenerator module, which com-
putes assignments to the query variables based on the ontol-
ogy and passes them to the QueueManager module. Queue-
Manager generates relevant questions for each crowd mem-
ber. We explain the interaction with the system in the next
section. The crowd’s input is used to compute answers to
𝒬, which are translated by the OASSIS engine into a user-
friendly form and returned to the user incrementally. The
web-based front-end for the demo is developed in PHP 5.3.
OASSIS uses two repositories: Ontology and CrowdCache.

Ontology stores the ontology; the one used for the demo is
constructed from WordNet [7], YAGO [5], and data obtained

1www.rdflib.net and networkx.github.io.

www.rdflib.net
networkx.github.io

Figure 4: Query builder screen

via the Foursquare API2. In general, any third-party RDF
ontology can be used. CrowdCache is a database that stores
the computed variable assignments along with the answers
collected from the crowd for each assignment.

3. DEMONSTRATION
We demonstrate OASSIS and its UI for two different do-

mains, mentioned earlier, where both ontological and human
knowledge are required: the travel domain and culinary do-
main. We show how users can describe their information
needs using the OASSIS-QL user-friendly query builder, exe-
cute the formulated query and browse the results. To assist
in computing the query answer, the crowd is engaged to con-
tribute information via a social questions-game where they
are asked query-relevant questions about their habits, the
frequency in which they do certain activities and combina-
tions thereof. Users are awarded stars (bronze, silver and
gold) as they answer questions, and can use them as vir-
tual money either to pose queries to the system or to view
suggestions computed in response to pervious queries.

To interact with the crowd, questions are phrased in pseudo-
natural language using the ontology terms (see Figure 5).
For each term type in the ontology, an appropriate phrase/tem-
plate is kept and instantiated at run time with the concrete
term being asked about. The same templates are used for
presenting the query results in a pseudo-natural language.

As a preparatory step to the demonstration, we will ini-
tialize the system with a few sample queries, and collect data
from our local crowd through the game mentioned above.
This repository will later be extended with data provided
by conference participants.

We will use three screens displaying different aspects of
OASSIS. The first will be used to show how OASSIS-QL queries
are formulated, the second will demonstrate how the crowd
is engaged to answer questions relevant to the query, and
the third will run in administrator mode to show the un-
derlying operation of the system. We will start the demon-
stration by explaining the system, its interface and the goal,
and showing the queries already fed to the system. We will
then let our audience play the game from their own lap-
top/tablet/smartphone or using one of our laptops, by ac-
cessing the OASSIS web crowd interface. In parallel, we will
show, on an administrator screen, the current state of the
system and the data: what OASSIS-QL queries were recently

2Foursquare API. developer.foursquare.com/.

Figure 5: A question to the crowd

posed to the system, which answers were collected for which
crowd questions, what fact-sets have already been found to
be (in)significant and which questions will be posed to the
crowd next, highlighting how the underlying algorithms op-
erate. Finally, we will ask one of the attendees who recently
contributed to the system (by being part of the crowd) to
use the query builder and pose some new query to the sys-
tem via the OASSIS-QL user interface. We will examine the
questions that OASSIS consequently generates and poses to
the crowd, and again reveal what is happening under the
hood on the administrator screen.

Acknowledgements. This work has been partially funded
by the European Research Council under the FP7, ERC
grant MoDaS, agreement 291071, by the NSF grant III-
1302212 and by the Israel Ministry of Science.

4. REFERENCES
[1] A. Amarilli, Y. Amsterdamer, and T. Milo. On the

complexity of mining itemsets from the crowd using
taxonomies. In ICDT, 2014.

[2] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov,
and A. Somech. OASSIS: query driven crowd mining. In
SIGMOD, 2014.

[3] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart.
Crowd mining. In SIGMOD, 2013.

[4] J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane, et al.
DMQL: A data mining query language for relational
databases. In SIGMOD, volume 96, 1996.

[5] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: A spatially and temporally enhanced knowledge
base from Wikipedia. Artif. Intell., 194, 2013.

[6] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh.
Counting with the crowd. In VLDB, 2012.

[7] G. A. Miller. WordNet: a lexical database for English.
Comm. ACM, 38(11), 1995.

[8] A. G. Parameswaran, H. Park, H. Garcia-Molina,
N. Polyzotis, and J. Widom. Deco: declarative
crowdsourcing. In CIKM, 2012.

[9] E. Prud’Hommeaux, A. Seaborne, et al. SPARQL query
language for RDF. W3C rec., 15, 2008.

[10] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, 2013.

developer.foursquare.com/

	Introduction
	System Overview
	Query Language
	Crowd Mining Algorithm
	Implementation

	Demonstration
	References

