
Declarative Platform for Data Sourcing Games

Daniel Deutch
Ben-Gurion University∗

deutchd@cs.bgu.ac.il

Ohad Greenshpan
Tel-Aviv University∗

ohad.greenspan@gmail.com
Boris Kostenko∗
Tel-Aviv Univeristy

boris.kostenko@gmail.com

Tova Milo∗
Tel-Aviv University

milo@cs.tau.ac.il

ABSTRACT
Harnessing a crowd of users for the collection of mass data
(data sourcing) has recently become a wide-spread practice.
One effective technique is based on games as a tool that at-
tracts the crowd to contribute useful facts. We focus here
on the data management layer of such games, and observe
that the development of this layer involves challenges such
as dealing with probabilistic data, combined with recursive
manipulation of this data. These challenges are difficult to
address using current declarative data management frame-
works, and we thus propose here a novel such framework,
and demonstrate its usefulness in expressing different as-
pects in the data management of Trivia-like games. We have
implemented a system prototype with our novel data man-
agement framework at its core, and we highlight key issues
in the system design, as well as our experimentations that
indicate the usefulness and scalability of the approach.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

Keywords
Databases, Crowdsourcing, Games, Probabilistic

1. INTRODUCTION
Harnessing a crowd of users for the collection of mass data

(referred to as data sourcing) has recently become a wide-
spread technique [7, 25]. Specifically, the work of [32, 21]
suggested the use of games as a tool that attracts the crowd
to contribute facts. In the internet era, such techniques
have the potential of generating large databases that are
otherwise very difficult to construct.

However, the design of games that fulfill this potential is
not trivial and involves significant challenges. Consider a
Trivia-like game that is run e.g. to obtain a simple database
of capital cities, contributed independently by various users
over the Web. The players are presented with questions on
capital cities, and their answers are added to the database.

∗This work has been partially funded by the Israel Min-
istry of Science and by the European Research Council un-

der the European CommunityâĂŹs Seventh Framework Pro-
gramme/ERC grant MoDaS.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

Players gain scores by contributing correct facts to the database.
This database is in turn used to answer queries posed by (a
possibly different set of) users. The problem is that some
of the facts may be wrong, and some may be contradicting,
for example two different users claiming different cities to be
the capital of England.

Even in this simple settings, several dilemmas arise in de-
signing the data layer of the game: for instance, how to
choose the questions that the game poses to players to max-
imize the expected knowledge gain? Which players to pose
these questions to? How to decide whether a player is cor-
rect, to update her score? How to settle contradictions in
the collected data when answering queries on it?

For each of these questions, hard-coded solutions can be
employed. But no single solution is guaranteed to always
achieve superior results, and the quality of results also de-
pends on the type of data set in hand, and as always, hard-
coded solutions are inflexible, difficult to adapt and deploy.
Therefore it is desirable to use a declarative framework for
the data layer of crowdsourcing games which allows for rapid
adjustments, modification and optimization. The develop-
ment of such framework is the goal of the present paper. We
stress here that we focus on the data layer of games. The full
design of games involves many additional important issues
such as Human-computer Interaction, communication layer
and others, that are outside of the scope of this paper.

There are some conceptual difficulties in the design of such
framework. One difficulty lies in the uncertainty on which
data items are correct; this uncertainty is due to the lack of
an authoritative opinion, and it is common to capture it with
probabilities. Declarative frameworks that deal with proba-
bilistic data have been presented in [17, 1, 12, 18]. However
the design of these frameworks does not address an addi-
tional difficulty that arises in our context, due to recursive
dependencies between uncertain information: to identify the
questions that should be posed to users, we must first know
which data pieces are correct, which require validation, and
which are completely missing. On the other hand, in order
to know how the data should be cleaned, we need to know
which users can be trusted, this depending on their contri-
bution (correct and incorrect) to the aggregated dataset.

For instance, one possible solution is based on a set of
probabilistic, PageRank-style rules. A first such rule may
randomly decide in which fact to believe, using a distribu-
tion that is based on the current credibility of users that
contributed the facts. The credibility of users can then be
re-computed, via a second rule, according to which users
that supported facts that were decided to be correct, may

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

779

now be considered more credible. We may again choose in
which facts to believe, based on these new calculated credi-
bility scores, etc. The results of these recursive process can
be used for the different tasks listed above. The believed
answers can be used to answer queries; the computed credi-
bility of users can be used to identify preferred users to get
information from; and the questions that they will be asked
can correspond to facts with high level of uncertainty (close
to 50%).

However, this is only one possible solution, and there are
many plausible others. In particular, there is a rich litera-
ture on data cleaning [29, 3, 15, 5]. For example, a simple
approach decides between two contradicting facts according
to their support [29]; another approach suggests the applica-
tion of “transformation” rules [3] to fix parts of the data. [5]
presents a technique to solve key violations using probabilis-
tic choice over possible Database repairs. A recent paper [15]
suggests to gradually clean data based on “corroboration”,
i.e. the trust in the users providing the data. This is in fact
a non-probabilistic (yet recursive) variant of the PageRank-
style policy described above. Similarly, the questions chosen
may focus on facts with low entropy [28], and the users to
which these question are posed may be those that gained
high credibility in related facts (rather than overall high
credibility).

So, we observed that recursion and probabilistic data lie
at the core of the developed techniques. However, current
declarative frameworks either support only probabilistic rules
(e.g. [18, 5]), or only recursion (e.g. datalog-based frame-
works such as [20]), but not both. Consequently, the devel-
opment of a novel framework is required. We next briefly
explain the principles underlying our framework.

Our framework suggests an interface that is based on SQL,
but is augmented by a particular operator that allows to
introduce probabilities, and supports recursive rules invo-
cation. This syntax allows for a very easy implementation
of the various techniques described above. The underly-
ing model is that of Markov Chain Monte Carlo (MCMC)
[27]. The idea is that we are given probabilistic rules and a
query on the data. The former defines probabilistic transi-
tions between possible database instances, serving as states
of the Markov Chain. The query possible results are sam-
pled (hence the Monte Carlo algorithm) in each database
instance that is defined by the rules to be “clean” (i.e. non-
contradictory). The output is a set of tuples that appeared
in the query results, each accompanied with a probability
that reflects the fraction of its appearance in the observed
samples. We explain the details of this framework, and ex-
emplify its usefulness in capturing different aspects of the
game’s data layer, in Sections 2 and 3.

We have implemented the framework and used it as the
data layer for a data sourcing game called Trivia Masster.
(A first prototype of the system was demonstrated in [10]).
Several practical issues rise in the implementation, pertain-
ing to optimizing the execution time, deciding convergence
etc. We explain these practical challenges and our solutions
in Section 4.

