
December: A Declarative Tool for Crowd Member Selection

Yael Amsterdamer♣, Tova Milo♦, Amit Somech♦, and Brit Youngmann♦

♣Bar Ilan University, Ramat Gan, Israel
♦Tel Aviv University, Tel Aviv, Israel

ABSTRACT
Adequate crowd selection is an important factor in the suc-
cess of crowdsourcing platforms, increasing the quality and
relevance of crowd answers and their performance in differ-
ent tasks. The optimal crowd selection can greatly vary de-
pending on properties of the crowd and of the task. To this
end, we present December, a declarative platform with novel
capabilities for flexible crowd selection. December supports
the personalized selection of crowd members via a dedicated
query language Member-QL. This language enables specify-
ing and combining common crowd selection criteria such as
properties of a crowd member’s profile and history, simi-
larity between profiles in specific aspects and relevance of
the member to a given task. This holistic, customizable ap-
proach differs from previous work that has mostly focused on
dedicated algorithms for crowd selection in specific settings.
To allow efficient query execution, we implement novel al-
gorithms in December based on our generic, semantically-
aware definitions of crowd member similarity and expertise.

We demonstrate the effectiveness of December and Member-
QL by using the VLDB community as crowd members and
allowing conference participants to choose from among these
members for different purposes and in different contexts.

1. INTRODUCTION
Crowd-based data sourcing is a powerful data procure-

ment paradigm that attracts web users to collectively con-
tribute information. One important challenge, which greatly
affects the performance of crowdsourcing applications, is the
adequate selection of crowd members to answer questions.
In this demonstration we present December (for Declarative
Crowd Member Selection), a novel declarative platform for
flexible crowd selection. December supports the personal-
ized selection of crowd members via a dedicated declarative
query language Member-QL. In particular, Member-QL has
refined constructs for capturing the similarity and expertise
of crowd members based on their profiles and/or history,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 42nd International Conference on Very Large Data Bases,
September 2016, New Delhi, India.
Proceedings of the VLDB Endowment, Vol. 9, No. 10
Copyright 2016 VLDB Endowment 2150-8097/16/06.

1 ASSIGN TO $u
2 FROM ontology WHERE
3 {$x instanceOf Hotel.
4 $y instanceOf Restaurant.
5 $x inside NEW_YORK,NY.
6 $x near $y}
7 FROM history($u) WHERE
8 {SELF visit NEW_YORK,NYC} WITH SUPPORT > 0.01
9 SIMILAR profile($u) TO profile(Ann)

10 WITH SIMILARITY >= 0.75
11 SIMILAR history($u) TO
12 {SELF stayAt $x.
13 SELF eatAt $y}
14 WITH SIMILARITY AS querySim >= 0
15 ORDER BY querySim LIMIT 5

Figure 1: Example Member-QL query QNY

through which the relevant crowd for a given context can be
effectively identified.

Previous work in the context of crowdsourcing and related
areas studied various aspects of the crowd selection problem
but each focused on a specific facet. This includes, in par-
ticular, the selection of members by the relevance of their
profiles to a query [4, 7, 11]; the estimation of user exper-
tise [8]; recommendations based on user similarity [3, 5]; and
so on. While these works all make a notable contribution,
we argue that adequate crowd selection is often a function
of many factors combined and thus a more holistic, flexible
approach is required to fully capture the properties of the
crowd members that should be selected.

As a simple example, assume that Ann seeks some in-
formation about hotels and restaurants in New York and
decides to refer to the members of some online commu-
nity she belongs to for obtaining the relevant data. The
choice of which members are most adequate for Ann’s ques-
tion depends on Ann’s specific information needs: if she
seeks recommendations for herself, she may wish to select
crowd members with similar profiles to herself, that ranked
other hotels and restaurants similarly to herself, but also,
importantly, that frequently visit NY; alternatively, if she
is running a survey for a particular target audience (e.g.,
young professionals living in the US), she may seek crowd
members whose profiles resemble that of the target and who
have answered travel-related questions in the past; and so
on. Identifying the relevant crowd members for each such
scenario requires combining, in a task specific manner, dif-
ferent factors such as Ann’s information needs, the profiles
and histories of candidate crowd members, metrics of simi-
larity and expertise, and many others.

