
QOCO: A Query Oriented Data Cleaning System with Oracles

Moria Bergman 1 Tova Milo 1 Slava Novgorodov 1 Wang-Chiew Tan 2

1Tel-Aviv University 2University of California, Santa Cruz
1 {moriaben, milo, slavanov}@post.tau.ac.il 2 tan@cs.ucsc.edu

ABSTRACT
As key decisions are often made based on information contained
in a database, it is important for the database to be as complete
and correct as possible. For this reason, many data cleaning tools
have been developed to automatically resolve inconsistencies in
databases. However, data cleaning tools provide only best-effort
results and usually cannot eradicate all errors that may exist in a
database. Even more importantly, existing data cleaning tools do
not typically address the problem of determining what information
is missing from a database.

To tackle these problems, we present QOCO, a novel query ori-
ented cleaning system that leverages materialized views that are
defined by user queries as a trigger for identifying the remaining
incorrect/missing information. Given a user query, QOCO inter-
acts with domain experts (which we model as oracle crowds) to
identify potentially wrong or missing answers in the result of the
user query, as well as determine and correct the wrong data that
is the cause for the error(s). We will demonstrate QOCO over a
World Cup Games database, and illustrate the interaction between
QOCO and the oracles. Our demo audience will play the role of
oracles, and we show how QOCO’s underlying operations and op-
timization mechanisms can effectively prune the search space and
minimize the number of questions that need to be posed to acceler-
ate the cleaning process.

1. INTRODUCTION
Databases are accessed for the information they contain and key

decisions are often made based on the results that are returned. Re-
gardless of the query interface that is provided for accessing in-
formation (e.g., free-text search in an internet bookstore or form-
based filters for choosing travel destinations in travel agency web-
site), users naturally expect to obtain correct and complete results
to a query that is posed against the database. In practice, however,
the expectation of always obtaining correct and complete result is
difficult to realize since many of the databases are constructed by
(semi-)automatically aggregated data from different sources and
are likely to contain some inaccuracies and inconsistencies even
if individual sources are free of errors.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 12
Copyright 2015 VLDB Endowment 2150-8097/15/08.

Even though data cleaning is a long standing problem that has at-
tracted significant research efforts (e.g., see [5, 6]) for a number of
years, the state-of-the-art data cleaning techniques that have been
developed cannot usually eradicate all errors in a database. Take
as an example, YAGO [9], a database that was built by automati-
cally extracted data from Wikipedia and other sources. Data clean-
ing techniques have been applied to YAGO and achieved an accu-
racy of about 95%, namely leaving 5% still erroneous [9]. Even
highly curated databases [3] (i.e., databases that were constructed
through extensive human effort of verifying and aggregating exist-
ing sources) are unlikely to be completely void of errors. At the
same time, the sheer volume of such databases also makes it im-
possible to manually examine each piece of data for its correctness.
More importantly, existing data cleaning tools do not usually ad-
dress the problem of determining what information is missing from
a database.

To complement the efforts and overcome the limitations of exist-
ing data cleaning techniques, we propose a novel query oriented
data cleaning approach with oracle crowds. In our framework,
materialized views (i.e., query oriented views which are defined
through user queries) are used as a trigger for identifying incorrect
or missing information. Our premise is that users’ queries (and
their corresponding materialized views) provide relevant and fo-
cussed perspectives of the underlying database and hence, facili-
tates the discovery of errors. If an error (i.e., a wrong tuple or
missing tuple) in the materialized view is detected, our system will
interact minimally with a crowd of oracles by asking only pertinent
questions. Given a view, we assume the crowd are relevant do-
main experts (hence, the name “oracle crowds”) who are likely to
answer questions posed by our system correctly. Answers to ques-
tions will help to identify how to clean the underlying database in
order to correct the error in the materialized view. More precisely,
answers to a certain question will help to identify the next perti-
nent questions to ask and ultimately, a sequence of edits is derived
and applied to the underlying database. These edits will bring the
database closer to the state of the ground truth and, at the same
time, correct the error in the materialized view. Note that the goal
of QOCO is not to clean the entire database, but rather, clean parts
of the database, as needed, to rectify the errors in the view. As we
will describe, our algorithms effectively prune the search space and
minimize the amount of interaction with the crowd while, at the
same time, maximize the potential “cleaning benefit” derived from
the oracles’ answers.

QOCO can be used to complement existing data cleaning tech-
niques. After the data is cleaned with traditional techniques, QOCO can
be activated to monitor the views that are served to users/applications.
Whenever an error is reported in a view, QOCO can take over to
clean the underlying database by interacting with the crowd.