Finally, we provide in Section 5 an experimental study of
techniques implemented using the framework. The goal of
the study is not to study the performance of a particular
technique, but rather to (1) show that common techniques
are feasible to execute using our framework and (2) show
how the generic declarative framework allows to easily com-

pare different techniques. To that end we compare both the
quality and runtime of various techniques.

The rest of this paper is organized as follows. In Section
2 we describe the foundations of our framework, including
our query language. In Section 3 we show how common
techniques can be expressed by the language. In Section 4
we provide more details on our implementation and solutions
to practical challenges. Section 5 details our experimental
study. In Section 6 we provide an overview of related work,
and we conclude in Section 7.

2. FRAMEWORK FOUNDATIONS
In this section we provide details on our declarative frame-

work for data management for data sourcing games. The
framework is based on the theoretical advancements in [11],
towards the evaluation of recursive queries with probabilistic
choices. We are introducing here a significant extension to
the language, in three respects: first, the language presented
in [11] allowed rules to be defined using relational algebra
(enriched with a special repair-key [19] operator used to in-
troduce probabilistic choices), and needed to be extended
to SQL (with repair-key) to allow for an easier design of
rules by the system administrators. Second, the queries ac-
counted for in [11] were limited to boolean ones. In contrast,
the queries here may be arbitrary SQL queries, including
select-project, aggregation and joins. Last, as we will ob-
serve, some techniques require explicit constructs that allow
to use the probability obtained for the result of a sub-query.

To formally define and exemplify the (extended) language,
we start by recalling the repair-key operator; then we show
how to use repair-key to enrich SQL operators and obtain
a language for describing probabilistic rules, and finally we
explain the semantics of query evaluation.

2.1 Repair-key
We start by exemplifying the use of repair-key [19] in our

context, then turn to the formal definition.

Example 2.1. Consider the relation Capitals in Table 1.
It includes facts that describe capital cities of various coun-
tries, and a numeric value reflecting the authority of the user
that submitted this fact (we will explain in the sequel how au-
thority values are computed). The primary key here is the
attribute Country; but note that the table contains primary
key violations. The repair-key construct [19] allows to solve
such contradictions by choosing one repair to each key value
(i.e. one capital for each country), in a probabilistic way,
with the probabilities dictated by the user authorities. The
following expression has this effect:

repair-keyCountry@Authority(Capitals)

The output of evaluating this expression is a probabilistic
choice out of 4 possible databases, each consisting of a single
tuple for China and a single tuple for the Netherlands; the
probability of a tuple to be chosen is defined to be the sum of
authorities of the users that supported it, relative to all users
that contributed tuples with the same key value (e.g. 2

2+4
for

(China,Beijing)). The probability of a given database is the
multiplication of probabilities of all tuples appearing in it.

More formally, let ~A, P be column names from the schema
of a relation R, where ~A is a vector of columns and P is
a single column, containing only numeric values which are

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

780

Country Capital Authority
China Beijing 2

Netherlands Amsterdam 2
Netherlands Amsterdam 5
Netherlands Hague 3

China Shanghai 4

Table 1: Capitals

all greater than zero. Intuitively, the P value of a tuple is
the level of trust in the tuple correctness. For each distinct
value ~a of ~A appearing in tuples of R, denote the set of tu-
ples in which ~a is the key value by T~a. For each such ~a,
we sample exactly one tuple ~t from T~a with the probability
distribution given by (normalized) column P That is, the

probability of ~t to be chosen is
~t.P∑

~t′∈T~a

~t′.P
. If there are tu-

ples (~b, p1), . . . , (~b, pn) in which all attributes apart for the
P column share the same value, we first replace them by a

single tuple (~b,
∑

i pi), then apply the probabilistic choice.
For instance, in the above example, the two tuples having
Amsterdam as the capital city of the Netherland (with au-
thorities values of 2 and 5) are replaced by a single tuple
with authority value 7. The operation repair-key ~A@P (R)

[19] then samples one maximal repair of the key ~A. That
is, the application of a repair-key construct generates a set
of possible worlds (samples) with a single tuple for each key
value; the probability of a possible world is the product of
probabilities of chosen tuples within their groups T~a, that
is, the groups are assumed independent.

2.2 SQL enriched with Repair-key
We next consider the incorporation of the repair-key oper-

ator in a full-fledged query language. We start by recalling
the semantics of relational algebra enriched by the repair-
key construct [19], then explain the syntax and semantics of
SQL enriched by repair-key.

Relational Algebra With Repair-key. In [19] the author
introduced the repair-key construct into conventional rela-
tional algebra. The reader is referred to [19] for exact defi-
nitions. Intuitively, the semantics is as follows. We evaluate
the relational algebra expression in the standard manner
except that whenever the evaluation reaches an application
of the repair-key construct, its application generates a set
of possible worlds, each with an accompanying probability.
The further relational algebra operations in the expression
are applied in each possible world independently (possibly
generating more worlds, in the presence of further repair-key
operators, etc.). The result of evaluating such an enriched
query Q over a relation R is thus a probabilistic database
(see e.g. [26, 2, 1]), and we denote it by Q(R). Q(R) is a
set of relations, each corresponding to a possible world and
associated with a probability value.

SQL with repair-key. We then enrich the SQL syntax to
account for the repair-key operator in a straightforward way.
The new operation REPAIR-KEY[a @ P] ON R is the counter-
part of repair-keya@P (R). Similarly to the case of relational
algebra, the enriched SQL Query is evaluated in the stan-
dard manner, except that the evaluation of a REPAIR-KEY

operation results in the generation of new possible worlds,
in which further query operations are applied, and so on.

User Authority
Alice 2
Bob 5

Carol 3
Dan 4

Table 2: Users

Country Capital User
China Beijing Alice

Netherlands Amsterdam Alice
Netherlands Amsterdam Bob
Netherlands Hague Carol

China Shanghai Dan

Table 3: CapitalsByUsers

Example 2.2. Consider the relation Users in Table 2,
containing authorities values of different users, and the re-
lation CapitalsByUsers where each tuple corresponds to a
fact (a country and its capital) submitted by a user. Note
that in contrast to the relation in Table 1, the authority value
assigned to each fact does not appear in this table, and one
has to first join this table with the User table, and only then
the repair-key operation can be performed to probabilistically
choose capitals. This is achieved by the following rule.

DROP BelievedCapitals;

INSERT INTO BelievedCapitals

REPAIR-KEY[Country @ Authority] ON

(SELECT Country, Capital, Authority

FROM CapitalsByUsers AS CBU, Users AS U

WHERE CBU.User = U.User);

Note that here, the output of the selection sub-query is the
relation used as input to the repair-key construct. The output
of the query (probabilistic choice of capitals) is written into
an additional relation, named BelievedCapitals. The need
for using the Drop command to omit old copies of Believed-
Capitals will become apparent below, when we introduce the
while language and repeatedly apply this rule.