To address these challenges, December uses an RDF-based
data model and concept hierarchies to capture the rich se-
mantics of the profiles and histories of crowd members. Then,
Member-QL queries can be executed over such crowd mem-

1

ber data in combination with external RDF knowledge bases.
As an example, Figure 1 shows a crowd selection query
in Member-QL capturing the first scenario described above,
where Ann seeks recommendations for herself. The language
is SPARQL-based and we explain its syntax and semantics
via this example in Section 2.2. Note that the language in-
cludes dedicated constructs for specifying user similarity and
expertise, for which we provide generic, semantically-aware
definitions. The new constructs are evaluated by novel al-
gorithms that we implement in December.

While advanced users can write/edit Member-QL queries
directly, we have designed an intuitive user-guided Query
Builder to assist beginner users. This module allows con-
structing a crowd selection query based on the information
that the user wishes to collect from the crowd, e.g., recom-
mendations for hotels and restaurants in NY. In particular,
it enables the user to choose from a menu of standard strate-
gies for crowd selection (e.g., “choose by profile similarity to
yourself”), and to refine the query by adding further con-
straints (e.g. considering only certain parts of the profile or
crowd member history) via the UI.

Demonstration. We will demonstrate the capabilities of
December by using it as a crowd selection module for the
crowd-based data sourcing platform OASSIS[2], inviting the
VLDB conference members to serve as a real crowd. For the
demo, we constructed personal profiles and publications his-
tories for the potential conference participants using online
available datasets. The audience will be invited to compose
questions for the crowd in various topics, then use Decem-
ber’s intuitive Query Builder interface to construct and ex-
ecute Member-QL queries in order to find adequate crowd
members to provide answers. Subsequently, we will review
the identified crowd members and use the December UI to
discover the segments in their profile and history that led to
their selection and ranking, thereby gaining an intuition on
the crowd selection process. See more details in Section 4.

Related Work. As mentioned above, crowd selection has
received much attention in previous work (e.g., [3, 4, 5, 7,
8, 11, 6], but each focuses on providing a dedicated solution
for a specific setting. Our work provides a holistic declar-
ative framework where such efforts can be combined and
consolidated. Our query language is inspired by the crowd
mining language of the OASSIS system [2]. Indeed Member-
QL enriches OASSIS-QL with dedicated constructs that allow
for expressing soft and hard similarity constraints on users’
profiles, expertise and history.

2. TECHNICAL BACKGROUND
We next provide a brief overview of the types of knowledge

that December uses regarding crowd members, the declara-
tive query language Member-QL and its evaluation.

2.1 Knowledge Repositories
The knowledge in December is represented using an RDF-

based model, which consists of facts in the form of entity-
relation-entity triples, e.g., {Ann graduatedFrom MIT}. We
use three types of complementary RDF repositories: ontolo-
gies, member profiles and member histories. Ontologies are
sets of facts unrelated to specific crowd members that of-
ten include taxonomical data, e.g., {Marriott instanceOf

Hotel} and {Hotel subclassOf Place}. A profile is then a

profile(Ann):

SELF livesIn Berlin
SELF hasGender Female
SELF hasHobby Photography
SELF graduatedFrom MIT

Table 1: Sample profile for crowd member Ann

history(Ann):
Fact-set Support
SELF visit Boston.
SELF stayAt Marriott

0.038

SELF visit NYC 0.01
SELF collaborateWith Bob 0.1
SELF collaborateWith Bob.
Paper hasTopic Crowdsourcing

0.06

Table 2: Sample history for crowd member Ann
fact-set describing a specific crowd member, using the spe-
cial entity SELF to refer to this member in facts as in Table 1.
The profiles can be constructed either from existing pro-
files in crowdsourcing platforms, or by using profile builder
tools based on social networks such as [6]. The history of
a member also consists of fact-sets that may further be as-
signed support scores in [0, 1], following the manner in which
crowd answers are represented in the OASSIS [2]. Similarly
to OASSIS, these scores represent the level of agreement, sig-
nificance or frequency of some habit/opinion of the crowd
member, which have been provided by the member in re-
sponse to previous questions. E.g., the first row in Table 2
has a score of 0.038 = 14/365, meaning that Ann is visiting
Boston and staying at the Marriott for about 14 days a year.