1900



Demonstration. We will demonstrate QOCO with an exam-
ple database of World Cup Games. The data that we use for the
demonstration was extracted from sport websites (e.g. [12]) and
is therefore partially incorrect and incomplete due to errors in the
automatic website scraping tools. Although some of the errors in
the data could be cleaned with automatic techniques (e.g., by com-
paring to FIFA official data1), we made a deliberate choice to use
this dataset. Its true facts about World Cup Games are well-known
which makes it easier for us to illustrate our key ideas without the
need to delve heavily into the semantics of the data. Moreover, it
makes it easy for us to find demo attendees to play the role of the
experts and/or users (query requesters).

To illustrate, consider the following simple example. We use D
to denote the given dirty database and DG to denote the correct
ground truth database. A small sample of the World Cup Games
dataset is depicted in Figure 1, which shows portions of two re-
lations: Games lists the World Cup Games and stores the date,
playing teams, stage of the tournament and the final score of each
game, and Teams records the name and continent of teams that
participated in various World Cup Games. In the figure, the dark
gray tuples are the wrong tuples in D (i.e., tuples that do not be-
long to the ground truth database DG). The light gray tuples are
the tuples that are missing from D (i.e., tuples that are in DG but
do not appear in D). All other tuples are correct (i.e., they belong
to both D and DG).

Date Winner Runner-up Stage Result

13.07.14 GER ARG Final 1:0

11.07.10 ESP NED Final 1:0

09.07.06 ITA FRA Final 5:3

30.06.02 BRA GER Final 2:0

12.07.98 ESP NED Final 4:2

17.07.94 ESP NED Final 3:1

08.07.90 GER ARG Final 1:0

11.07.82 ITA GER Final 3:1

Country Continent

GER EU

ESP EU

ARG SA

BRA EU

ITA EU

Games Teams

Figure 1: World Cup Games database schema
Consider a user query Q1, defined below, which searches for

European teams that won the World Cup at least twice.
(x) :- Games(d1, x, y, F inal, u1),Games(d2, x, z, F inal, u2),

Teams(x,EU), d1 6= d2.
When Q1 is evaluated against the database D, the query re-

sult Q1(D) (i.e., materialized view of Q1) consists of two tuples
{(GER),(ESP )}. This output contains wrong answers such as
Spain as well as missing ones such as Italy.

Assume that a user reports a wrong or missing answer. Note
that in the absence of any knowledge about the ground truth DG,
there are multiple ways to update D so that the wrong answers will
no longer be part of the result. For example, to remove (ESP )
from Q1(D), one can remove (ESP,EU) from Teams, or two of
the three facts in Games that represent a winning game of Spain.
To add the missing tuple (ITA) to the result, one can add the tuple
(ITA,EU) to Teams together with a tuple representing a winning
game of Italy, e.g., the true fact of 1982 final game or any other true
or false tuple representing a real/fake win for Italy.

QOCO could ask the crowd whether Spain is in Europe, or if
the tuples representing the World Cup finals in 1994, 1998, or 2010
are correct. Similarly, QOCO could ask the crowd whether there
are tuples missing from the query result. We will demonstrate how
QOCO selects the most effective questions and efficiently cleans
the underlying database
1http://www.fifa.com/

Related work. As mentioned above, numerous data cleaning
techniques have been proposed in the past (e.g., surveys [5, 6]). Re-
cently, [11] introduced the idea of cleaning only a sample of data to
obtain unbiased query results with confidence intervals. QOCO is
similar in spirit to [11] in that it uses the crowd to correct query
results. However, unlike QOCO , [11] does not propagate the up-
dates back to the underlying database. Another critical difference
from [11], as well as from prior data cleaning works, is the sup-
port of the truly open world assumption through a mechanism that
identifies query answers missing from the output, and thus discover
and inserts true tuples that are missing from the input database.
Also, we propose our query-oriented approach as means to focus
resources to the most relevant portions of the underlying data.

Crowdsourcing, or human computation, is a model where hu-
mans perform small tasks to help solve challenging problems. In-
centives can range from small payments to public recognition and
the desire to help scientific progress [8]. It is a powerful tool that
has been employed for database cleaning tasks such as entity/conflict
resolution [10], duplicate detection [2], and schema matching [13].
These complementary techniques can be used for the initial data
cleaning and then refined by our approach. There has also been
extensive research in the past on ensuring the quality of answers
(whether individual answers or aggregated answers) obtained from
the crowd and on methods for evaluating crowd workers’ qual-
ity [7]. These methods are complementary to our work and can
be used here as a preliminary step to identify quality answers or
select the experts to which we pose questions.