2.3 While language
We next define our probabilistic while language, used for

recursive application of SQL with repair-key queries. The
query now consists of three parts: (1) a set of update queries
U , which implement the data cleaning rules and are written
in the enriched SQL as explained above, (2) a boolean con-
dition C that is used to decide whether a given instance is
“clean”, i.e. non-contradictory and (3) a query Q written in
standard SQL, that is in fact the question of interest, and
needs to be evaluated on clean instances of the Database
(e.g. “what is the capital of China?”).

We explain the language semantics in 3 steps. First, we
assume that U consists of a single update query and Q is a
boolean query (predicate). Then we consider the case where
Q is not necessarily boolean, and finally we consider the case
where U contains multiple update queries.

Given the input database, and an update SQL query U
(possibly enriched with repair-key), the evaluation under the
While language semantics follows the following program:

State := the input Database;

forever do

State := U(State);

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

781

Note that if U contains an application of the repair-key
construct, then U(state) is a database that is probabilisti-
cally chosen out of several options. Thus the while-loop is a
random walk over a Markov Chain (MC), whose states are
the possible database instances, and the transition proba-
bilities are determined by the repair-key operation (and the
corresponding attribute values used by the repair-key con-
struct as the probability column). In principal, we would
like to define a query semantics that is based on the proba-
bility that a query is satisfied in a random state in the course
of a random walk over this MC. We note however that, since
we allow arbitrary SQL queries here (in contrast to the re-
lational algebra rules in [11]) this MC may not be ergodic
[14], in which case the above probability is not well defined.
We thus refine the MC definition, as follows: we introduce
some (low and configurable) probabilities ε1, ε2 to stay in
the current state or to return to the initial database state;
with probability 1 − ε1 − ε2 we make another probabilistic
choice, this time based on applying the repair-key construct
as above. The refined MC is called the MC induced by the
query and update rules, and we can show that it is ergodic.

The following definition is then adapted from [11]:

Definition 2.3. Given an input database D and a query
(U,C,Q) where U is an update query written in SQL en-
riched with repair key, and C,Q are boolean queries, Let
M(U,D) denote the Markov Chain induced by the query
U and the initial (input) Database instance D, as defined
above. Let seq = [s1, ..., sk] be a sequence of states in M(U,D),
such that s1 is the initial database state and si is a possible
transition from si−1, associated in M(U,D) with its proba-
bility pi. We denote the length of seq by len(seq). The prob-
ability of seq, denoted Pr(seq), is

∏
i=1,...,k pi. The probabil-

ity of being in a given database state s, at an arbitrary point
in time, in an infinite random walk over database instances,
is then defined as

Pr(s) = lim
k→∞

∑
{seq|len(seq)=k}

Pr(seq)· |{i|si = s, 1 ≤ i ≤ k}|
k

.

Finally, the result of evaluating (U,C,Q) over D (denoted

P ((U,Q);D) is defined as P ((U,C,Q);D) =
∑

{s|Q(s)∧C(s)}Pr(s)∑
{s|C(s)}Pr(s)

,

where Q(s) (C(s)) means that the boolean query Q (C) holds
for the database instance s.

We can show (following our construction, see [14]) that the
limit used in the above definition exists and is finite.

In most of our examples, the condition C is simply a
boolean query that verifies that there is no primary key vio-
lation in any of the tables. For brevity, whenever this is the
case in the sequel, we omit the explicit description of C.

Multiple Rules. Definition 2.3 assumes that the query Q
consists of a single update query (rule). In practice, we may
need to use multiple rules that interact in a recursive man-
ner. In this case, the semantics is such that in each iteration
of the while-loop, we evaluate all queries “in parallel”, on
the old Database state, and only then update the Database
state with the queries results.

Example 2.4. Re-consider the rule in Example 2.2, and
assume now that U additionally contains the following rule.

UPDATE Users

SET Authority = (SELECT CorrectFacts

FROM Q1

WHERE Q1.user = Users.User)

Q1 = SELECT user, COUNT(DISTINCT country)

AS CorrectFacts FROM Q2

GROUP BY user;

Q2 = SELECT user,country,capital

FROM UserCapitals UC

WHERE EXISTS

(SELECT *

FROM BelievedCapitals BC

WHERE BC.country = UF.country AND

BC.capital = UF.capital);

The auxiliary query Q1 computes for each user the num-
ber of facts that were submitted by her and “survived” the
cleaning phase, i.e. appear in BelievedCapitals (we assume
for simplicity that every user contributed at least one such
fact); it does that by using another auxiliary query, Q2, that
associates each surviving fact with the user that submitted
it. Then the number of correct facts submitted by the user is
assigned as her new authority value.

The while-loop now entails a repeated execution of the two
rules in U : in each iteration, the effect of the first rule is
a probabilistic choice of facts that populate BelievedCapitals
table, based on the current users authorities. The second
rule then re-computes the of users’ authorities, based upon
the number of facts that they contributed and were copied to
BelievedCapitals (meaning that they are believed to be true).
The new authority values will affect the probability of each
fact submitted by these users to be chosen by the repair-key
construct and consequently to appear in BelievedCapitals,
which again affect the users’ authorities and so forth.

Further consider a boolean query Q that asks whether Shang-
hai is the capital of China. In this case, the query answer
will reflect the fraction of iterations throughout the while-loop
(as the iterations number goes to infinity) in which (Shang-
hai,China) appeared as a tuple in BelievedCapitals.

Non-boolean queries. Definition 2.3 assumes that the query
Q is boolean, while in general Q may be an arbitrary SQL
query. We assume here that the possible query answers con-
tain only values of the active domain. In this case, the query
answer consists of all tuples that appear in the evaluation
of Q on any clean database state obtained during the while-
loop, and its probability is the fraction of these states in
which it appeared, namely:

Definition 2.5. Let (U,C,Q) be a query and let D be the
input Database. The output database (denoted Res((U,C,Q), D))
contains a set of pairs of the form (tuple, probability). The
set of tuples in the result is the set of tuples {t | ∃state.C(state)∧
state ∈ U∗(D) ∧ t ∈ Q(state)}, where U∗(D) is the set of
all database states that can be obtained by one or more sub-
sequent applications of U , starting from a database instance
D; and C(state) means that the condition C holds for the
Database instance state. The probability value assigned to t
is P ((U,C, T);D), where T is the boolean query asking for
the existence of the tuple t in the Database.