2.2 Query Language
A Member-QL query is composed of two main types of

clauses, corresponding, intuitively, to hard and soft con-
straints that may be applied over the different repositories.
Soft constraints are used to capture expertise/relevance and
similarity. Consider, for example, query QNY in Figure 1.
This query selects 5 crowd members such that (i) they fre-
quently visit NY (at least 4 days each year); (ii) their profile
resembles Ann’s profile and (iii) their history is relevant to
Ann’s question about staying in a NY hotel and eating at
a nearby restaurant. We use QNY to illustrate the query
semantics, and omit the full details for lack of space.

The ASSIGN TO statement of QNY (line 1) defines the vari-
able $u, which will be assigned names of candidate crowd
members and these assignments will serve as the query out-
put. The FROM . . . WHERE clauses serve to apply SPARQL-like
selection over chosen repositories. Since the data is repre-
sented as RDF triples (facts), the query is using triples, pos-
sibly with variables, to select repository subsets. In lines 2-6
the query seeks, in the ontology, a hotel in NY and a nearby
restaurant, which are bound to variables $x and $y, respec-
tively. In lines 7-8 the query requires that the history of the
candidate crowd member $u includes visiting NY frequently
enough (the frequency is modeled as support and restricted
using the WITH SUPPORT condition).

The SIMILAR. . . TO clauses serve to compute soft constraints
using a similarity score between two repositories (profiles,
histories) or selected parts within them. Our definition of
similarity is explained in Section 2.3. The first clause, in
lines 9-10, selects crowd members whose profiles profile($u)
have a similarity score ≥ 0.75 with respect to Ann’s profile.
The second SIMILAR clause, in lines 11-14, compares the
history of a candidate history($u) to a fact-set that rep-
resents staying at the formerly selected hotel $x and eating
at restaurant $y. For $u to be selected, $u’s history must

2

resemble this fact-set for some assignment of $x and $y with
similarity score ≥ 0.75. The similarity score is given an alias
querySim, which finally serves to select 5 crowd members
with the highest such scores (line 15).

2.3 Query Evaluation
Since Member-QL is based on SPARQL, our query en-

gine employs an off-the-shelf SPARQL engine (to execute
the standard selections on the RDF repository), along with
dedicated novel algorithms for evaluating the new SIMILAR

clauses. There are two key challenges here:(a)formally defin-
ing an adequate similarity measure, and (b) providing effi-
cient algorithms to compute it. Different similarity measures
are considered in previous work (e.g., [3, 5, 9]), yet none of
them can fully account for the semantically-rich knowledge
representation in our setting. We therefore define a new sim-
ilarity metric that combines two important factors: semantic
similarity and support similarity. For space constraints we
omit their formal definition and only give key intuition.

Semantic Similarity. The first factor of our metric, seman-
tic similarity, uses taxonomical information in order to com-
pare two fact-sets beyond their plain text. Consider, for in-
stance, the fact-sets {SELF graduatedFrom MIT} and {SELF
graduatedFrom Stanford}. Given a taxonomy which in-
cludes university names and categories, we can determine
that these fact-sets convey similar information – e.g., grad-
uating from a private US university

Our formal definition of semantic similarity employs ex-
isting taxonomy-based metrics [9] which are lifted to tax-
onomies of fact-sets using constructions from [1]. Intuitively,
the metric finds a fact-set which represents the informa-
tion common to two input fact-sets, and evaluates the sim-
ilarity as the information content (IC) of this fact-set [9],
which is a function inverse to its frequency of occurrence in
the database. For instance, assume the common informa-
tion between two fact-sets is {SELF graduatedFrom Private

US University}. Such information is more specific (and
less common) than, e.g., {SELF graduatedFrom University}
and would thus have a higher IC. This captures our intu-
ition that the first two fact-sets in the previous paragraph
are more similar to each other than to the third fact-set.