2. TECHNICAL BACKGROUND
We will briefly present our underlying model. Full details can be

found in the full version of the paper [1].
Let D be our underlying relational database and Q be a query

defined by a union of conjunctive queries. We adopt the truly open
world assumption where a fact that is in D can also be true or false,
in addition to the well-known open world assumption that a fact
that is not in D can be true or false. In other words, we assume that
a given database can contain mistakes, in addition to being incom-
plete. The truth of a tuple is given by the ground truth database DG

that contains all true tuples and only them. Hence, a database D is
dirty w.r.t DG if D 6= DG. The two databases D and DG together
determine the set of missing/wrong answers w.r.t. a given query.

DEFINITION 2.1. Types of answers:

• (True Answer, True Result) A tuple t is a true answer to a
query Q and database D if t ∈ Q(D) and t ∈ Q(DG). We
call Q(DG) the true result of Q.

• (Missing Answer) A tuple t is a missing answer to a query Q
and database D if t ∈ (Q(DG)−Q(D)).

• (Wrong Answer) A tuple t is a wrong answer to a query Q
and database D if t ∈ (Q(D)−Q(DG)).

A cleaned database D′ is achieved through a sequence of updates
that are generated from answers to questions posed to the oracle
crowd (experts). Each such update is called an edit. An insertion
edit R(ā)+ inserts the tuple ā into relation R in the database, while
a deletion edit R(ā)− removes tuple ā from R. An update to an ex-
isting tuple can be modeled by a deletion followed by an insertion.
The result of updating D with an edit e is denoted by D ⊕ e.

PROBLEM 2.2. (EDIT GENERATION PROBLEM) Given a database
instance D, a ground truth database DG, and a query Q, interact
with the crowd minimally to derive a sequence e1, . . . , ek of edits
such that Q(D′) = Q(DG), where D′ = D ⊕ e1 ⊕ . . .⊕ ek.

1901



The set of edits to be performed may be identified by asking the
crowd of domain experts questions about the correctness of query
answers (or some database tuples related to these answers), as well
as asking them to provide missing answers to the query (or missing
database tuples related to them).

To delete a wrong answer we seek to remove false tuples from
database D as to eliminate all the witnesses for this answer. The
complementary case of inserting a missing answer is handled by
seeking for a witness for this answer, containing only true tuples.
A witness for an answer t is a set of database tuples, w ⊆ D, s.t.
Q(w) = t. A missing answer could also have a witness except that
it may also contain tuples that are in DG \D.

To illustrate the main principle of our algorithm, let us assume
first for simplicity that there is just one wrong answer in the query
result, and then that there is just one missing answer. In what fol-
lows, we assume there is a single crowd member who is a perfect
oracle. A perfect oracle always speaks the truth and knows about
DG. We will later explain how the techniques extend to multiple
crowd experts who may provide incorrect answers.

Removing one wrong query answer. The considered prob-
lem is to identify a set of corrective updates that need to be per-
formed to remove a wrong tuple from the output. It can be shown
to be NP-hard by reducing from the Hitting Set Problem, a well
known NP-hard problem (proof given in [1]). Hence, to obtain a
practical algorithm, we use a greedy heuristic to determine the next
question to ask in order to clean the database. This heuristic is re-
peatedly applied until we can deduce the exact set of false tuples
that should be deleted to remove the wrong answer.

We illustrate this idea next with an example. Full details of the
algorithm, as well as experimental study that demonstrates its effi-
ciency, can be found in [1].

EXAMPLE 1. Consider same query Q1 which finds European
teams that won the World Cup at least twice. Assume that the expert
examines the query answers, and finds the answer (ESP ) to be
wrong. Observe that this answer has three witnesses w1, w2, w3 in
D (i.e., Q1(wi), 1 ≤ i ≤ 3, produces the answer (ESP )).