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

782

Example 2.6. Let Q be the following query:

SELECT * FROM BelievedCapitals

WHERE Country = ’China’;

The output consists of all possible capitals of China ac-
cording to users, along with their probabilities to appear in
clean Database instances during the random walk induced by
U . Consider query evaluation for Q with respect to the input
Database and cleaning rules given above. At the first step,
exactly one possible capital of China is chosen to appear in
BelieveCapitals (Shanghai is chosen with probability of 4

6
,

Beijing with probability of 2
6

), and the same for Netherlands

(Amsterdam is chosen with probability of 7
10

, Hague is cho-

sen with probability of 3
10

). Then, the user scores are updated
according to the chosen tuples; specifically, note that Alice
will win a point whenever Amsterdam is chosen (and this
is a likely event, due to the support of Bob). These points
reflect our increase of trust in Alice answers, and can lead
to an increased probability of the (Beijing,China) tuple (also
submitted by Alice) appearing in further clean instances.

Nesting queries. As we shall observe in section 4, exact
computation of query probabilities can be computationally
expensive. Thus we will resort to approximations. To al-
low (approximated) probabilities to be used in more com-
plex queries. To this end, we introduce a new construct
called ApproxProb(U,C,Q), with the following semantics:
when given a query (U,C,Q) as described above, the result
of ApproxProb(U,C,Q) is a relation with a new, unique
column called Prob, that contains for each tuple its approx-
imated probability to hold, computed as the fraction of the
worlds in which it appeared in the while-loop as described
in the semantics above. This construct can then be used
as a sub-query in any query. We note that the Approx-
Prob construct requires fixing some parameters related to
the approximation algorithm (see section 4); these are pre-
configured by the designer.

Remark. Note that according to our semantics, a query
answer consists of all tuples that may appear in possible
answers to the query, and their individual probabilities of
appearing in the query result. In particular, the answer
does not capture dependencies in-between the appearances
of these tuples. For instance, in the above example, the
answer consists of a set of possible capitals of China, each
with its associated probability; but it is clear that in every
possible world there exists only a single capital of China.

3. EXPRESSING GAME-RELATED
TECHNIQUES

To illustrate the expressiveness and flexibility of the lan-
guage, and consequently the usefulness of the framework,
we show in this section how different useful policies for the
various aspects of the game can be expressed using our for-
malism. We explain the policies using the same database
described in Section 2; for brevity, we also use an additional
relation called UserCapitals, which is obtained as the inner
join of CapitalsByUsers and Users (i.e. each tuple in it con-
sists of a fact, a contributing user, and the authority value of
this user). Also, for coherence of presentation, we focus first
implementing different techniques for the task of question
answering. Then, we show that other game-related tasks

are solvable by very slight modifications of these implemen-
tations.

3.1 User-based PageRank
In section 2 we described an implementation of a PageRank-

style algorithm; we next describe a variation of it, showing
the ease of modifying/refining a given technique. Note that
in the original policy, at each iteration we probabilistically
chose between facts based on their relative support. In con-
trast, a different possible approach is to first (probabilisti-
cally) decide on a set of users who are believed to be accu-
rate, and consider all of their submitted facts as true (for
the current iteration).

Implementing this approach requires a slight change in the
DB schema (w.r.t the schema given in Section 2: we add to
the Users table a new Correctness attribute; the idea is that
each user is now associated with two tuples, with correctness
values of 0 and 1, and possibly different authority values for
both. For each user we will probabilistically choose one of
these tuples; a choice of the tuple with correctness value 1
indicates that the user is considered trusted for this itera-
tion, and all her submitted facts are considered true.

Then, to implement the refined policy, we make changes to
the update rules shown in section 2), as follows. We replace
the rule for choosing facts in Example 2.2, by the following
rule (and we combine this rule with a slight refinement of
the rule in Example 2.4, see below):

DROP BelievedCapitals;

INSERT INTO BelievedCapitals

SELECT Capital, Country, Authority

FROM UserCapitals AS UC, Q1 AS U

WHERE UC.User = U.User;

Q1 = SELECT * FROM

(REPAIR-KEY[User @ Authority] ON Users)

WHERE Correctness=1;

Query Q1 selects the subset of users considered to be re-
liable for this iteration. The obtained table is then joined
with UserCapitals, to obtain all facts submitted by these
users, and use them to update the BelievedCapitals table.
The rule described in Example 2.4 is then also refined, to
update also the authority values of incorrectness (correct-
ness=0) tuple of each user, by counting her submitted facts
that do not appear in the clean instance (details omitted).

The correctness condition C requires that the Believed-
Capitals table is consistent, i.e. each country is associated
with exactly one capital city (this is easy to implement in
SQL), and the query to be sampled is the question to be
answered, e.g. to output the probability of possible answers
for capital cities of England we can simply use the query:

Q=SELECT * FROM BelievedCapitals

WHERE Country = ’England’

3.2 Non-probabilistic Techniques
We now turn to the implementations of some non-probabilistic

techniques presented in [15]. This also demonstrates the
flexibility of the approach.

Fixpoint Computation. Note that in the above examples,
the policies stored the authority values of users, and used

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

783

them to probabilistically decide on correct facts. In con-
trast, the authorities score of facts (i.e. to what extent we
believe they are correct) are not stored but rather calculated
on the fly and used in the application of repair-Key. How-
ever, these scores can be materialized and stored as well.
In the fix-point policies described in [15], the scores of facts
(users) are “frozen” and used for the calculation of users
(facts) scores. In general, the score of a fact (user) is ex-
pressed as an aggregation of the scores of users submitting
it (facts submitted by the user). To implement this, an ad-
ditional table storing the reliability of facts (referred to as
FactsScores) should be added to the database schema. Then,
we replace the update rules described in Section 2, with two
rules as follows. The first rule is:

DROP BelievedCapitals;

INSERT INTO BelievedCapitals

SELECT Country, Capital, SUM(Authority)

FROM UserCapitals AS UC, Users AS U

WHERE UC.User = U.User

GROUP BY Country, Capital;

According to this rule, the score of a fact is calculated as
the sum of all scores of users introducing it to the system.
The second rule (omitted for space constraints) similarly
computes the users scores, based on the scores of the facts
they contributed. The two rules define a recursive process
of updating the user scores based on facts scores, and facts
scores based on user scores, and so on, run in a forever loop.

The condition C dictating when to sample is the constant
True (we always sample) and the query Q corresponds to
the question asked (e.g. selection of all capitals as above).