It is important to note that computing the full taxonomy
of fact-sets is intractable [1]. Yet we nevertheless manage
to provide an optimized PTIME algorithm for the compu-
tation of semantic similarity by computing the information
common to two fact-sets directly without materializing the
full taxonomy. Details are omitted for lack of space.

Support Similarity. The second factor, support similarity,
completes the semantic similarity by considering support
scores. E.g., two crowd members are similar with respect to
{SELF visit NEW YORK,NY} only if they visit NY with sim-
ilar frequency (i.e., similar support), even if this frequency
is low. The support similarity of two users’ histories is then
defined as the average of support differences for fact-sets
common to both histories, weighted by the IC of each fact-
set. Intuitively, we use these weights since fact-sets with
higher IC are more specific, and thus similar support for
such fact-sets is more meaningful.1 Here again we provide

1 Our metric treats fact-sets that are not associated with
support scores (e.g., in member profiles) as having the max-
imal support, 1.

Figure 2: System Architecture

a PTIME algorithm for computing support similarity, em-
ploying optimization analogous to the one mentioned above.

3. SYSTEM OVERVIEW
December is implemented in Java 8, uses Apache.Jena

(https://jena.apache.org) for handling RDF data and the
JGraphT (http://jgrapht.org) library for graph represen-
tation of taxonomies. Figure 2 depicts the system architec-
ture. On the right are the RDF repositories over which
Member-QL queries are evaluated: User profiles, histories
and a domain ontology. Starting from the left, the user con-
structs Member-QL queries via the User Interface, which are
then submitted for evaluation. The User Selector module
parses the query and identifies the standard RDF selections,
which are then converted by our User Constrains Evaluator
to SPARQL queries to be evaluated by Apache.Jena. The
results are used to form semantic units (fact-sets) over which
similarity operators are evaluated according to the Member-
QL query. This is performed by the Semantic Unit Sim-
ilarity module which employs two sub-modules: the LCA
(least common ancestor) module is used for computing the
information common to two semantic units; the Information
Content Calculator computes the IC of semantic units.

Query Builder UI. December has two types of query build-
ing interfaces implemented in HTML5/CSS3. First, a user-
friendly UI for novice users that provides simple means to
construct a crowd selection query: The users can add hard
constraints on the profiles/histories of crowd members; ask
for crowd members with similar profiles or histories to them-
selves (and add constraints to define which parts of the pro-
files/histories to compare); specify thresholds for support
and/or similarity; and finally define the result set size and
order. To further assist the users, we implemented an auto-
complete feature that suggests relevant terms from the on-
tology when the user starts typing in the constraints text
box. Second, advanced users can construct and execute
complicated queries in native Member-QL via a text-based
editor. In both cases, the query results are presented to
the user as exemplified in Figure 4, allowing the user to
view a summary of the crowd members’ profiles and an ex-
planation of their rankings. (For privacy preservation, the
hosting system should allow users to specify which parts of
their profile/history can be made public).

4. DEMONSTRATION
For the demo, we connected December to the OASSIS crowd

data sourcing platform [2] that allows users to formulate
questions and have them answered via the crowd. The

3

https://jena.apache.org
http://jgrapht.org

Figure 3: Query Builder

VLDB community serves as the crowd-base of OASSIS, and
every researcher who has ever published in VLDB is consid-
ered a crowd member. The conference participants will be
invited to pose various questions in OASSIS on database re-
lated topics and identify for each question the relevant crowd
members via December’s friendly UI, and finally inspect its
effectiveness on the selected crowd.

To create an initial profile for each crowd member, we use
the AMiner dataset [10] which includes details about the re-
searcher’s affiliation, position, areas of research, etc. We fur-
ther complete this data with details about hobbies and areas
of interest obtained via crawling the public homepages of re-
searchers. Additionally, we create a history for each crowd
member which consists of publications and collaborations
also extracted from AMiner. Each publication/collaboration
between two or more authors is converted into a fact-set
with a support value corresponding to its frequency in the
dataset. As for the ontology, we use a hierarchy of categories
and pages mined from DBpedia (http://dbpedia.org).