Tuples of the witness

w1

t1 = Game(11.07.10, ESP,NED, final, 1:0)
t2 = Game(17.07.94, ESP,NED, final, 3:1)
t3 = Team(ESP,EU)

w2

t2 = Game(17.07.94, ESP,NED, final, 3:1)
t4 = Game(12.07.98, ESP,NED, final, 4:2)
t3 = Team(ESP,EU)

w3

t4 = Game(12.07.98, ESP,NED, final, 4:2)
t1 = Game(11.07.10, ESP,NED, final, 1:0)
t3 = Team(ESP,EU)

Since (ESP ) is a wrong answer, at least one tuple in each wit-
ness is wrong. To efficiently prune the search space of tuples to re-
move, we adopt a greedy approach that asks the expert first about
the most frequent tuples (i.e., tuples that appear in the most number
of witnesses). Intuitively, if the most frequent tuples are indeed in-
correct, they will eliminate all witnesses at once, whereas if found
to be correct, they will provide a negative indication about the other
tuples in the witnesses. Here tuple t3 occurs most frequently. The
expert will be asked TRUE(t3)? and since t3 is correct (t3 ∈ DG),
the crowd member will answer YES. The remaining candidate tu-
ples for removal in the witnesses are now, respectively,
{t1, t2}, {t2, t4}, {t4, t1}

As all tuples occur equally often in the witnesses, QOCO will
choose randomly between them. Suppose QOCO first poses the
question TRUE(t1)?. Since t1 is correct, the crowd member will

QOCO Manager

Insertion Module

Unverified 
Answers 

(For CurrQ)

Deletion Module U
se

r 
In

te
rf

ac
e

D
at

ab
as

e

Verified 
Answers

Wrong 
Answers

Sub-
Queries

Missing 
Answers

Query

Question

Results

Answers

Questions

Execute Query

Unverified 
Answers 

Verified 
Answers 

Result

Crowd Deletion Questions
Crowd Insertion Questions

Delete 
Action

Update Actions

Insert 
Action

Aggregation 
Black-Box

Completion 
Black-Box

Figure 2: QOCO architecture

answer YES. The remaining candidate tuples for removal in the
witnesses are now, respectively,

{t2}, {t2, t4}, {t4}
At this point the remaining deletions are completely determined:

it is clear that both t2 and t4 must be deleted in order to elimi-
nate the first and third witness. In doing so, the second witness is
eliminated as well. Hence, (ESP ) will be removed from the query
result. (An analogues procedure is followed if some tuple other
than t1 is first selected.)

Adding one missing answer. Analogously, this considered
problem is to identify a set of corrective updates that need to be
performed to add a missing answer to the output. Here again, the
problem can be shown to be NP-Hard by reducing from the One-
3SAT problem (proof given in [1]). We therefore again employ
heuristics to effectively identify missing database tuples that, once
added, will form together with the already existing tuples a wit-
ness to the missing answer. Using provenance information along
with ideas from [4] we (recursively) split the query into subqueries
whose answers’ witnesses can potentially be expanded into a wit-
ness to the missing answer. Our heuristic aims to help the crowd
members fill in missing data by greedily directing them with facts
existing in the underlying database. The details are omitted for
space constraints, full details in [1].

3. SYSTEM OVERVIEW
QOCO is implemented with PHP and JavaScript and uses a

MySQL database. QOCO’s high-level architecture is depicted in
Figure 2. The experts, who are answering questions, and the user
(requester) who is running the query over the DB, interact with
QOCO through the User Interface. QOCO has three core mod-
ules. QOCO Manager is responsible for interacting with the Database,
and managing the iterations of our iterative algorithm in the general
case. It receives the query from the requester and executes it on the
Database. It performs the needed insert/delete actions identified by
the Deletion module and Insertion module as described in Section
2. All verified correct results are sent to the Final Results set, which
returns them to the requester. QOCO uses two black-boxes: Ag-
gregation Black-Box and Completion Black-Box. The Aggregation
Black-Box aggregates crowd answers to a given question whereas
the Completion Black-Box determines when the query result is es-
timated to be complete. The latter notifies QOCO when it esti-
mates that asking the crowd to identify further missing answers is
no longer necessary, because the query result is complete with high
probability. QOCO exposes an API so that other systems can keep
their own UI and invoke QOCO as a service. Any application with
an underlying database and queries defined on top of the database
can make use of QOCO’s services for cleaning data.

1902



Figure 3: QOCO UI: mark incorrect/add missing answers

4. DEMONSTRATION SCENARIO
We will demonstrate the functionalities of QOCO on the World

Cup Games database. VLDB’15 attendees will be invited to par-
ticipate in the demonstration by posing queries to the database,
checking the answers of queries posed by (other) attendees, identi-
fying (in)correct/missing answers, and assisting in identifying the
(in)correct/missing data that is the source for the error.

We use a World Cup Games dataset which we extracted from
soccer websites (e.g. [12]). This dataset contains information about
World Cup Games since 1930, including dates and scores, names
of playing teams, names of players, etc. As mentioned in the Intro-
duction, although some of the errors in the data could be cleaned
with automatic techniques, we made a deliberate choice not to fully
clean our extracted World Cup data. As previously mentioned, we
assume the truly open world assumption where errors in data can
be either missing true tuples or existing false ones. For example, in
the portions of data that we presented in Figure 1, (BRA,EU) is
a false tuple while (ITA,EU) is a missing tuple.