Majority and Voting. In [15] the authors also describe sim-
ple non-recursive, non-probabilistic methods, namely Major-
ity and Voting. The Majority policy decides between facts
according to the majority choice (weighted by authorities).
The voting policy allows users not only to introduce facts
but also state that some given facts are inaccurate. We note
that these policies do not require neither probabilistic deci-
sions nor recursive computation, and can be implemented in
standard SQL; the implementation is straightforward and is
omitted for lack of space. Our framework allows standard
SQL queries and can be used to implement these policies.

3.3 Solving Additional Contradiction Types
We have so far seen examples where the contradictions

were yielded by a primary-key violation; but in practice
there are be many other types of errors/constraint viola-
tions that one may wish to account for. We next consider
several such examples.

Foreign-key violation. We start by exemplifying rules that
account for foreign-key violations. To continue with our run-
ning example, assume now the existence of a Parliaments
table, storing the names of world parliaments and the cities
they are located in 1; further assume that there is a foreign
key constraint indicating that cities in the Parliaments table
must appear as capital cities. In such case, we may use the
following update rule, together with the rules in Examples
2.2 and 2.4:
1Other examples for foreign key constraints rise when we
incorporate the use of external data, e.g. from Wikipedia

INSERT INTO BelievedCapitals

SELECT UC.Country, UC.Capital, UC.User

FROM UserCapitals AS UC, Q1 AS PAR

WHERE UC.Capital = PAR.Capital

AND UC.Country = PAR.Country;

Q1 = SELECT Capital FROM Parliaments

WHERE Capital NOT IN

(SELECT Capital FROM BelievedCapitals);

Q1 returns cities that appear in the Parliaments table but
not in BelievedCapitals; the main query then looks for cor-
responding facts in UserCapitals, as it may be the case that
these facts were submitted by users, but then omitted by
the rule of Example 2.2 2. Since the omission of these facts
cause a foreign key constraint violation, they are returned
to BelievedCapitals, possibly causing now a primary-key vi-
olation, which will be handled in the next iteration by the
rule of Example 2.2, and so on.

While the above rule solves all foreign constraints encoun-
tered at each iteration (consequently possibly leading to pri-
mary key violations), one may settle the tension between the
primary key and foreign key constraints by choosing to add
only a subset of the facts required according to the Parlia-
ments table. To this end, recall that we have exemplified
above (Section 3.1) the use of repair-key for choosing a sub-
set of tuples; a similar policy may be applied here.

Multiple Answers. The methods described above are ap-
propriate for cases with a primary key constraint, i.e. cases
in which for every question there exists one correct answer
in the dataset. However, in some cases there are no such key
constraints, e.g. ”Names of Tennis Players”. In this case, a
simple technique is to choose probabilistically a subset of
(all) user answers, based on their popularity support. For
that, we use similar schemas to the ones described above:
answers are stored in a table UserTennisPlayers with At-
tributes User, PlayerName; BelievedTennisPlayers has a sin-
gle attribute PlayerName, and it will store answers that are
believed to be correct. We also use an auxiliary table T1
(T2) which contains a single attribute named Correctness,
and a single tuple with value 1 (0) that enables the system to
select a subset of the cartesian product, as described below.
We then define the following rule:

INSERT INTO BelievedTennisPlayers

SELECT PlayerName FROM

(REPAIR-KEY[(PlayerName) @ ProbVal] ON

((Q1 CROSSJOIN T1) UNION (Q2 CROSSJOIN T2)))

WHERE Correctness = 1;

Q1 = SELECT PlayerName,

SUM(Authority) AS ProbVal

FROM UserTennisPlayers, Users

WHERE UserTennisPlayers.User = Users.User

GROUP BY PlayerName;

2We assume that the rule described here is fired at the end
of each iteration, after the rules of Examples 2.2 and 2.4. It
is easy to achieve such synchronization e.g. via the use of
a dedicated table, with a tuple whose value dictates which
rules can now fire. We omit the formal description of this
synchronization for simplicity of presentation

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

784

Q2 = SELECT PlayerName,

Q3.TotalAuth - SUM(Authority) AS ProbVal

FROM UserTennisPlayers, Users, Q3

WHERE UserTennisPlayers.User = Users.User

GROUP BY PlayerName;

Q3 = SELECT SUM(Authority) AS TotalAuth

FROM Users;

Q1 sums up the authorities values of users that submitted
each fact; Q2 computes for every fact, the total authority
values of users minus the sum of authorities computed in
Q1. Then, the main query creates the cartesian product of
Q1 (Q2) with T1 (T2) and unions the results, then applies
repair-key. Thus, for every fact we will choose tuple with
Correctness value 1 with probability that is the sum of au-
thorities of the users that supported it, divided by the sum
of all authorities of users.

3.4 Additional Game-Related Tasks
So far we have focused on techniques for question answer-

ing. As noted in the introduction, there are other tasks that
the game designer must face, including the assignment of
user scores, the choice of questions to pose to gain max-
imal information, the choice of users that are most likely
to answer them correctly, etc. Interestingly, these can be
achieved by modifying (slightly) any one of the policies sug-
gested above for question answering. We show this next for
simple techniques for these tasks. First, consider the identi-
fication of questions to pose to users. Here we can use a sim-
ple method that selects the questions for which all possible
answers have similar (defined by some threshold) probabili-
ties, and also the number of users that have answered this is
below some threshold. These are questions for which there
exists a high level of uncertainty. To implement this algo-
rithm, we can choose any of the rules suggested above, and
feed them (along with a corresponding sampling condition
and a query Q of interest, e.g. selecting all capitals of all
countries) to the ApproxProb construct, whose output will
be in this case the set of possible capitals with probability
value assigned to each of them; then the result can easily
be queried via standard SQL queries to identify questions
(countries in our example) for which all answers have simi-
lar probabilities. Identifying the questions with low number
of users and joining the results is then straightforward.

To identify which users are more credible (and thus ques-
tions should be directed to them), we can use the same
update rules, but change the query Q to query the Users
table for users with authority greater than some threshold.
The probability of this to be the case, for each user, can
then be used for choosing the “most knowledgable” users,
to pose questions to. More sophisticated algorithms to se-
lect users suitable for particular questions can be similarly
implemented and we omit the details for space constraints.

4. SYSTEM IMPLEMENTATION
The data management platform presented in this paper

was used as the data layer of a data sourcing game called
Trivia Masster, demonstrated in [10]. Trivia Masster players
are presented with Trivia questions in a variety of topics.
The answers are used to construct a database of facts and
the players are assigned scores based of the quality and value
of their contribution. The constructed database is in turn
used to answer queries posed by (a possibly different set of)

users. The demonstration [10] only provided a high-level
description of the system; here we describe some implemen-
tation issues that were addressed to put the platform into
practical use, in the context of Trivia Masster.