We will start the demonstration by exemplifying the use
of December and its UI by creating several example Member-
QL queries. Then, audience members will be invited first to
edit and enrich their personal profiles, then to compose a
question to the crowd via OASSIS’s natural language inter-
face (as depicted in the upper part of Figure 3), and use
December’s query builder interface to choose the adequate
crowd for their question. Using December UI, the user may
pose hard constraints on the crowd members’ profiles and
histories, e.g. on their areas of research as well as similarity
preferences for profiles and histories (Figure 3).

To highlight the capabilities of December, we will use mul-
tiple screens and ask participants with different profiles and
histories to login to the system and run the same Member-
QL query in parallel. The audience will be able to see
that queries that require crowd members with similar back-
grounds or statures yield different results for different users,
and each user will be able to verify the adequacy of the
selected members. For example, it is natural for a senior
leading researcher looking for some background material in
a given topic to consult the top experts in the field, whereas
a junior student may prefer to consult with other students
or junior researchers first. This can be naturally expressed
in Member-QL via similarity preferences on the profile and
history of the selected crowd.

In addition, few more usage scenarios will be exemplified
such as a researcher looking for possible future collaborators,
or a PhD student looking for a postdoc host by selecting
tenured professors that resemble her in terms of research
topics, past collaborations, and even hobbies and interests.

Figure 4: Results

In each case the Member-QL query will be auto generated
from the UI and executed, producing a list of researchers,
ranked by their relevance to answer the question asked (as in
Figure 4). Our audience will be able to review the relevant
data about each researcher using the Explain and View Pro-
file buttons and thereby gain an intuition about the ranking.
Finally, the IDs of the selected crowd members are passed
back to OASSIS, for obtaining answers to the given question.

Finally, to provide further intuition on the definition and
evaluation of the similarity constructs used by the queries,
we will allow the audience to look under the hood of Decem-
ber via its administrator screen. We will show the compu-
tation leading to the selection of crowd members, the com-
monalities between the profile/history of the given user and
crowd members, and the computation of similarity scores.

Acknowledgments. We thank Susan Davidson for fruitful
discussions of the query language. This work has been par-
tially funded by the European Research Council under the
FP7, ERC grant MoDaS, agreement 29107.

5. REFERENCES
[1] A. Amarilli, Y. Amsterdamer, and T. Milo. On the

complexity of mining itemsets from the crowd using
taxonomies. In ICDT, 2014.

[2] Y. Amsterdamer, S. B. Davidson, T. Milo, S. Novgorodov,
and A. Somech. OASSIS: query driven crowd mining. In
SIGMOD, 2014.

[3] S. Ben Ticha, A. Roussanaly, A. Boyer, and K. Bsäıes. User
semantic preferences for collaborative recommendations. In
EC-Web, 2012.

[4] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and
G. Vesci. Choosing the right crowd: expert finding in social
networks. In EDBT, 2013.

[5] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and
M. Zanker. Linked open data to support content-based
recommender systems. In I-SEMANTICS, 2012.

[6] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux.
Pick-a-crowd: Tell me what you like, and i’ll tell you what
to do. In WWW, 2013.

[7] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. iCrowd: An
adaptive crowdsourcing framework. In SIGMOD, 2015.

[8] H. Rahman, S. Thirumuruganathan, S. B. Roy,
S. Amer-Yahia, and G. Das. Worker skill estimation in
team-based tasks. PVLDB, 8(11), 2015.

[9] N. Seco, T. Veale, and J. Hayes. An intrinsic information
content metric for semantic similarity in WordNet. In
ECAI, 2004.

[10] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In KDD’08, pages 990–998, 2008.

[11] Z. Zhao, J. Cheng, F. Wei, M. Zhou, W. Ng, and Y. Wu.
SocialTransfer: Transferring social knowledge for cold-start
cowdsourcing. In CIKM, 2014.

4

	Introduction
	Technical Background
	Knowledge Repositories
	Query Language
	Query Evaluation

	System Overview
	Demonstration
	References