To encourage the audience for our demo, we have designed an
engaging interactive multiplayer game where players are awarded
points for the following: (1) posing queries whose answers high-
light incorrect data, (2) answering correctness questions about query
answers or database tuples, (3) completing missing information.
Players who earn significant points can further explore the World
Cup Games data and view interesting World Cup statistics. Since
not all VLDB attendees are soccer fans, we have (1) pre-registered
with QOCO a set of queries whose answers we know to be in-
correct/partial, and (2) prepared a fact-sheet about the World Cup,
which we will distribute when needed, to help non-experts suc-
cessfully play the role of World Cup experts. Those pre-registered
queries are trivia-like queries such as “Which European teams lost
the World Cup finals at least twice?” or “Which players scored in
the 2002 World Cup final?”, and they are taken from various soccer
trivia websites. The participants will be invited to review the results
of these trivia queries or issue new ones.

We begin our demonstration by presenting the game, its goal and
rules. We will then allow the audience to play, while we explain the
underlying algorithms in QOCO. A player starts the game with an-
swering questions posted by QOCO. The first screen presented to
the first player contains a list of answers to a given query executed
over our underlying database. The player can mark incorrect an-
swers and/or add new ones (Figure 3). Based on input from players,
QOCO decides whether to ask more questions, and which ques-
tions to ask. For example, QOCO can decide to verify tuples if a
wrong query answer was identified, or add missing data if a missing
answer was identified. Players can also pose their own queries us-
ing a “Query Builder Tool” page. Once players are done, we offer
them to view the Administrator web page (Figure 4), that presents
aggregated statistics for all players and all queries together, such

Figure 4: QOCO UI: administrator view
as total number of queries processed, total number of edits on the
database, the number of missing answers discovered and of wrong
answers identified, etc. This page also present interesting informa-
tion on each query. For example, the missing answers discovered
(blue), wrong answers that were deleted (red), and the different
database edits determined due to those identified errors.

During the demonstration we will explain the details and nuances
of our algorithms, discuss the presented statistics and the decisions
taken by the algorithm that yielded these outcomes. We will focus
on which questions QOCO posed to the experts (also presented in
the Administrator page) and interpret the internal decisions made
by QOCO for our audience. In particular, we discuss why certain
questions were chosen by the system, explain the effect that ex-
perts’ answers have on the system’s state, and show how the system
infers when sufficient information has been collected to determine
all the required corrective updates.
Acknowledgements This work has been partially funded by the
European Research Council under the FP7, ERC grant MoDaS,
agreement 291071. Tan is partially supported by NSF grant IIS-
1450560.

5. REFERENCES
[1] M. Bergman, T. Milo, S. Novgorodov, and W. Tan. Query-oriented

data cleaning with oracles. In ACM SIGMOD, 2015.
[2] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using

learnable string similarity measures. KDD, pages 39–48, 2003.
[3] P. Buneman, J. Cheney, W. C. Tan, and S. Vansummeren. Curated

databases. In ACM PODS, pages 1–12, 2008.
[4] A. Chapman and H. V. Jagadish. Why not? In SIGMOD, pages

523–534, 2009.
[5] W. Fan and F. Geerts. Foundations of Data Quality Management.

Synthesis Lectures on Data Management. 2012.
[6] V. Ganti and A. D. Sarma. Data Cleaning: A Practical Perspective.

Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2013.

[7] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh. Counting
with the crowd. PVLDB, 6(2):109–120, 2012.

[8] M. J. Raddick, G. Bracey, P. L. Gay, C. J. Lintott, P. Murray,
K. Schawinski, A. S. Szalay, and J. Vandenberg. Galaxy zoo:
exploring the motivations of citizen science volunteers. Astronomy
Education Review, 9(1), 2010.

[9] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge unifying wordnet and wikipedia. In WWW,
pages 697–706, 2007.

[10] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(10):1483–1494, 2012.

[11] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and
T. Milo. A sample-and-clean framework for fast and accurate query
processing on dirty data. In SIGMOD, pages 469–480, 2014.

[12] World cup history. http://www.worldcup-history.com/.
[13] C. J. Zhang, Z. Zhao, L. Chen, H. V. Jagadish, and C. C. Cao.

Crowdmatcher: crowd-assisted schema matching. In SIGMOD,
pages 721–724, 2014.

1903