Query Evaluation Algorithm. It was shown in [11] that
computing exact probabilities (for the settings presented
there) is not possible in PTIME (w.r.t. the database size)
unless P=NP. Recall that the language used here is an ex-
tension of [11]; consequently, the same hardness results hold
here as well. We thus employ an approximation algorithm
that is an adaptation of the one presented in [11] (extended
to account to the additional expressive power of our lan-
guage), and stands as a particular case of a Markov Chain
Monte Carlo [27] algorithm. Recall that our rules may in-
clude a repair-key construct, in which case their applica-
tion may result in many possible results (other Database
Instances), each with some probability. Now, consider a
Markov Chain (MC) induced by the rules as defined in sec-
tion 2. Our algorithm performs a random walk over this
MC, starting from its initial state and at each point ran-
domly choosing the next state, according to the distribu-
tion on the MC transitions. Whenever the walk reaches a
state that corresponds to an instance D that satisfies the
given condition, our algorithm evaluates the query over D
and keeps record of the tuples that appear in the result of
this evaluation. The algorithm halts when convergence is
reached; we discuss in the sequel how to define and deter-
mine convergence. The returned result is then the set of
tuples that occurred in evaluation results, where each tuple
is associated with a quantity that is the number of its occur-
rences divided by the number of clean Database Instances
observed. This quantity is an approximation for the tuple
probability [11].

Online vs. Offline processing. Our query evaluation al-
gorithm may be näıvely employed whenever a query is run
against the Database. Such a näıve rule-based execution un-
til convergence takes a few hours. We next explain how to
preempt some of the processing offline.

For simplicity, let us first assume that all evaluated queries
are simple select-project queries (i.e. there are no joins and
no aggregates). Then, at the offline stage, for each relation
R in the database, we evaluate a query that selects all tu-
ples from R (SELECT * FROM R), and using the given update
rules. The result of this query evaluation is the set of all tu-
ples of R, each associated with a value reflecting its (approx-
imated) probability of appearing in a (correct) Database In-
stance. This set of tuples can be considered as an extended
relation ext(R) that has the same schema as R, but with
an additional attribute of probability. Now, in online time,
given a select query Q over R posed by the user, we simply
evaluate it (in the usual sense of SQL queries evaluation)
over ext(R); the result consists of all tuples that are in the
result of evaluating Q over R, but each is now also associated
with its probability of appearing in a clean instance. If Q
also projects over some attributes, then we need to slightly
rewrite it into a query ext(Q) that also sums the values
in the (newly added) probability attribute, grouped by the
projected attributes; then we evaluate ext(Q) over ext(R)
to get the desired results. Since this corresponds to “con-
ventional” SQL query evaluation, the online performance is
satisfactory (see Section 5).

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

785

When the posed queries may include joins, the offline pro-
cessing step becomes somewhat more intricate. It is well-
known [9] that for probabilistic databases, computing query
results for each individual relation and then joining the re-
sults can cause errors in the computation of probabilities.
This is due to probabilistic dependencies between tuples that
are ignored by the above näıve computation, but may occur
in presence of (e.g. foreign key) constraints over the data,
or the use of projection in the query [9]. This is also a chal-
lenge in our settings. Consequently, we refine the MCMC
algorithm described above, as follows: we repeatedly apply
the update rules, as in the above algorithm, but whenever we
reach an instance where sampling should be performed, we
also perform all joins (using all join conditions) that occur
in the queries supported by the given application, and accu-
mulate the count of tuples that appeared in the joined rela-
tion. The output of this process now contains, in addition
to the ext(R) extended relations for each original relation
R, also relations of the form ext(R1 JOIN R2 JOIN...RN).
Queries with joins may then be translated to conventional
SQL queries over the extended database, and then evalu-
ated in the same exact manner as the one explained above
for select-project queries.

Data Inserts. Our database rapidly grows as users answer
Trivia questions and consequently add facts to the database.
This means that the offline processing must be run suffi-
ciently often, to account for these inserts. Our experiments
show that on large data sets, the offline processing step runs
for a few hours on a simple laptop, which allows one to run
it daily. Naturally, a more desirable solution involves the
development of an optimized incremental algorithm; this is
a challenging future research.

Convergence. Recall that our query evaluation algorithm
requires a procedure that decides convergence. There are
many possible ways to define convergence [8]. One definition
is based on stability, i.e. that the (approximated) probability
values computed for the different tuples does not change by
more than a given ε over the course of i samples (where ε and
i are configurable). A difficulty lies in the fact that for the
offline processing, there is no single concrete query in hand;
and testing convergence for all possible queries is inefficient.
Thus, we instead tested convergence of the user scores (rel-
ative to each other), and found that such convergence is a
good predictor for the stability of the queries results. This
solution is tailor-made to the context of the game, where the
rule always involve computation of user scores. The conver-
gence condition we used here requires that the user scores
for 99% of the users (or more) do not vary more in more
than 10% for a sequence of 10 iterations (or more).

5. EXPERIMENTS
As described in the previous section, we have used the

platform as the data layer for Trivia Masster , allowing the
game designers to define rules for cleaning and supporting
queries over the data collected in crowdsourcing games. The
real-life data collected using Trivia Masster is of relatively
small scale. Thus, for our experiments we have used the
schema on which the game is built (see [10]) and generated
a larger scale synthetic data (see Section 5.1). The experi-
ments tested both the performance and quality of different
techniques, when implemented and run using our platform.
The experiments were designed to address two main goals.

First, we wished to examine the scalability and quality of
results of algorithms implemented using our framework. We
show that they scale well and are thus practical to use. Sec-
ond, we note that the declarative nature of the platform
allows the game designers to easily compare and modify the
implemented policies, and to thus get insights that eventu-
ally lead to a better game design. Our experiments show
concrete examples of such insights we have derived, provid-
ing further indications for the usefulness of the platform.

The experiments were performed on an Intel Core2 Quad
CPU 2.66GHz and 4GB RAM. We next describe the param-
eters varied in the generation of synthetic data for the ex-
periments, and then describe the experimental results, first
for experiments on performance and then on quality.

5.1 Data Generation
We have aimed to generate synthetic data that reflects

different scenarios that may be encountered in real-life. For
that, we have started with a domain of 1000 possible ques-
tions, to each of which we have generated one correct an-
swer and a domain of possible incorrect answers. Then, we
have simulated players by distributing (a) the number of
questions answered by every individual (simulated) player
answers, and (b) the percentage of these questions that she
has answered correctly (reffered to in the sequel as the user
correctness rate). We have experimentred with various such
distributions, as well as with the number of users. The com-
bination of number of usres and distribution of their answers
determines the database size.

We next detail the values that we have considered for each
of these parameters. The default values for all except the
users number (for which we have considred a large number)
are based on interpolations of the values we have observed in
the (small) real-life data we have collected using the game.

• Number of users. We varied the number of users from
0 to 50k. The default value is 50k users.

• The number of questions answered by a single user
varied from 10 to 100. The default value is 100. Note
that combined with the default number of users, this
yields a default database size of 5M facts.

• The distribution of correct facts among users. We
have considered uniform datasets where all users have
the same correctness rate (varied from 0% to 100%) ,
and profiled datasets where the users are split to 10%
“experts” (90% correctness rate) and 90% non-experts
(10% correctness rate). An incorrect answer is chosen
uniformly among the possible (incorrect) answers. The
default is a uniform dataset, where all users have 10%
correctness rate.

• The policies (update rules) that are used. We have
implemented all policies presented in Section 3.

5.2 Performance
In the previous section we have discussed online vs. offline

processing, and noted that most of the computation can be
preempted offline. Indeed, the online processing time that
we have observed for all settings is marginal (several dozens
of milliseconds). Thus, we only present the results for the
offline processing.

We show here only a representative sample of the results,
namely those obtained for probabilistic PageRank (see Sec-
tion 3.1), fixpoint and majority policies (section 3.2) and

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

786

!"
#"
$"
%"
&"
'!"
'#"
'$"
'%"
'&"

'!!!!" #!!!!" (!!!!" $!!!!")!!!!"

!"
#$

%
&'
()
*+
,'

-'.+&*+'

*+,-./"
0-12+-.3"
45+6"

Figure 1: Scalability of Query Evaluation

Cosine algorithm [15] whose implementation was omitted
for lack of space. Each performance experiment was run
10 times and the graphs show the average results. Figure
1 shows the performance of the different algorithms as a
function of the database size. In this experiment we varied
the number of users from 0 to 50k, yielding a maximum of
5M facts. The running time of the majority algorithm was
marginal (split seconds) and is thus omitted from the figure.
We observe that the running time of the PageRank algo-
rithms (both the probabilistic and fixed-point versions) al-
gorithms increases moderately with respect to the Database
size. The running time of the Cosine algorithm increases
more drastically. This can be explained by complex SQL
queries in the Cosine algorithm implementation. In this im-
plementation, a score of a user is defined based on the sum of
scores the facts he provided have. Obviously, this query in-
volves aggregate operators that are run over the joined data
sets of users and facts. In contrast, the PageRank implemen-
tation consists of simple queries which converge much faster,
and the majority algorithm performs a trivial computation.

Figure 2 shows the effect of number of users on the number
of iterations until convergence. Observe that more iterations
are required for the Probabilistic PageRank to converge.
However, these iterations are short and the overall time is
shorter than the time of the other algorithms. The figure
shows a noticeable increase for the Probabilistic Pagerank
as the database size increases while it is insignificant for the
non-probabilistic algorithms.

!"
#!"

$!!"
$#!"
%!!"
%#!"
&!!"
&#!"
'!!"

$!!!!" %!!!!" &!!!!" '!!!!" #!!!!"

!"
#$%

&'
()

*+
"

!",+%&+"

()*+,-"
.+/0)+,1"
23)4"

Figure 2: Number of Iterations

Figure 3 shows the algorithms running time when varying
the number of questions each user answers (this of course
also affects the database size) while playing the trivia game.
Again, the performance results for the majority algorithm
are omitted as it operates in split-seconds. For all algorithms
we can observe a rather moderate increase of runtime as the
number of answers increases.

5.3 Quality
So far we have considered the running time of the various

techniques. It is also interesting to compare the quality of
the results that they achieve. To measure quality, we con-
sidered the 1000 possible questions (presented earlier to the

!"
#"
$"
%"
&"

'!"
'#"
'$"
'%"
'&"

'(" #(")(" $(" *(" %(" +(" &(" ,(" '!("

!"
#$

%
&'
()
*+
,'

-'./'0"&+$.#+'1#+2&*&3'

-./012"
3045.016"
78.9"

Figure 3: Varying % of Questions Answered

!"

!#$"

!#%"

!#&"

!#'"

("

!#(" !#()" !#$" !#*"

!"
#$
%&'

(

)*+,(-.//01&1022(30*0$(

+,-./0"
12,3"
456,2.78"
9.:;,./7"

Figure 4: Quality for varying correctness level

players), as queries on the database that are evaluated using
our algorithm with some (varying) implemented technique
as update rules. The quality is then the fraction of queries
for which the system computes the correct answer.

Figure 4 shows the quality of the results produced by the
different techniques. In this experiment we have also varied
the correctness level for the users (but always used a uniform
correctness level among all users) in order to see how it af-
fects the quality of algorithms results. We observe that the
difference in quality between the different algorithms (for
the particular dataset that we have used) is marginal (less
than 10 % relative difference). Furthermore, there is an ex-
pected correlation between the quality of results and the
correctness level. It is interesting to see that for the when
the correctness level reaches 20%, the algorithms return the
correct answer almost always. Consider, for example, the
probabilistic PageRank algorithm in a case with 15 possible
answers for a given question, and 20 % correctness. Here the
correct answer is chosen with a probability of 0.2 while the
rest 14 answers are chosen with probability of 0.8

14
= 0.057

each (recall that we use a uniform distribution in the genera-
tion of incorrect answers), and the algorithm will eventually
conclude on the correct answers.

We have also experimented with profiled datasets, where
the correctness level varies among different users (The fig-
ure is omitted due to lack of space). Here the quality re-
sults differ much more significantly, as the PageRank tech-
niques (probabilistic and fixpoint) outperform majority and
cosine by over 100% (relative difference). The reason is that
the PageRank algorithm gains more confidence in users that
provide correct answers, and is thus more suited for the “ex-
perts” vs.“non-experts” case of distribution.

6. RELATED WORK
Crowdsourcing is an emerging paradigm that harnesses a

mass of users to perform various types of tasks [7, 32, 21,
30, 25]. Games are particular tools that attract the crowd to
contribute [32, 21] to such tasks. In particular games were
used in [31] for collecting large amount of information on
images for which metadata is unavailable. This work was
followed by a set of games known as Games With a Purpose
[32] that aims at harnessing the crowd for various difficult
tasks such as object recognition in images and collection of

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

787

user preferences [16]. Other methods showed how people
can also help to improve the quality of search engines [21]
and complete missing information in social networks, such
as tags associated with its members [4]. We have focused in
this paper on the data layer of a particular kind of crowd-
sourcing games, namely datasourcing games that aim to use
the collective wisdom to construct a large database of facts.

Much research has been recently directed in the databases
community to the development of DB platforms that allow
for declarative specification of the crowdsourced data com-
ponents [13, 23]. These platforms are providing declarative
lagunage support and tools to define what data will be re-
trieved from the crowd (the choice of questions to ask players
in our case), for example by adding a CROWD operator to a
certain column in a Create SQL statement of a table [13] and
how the flow of such tasks should be managed [23]. While
the choice of data to ask the crowd for can be done declara-
tively in these frameworks, the other tasks described in this
paper such as aggregating the data (and deciding which data
is correct), choosing which users to ask, assigning scores to
users etc. are not addressed or done in a hard-coded man-
ner (see, for example, the Combiner operator implemented
as MajorityVote in [22]). Our platform allows declrative for-
mulation of policies for these tasks and is therefore comple-
mentary to the platforms presented above.

Policies for determining correctness of data in presence of
contradictions often appear in the context of data cleaning.
We have already mentioned some data cleaning policies and
showed how to implement them using our framework. Many
other policies have been proposed in the literature: In [3] the
authors present a different approach for cleaning by using
string-transformation rules for correcting errors in the data.
[5] presents a technique to solve key violations using proba-
bilistic choice over possible Database repairs. [24] discusses
techniques for evaluating the trustworthiness of information
sources. These solutions are all hard-coded, in contrast to
the generic declarative framework that we propose here.

Information integration often entails fusion of data from
various sources (e.g, [6]). This requires the identification
of common objects and the resolution of possible conflicts.
Such (possibly probabilistic) data fusion algorithms may
also benefit from the declarative framework described in the
present paper and we intend to study its application to this
domain in future work.

Last, we note that there are some declarative frameworks
that support queries on probabilistic data (e.g. [1, 17, 12,
18]). In particular, in [18] the authors present a declar-
ative framework for probabilistic rules, based on Markov
Chains. However, all of these works do not allow the defi-
nition of recursive rules, hence for example cannot express
the PageRank-style cleaning rules described here.

7. CONCLUSION
We presented a novel declarative framework for the data

management layer of data-sourcing games. At the core of
our framework is a declarative language that allows to ex-
press probabilistic and recursive policies, which we demon-
strated to be useful for different data management aspects
of such games. We further described implementation issues
addressed when putting the platform into practical use, in
the context of the Trivia Masster game, and reported the re-
sults of our experimental study with respect to the system.

The design of dedicated optimization algorithms for the

framework is a challenging future research. In particular, we
intend to study incremental maintenance for rapidly adjust-
ing to changes and additions to the facts database, thereby
avoiding a full off-line (re)evaluation.

8. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. U.

Nabar, T. Sugihara, and J. Widom. Trio: A system for data,
uncertainty, and lineage. In VLDB ’06.

[2] L. Antova, C. Koch, and D. Olteanu. “Query Language Support
for Incomplete Information in the MayBMS System”. In Proc.
VLDB, 2007.

[3] A. Arasu, S. Chaudhuri, and R. Kaushik. Learning string
transformations from examples. PVLDB, 2(1), 2009.

[4] M. Bernstein, D. S. Tan, G. Smith, M. Czerwinski, and
E. Horvitz. Collabio: a game for annotating people within
social networks. In UIST ’09. ACM.

[5] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of
functional dependency violations under hard constraints. In
VLDB ’10.

[6] J. Bleiholder and F. Naumann. Declarative data fusion -
syntax, semantics, and implementation. In ADBIS, ’05.

[7] D. C. Brabham. Crowdsourcing as a Model for Problem
Solving: An Introduction and Cases. Convergence, 14(1), 2008.

[8] M. K. Cowles and B. P. Carlin. Markov chain monte carlo
convergence diagnostics: A comparative review. Journal of the
American Statistical Association, 91, 1996.

[9] N. Dalvi and D. Suciu. “Efficient query evaluation on
probabilistic databases”. In Proc. VLDB, 2004.

[10] D. Deutch, O. Greenshpan, B. Kostenko, and T. Milo. Using
markov chain monte carlo to play trivia (demo). In ICDE, 2011.

[11] D. Deutch, C. Koch, and T. Milo. On probabilistic fixpoint and
markov chain query languages. In PODS ’10.

[12] R. Fink, D. Olteanu, and S. Rath. Providing support for full
relational algebra in probabilistic databases. In ICDE, 2011.

[13] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and
R. Xin. Crowddb: answering queries with crowdsourcing. In
SIGMOD Conference, 2011.

[14] D. Freedman. Markov Chains. Springer-Verlag, 1983.

[15] A. Galland, S. Abiteboul, A. Marian, and P. Senellart.
Corroborating information from disagreeing views. In WSDM
’10.

[16] S. Hacker and L. von Ahn. Matchin: eliciting user preferences
with an online game. In CHI ’09.

[17] J. Huang, L. Antova, C. Koch, and D. Olteanu. Maybms: a
probabilistic database management system. In SIGMOD
Conference, 2009.

[18] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J.
Haas. Mcdb: a monte carlo approach to managing uncertain
data. In SIGMOD ’08.

[19] C. Koch. Approximating predicates and expressive queries on
probabilistic databases. In PODS ’08.

[20] N. Leone and et al. “The INFOMIX system for advanced
integration of incomplete and inconsistent data”. In Proc.
SIGMOD, 2005.

[21] H. Ma, R. Chandrasekar, C. Quirk, and A. Gupta. Improving
search engines using human computation games. In CIKM ’09.

[22] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller.
Human-powered sorts and joins. PVLDB, 5(1), 2011.

[23] A. Marcus, E. Wu, S. Madden, and R. C. Miller. Crowdsourced
databases: Query processing with people. In CIDR, 2011.

[24] A. Marian and M. Wu. Corroborating information from web
sources. IEEE Data Eng. Bull., 34(3), 2011.

[25] Amazon’s mechanical turk. https://www.mturk.com/.

[26] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation
on probabilistic data. In ICDE ’07.

[27] C. P. Robert and G. Casella. Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer-Verlag, Inc., 2005.

[28] Shannon and Weaver. The Mathematical Theory of
Communication. University of Illinois Press, Urbana, 1949.

[29] Q. Su, D. Pavlov, J.-H. Chow, and W. C. Baker. Internet-scale
collection of human-reviewed data. In WWW ’07.

[30] Top coder. http://www.topcoder.com/.

[31] L. von Ahn and L. Dabbish. Labeling images with a computer
game. In CHI ’04.

[32] L. von Ahn and L. Dabbish. Designing games with a purpose.
Commun. ACM, 51(8), 2008.

WWW 2012 – Session: Data and Content Management 1 April 16–20, 2012, Lyon, France

788

