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Abstract

This paper describes a specification-based black-box teehnique for

testing program units. The main contribution is the method that we

have developed to derive test conditions, which are descriptions of

test cases, from the formal specification of each program unit. The

derived test conditions are used to guide test selection and to mea-

sure comprehensiveness of existing test suites. Our technique com-

plements traditional code-based techniques such as statement

coverage and branch coverage. It allows the tester to quickly

develop a black-box test suite.

In particular, this paper presents techniques for deriving test

conditions from specifications written in the Assertion Definition

Language (ADL) [SH94], a predicate logic-based language that is

used to describe the relationships between inputs and outputs of a

program unit. Our technique is fully automatable, and we are cur-

rently implementing a tool based on the techniques presented in

this paper.

1 Introduction

Structural testing usually refers to techniques where test cases are

intended to cover some structure of the implementation. The tech-

nique that we present in this paper is a structural speeification-
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based testing technique, where test cases are intended to cover

some structure of the specification. These specification-based test

cases are interesting because they relate direetly to what the pro-

gram is supposed to do and can detect certain errors (in particular,

missing path errors) that sometimes are not detected by implemen-

tation-based testing.

Test selection is an activity that attempts to pwtition the input

and the output domains of the program into a finite number of sub-

domains that are approximations of equivalence classes. In our

approach, we use test conditions to characterize each subdomain.

A test condition evaluates to true only for test data that are mem-

bers of the subdomain associated with that test condition.

In this paper, we discuss how sh-ucttrral specification-based

test conditions can be derived from ADL (Assertion Definition

Language) specifications. One uses ADL to describe the behavior

of a program unit (a procedure or a function). An ADL specifica-

tion consists of a set of assertions that must hold immediately after

the termination of any call to the specified program unit. ADL

assertions are based on first order predicate logic. Each assertion

is a boolean expression that constrains values of input and output

parameters of the specified unit.

Two kinds of test conditions can be derived from ADL specifi-

cations: call-state test conditions and return-state test conditions.

Call-state test conditions are test conditions that are derived from

the input conditions of the function as described in the specifica-

tion and constrain values of input parameters only. They charac-

terize subdomains that are partitions of a function’s input domain.

Return-state test conditions are derived from both the input and

output conditions of the function and constrain values of both

input and output parameters. They characterize subdomains that

are partitions of both input and output domains. Call-state test

conditions can be used to measure comprehensiveness of test data

even if an implementation is not available. This adheres to the

sound principle of developing tie black-box test suite during

design and not after the implementation has been developed.

Return-state test conditions provide more thorough test coverage,

but cannot be evaluated without an implementation.

The ADL Translator (ADLT) provides automated support for

testing C programs. Given the ADL specification of a C function

and specifications of user seleeted test data (Test Data Descrip-

tion), ADLT generates a test driver that exeetttes the function
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Figure 1: ADL Translator and Specification Coverage Tool

under test with those test data and automatically checks test

results.

We are currently developing a tool, called the Specification

Coverage Tool (SCT), that derives test conditions from ADL spec-

ifications. Figure 1 shows how SCT is integrated with ADLT. SCT

generates coverage condition functions. Coverage condition func-

tions are C functions that determine whether the derived test condi-

tions are satisfied by some test data. Coverage condition functions

are compiled and linked with the ADLT-generated test driver and

the function under test. The compiled and linked executable is

called the test program executable. During testing, the test pro-

gram executable collects coverage information and updates the

coverage in@ma~ion file. The coverage information tile records

the number of times each coverage condition is satisfied. SCT also

generates a pretty-printed listing of derived test conditions. This

listing can be used by the tester to develop actual test inputs.

2 Summary of ADL

We shall use an Elevator example to illustrate some of the con-

structs of ADL. Figure 2 shows an ADL specification of part of an

elevator system. The part that we have chosen to specify is a fnnc-

tion that computes which floor the elevator should move to nex~

given its current direction, current location, and pending calls and

requests. For our purpose, a call for the elevator is made on a floor

to move either up or down. A request is made inside the elevator to

visit a particular floor.

An ADL specification consists of a set of modules. Each mod-

ule encapsulates a set of constituents that describe the entities in

the specified program. A module may import other modules. The

constituents of an imported module are visible to the importing

module. In the Elevator example, the e 1 evator module imports

the floors module. The floors module specifies a set abstract

data type (ADT), The operations of the floors module are

described in the Appendix.

There are three types of constituents: type constituents, object

constituents, and function constituents. A type constituent defines a

type. An object constituent introduces an object of some type, A

function constituent introduces a function with its pararmtcrs and

the return type. The elevator module has these following con-

stituents: (1) INVALI D_FLOOR and INVALID_CALL are con-

stants of type int, (2) error is an object of type int, (3)

direction is an enumeration type that has two enumeration

constants: UP and DOWN, (4) moveEl evator is a function con-

stituent.

Function constituents may contain semantic descriptions. The

semantic description of a function constituent describes the func-

tion’s behavior. There are two types of semantic descriptions:

bindings and assertions. Bindings bind names to expressions. The

names then represent abbreviations for their associated expres-

sions. The names normal and except ion have special mean-

ings in ADL, that is, the expressions that they are bound to

characterize the normal and exceptional behaviors of the function.

The first binding of moveEl evat or binds the expression

( return == -1 ) to the name exception, and the second

binding binds ! exception to normal.

An assertion is a boolean expression that must evaluate to true

at the termination of function execution. An assertion is a post-

condition of the function. An important predestined ADL operator

is the call-state operator (“@”) that takes an expression as an argu-

ment and evaluates it at the call state. The call state refers to the

time an implementation of the specified function is called. Simi-

larly, the return state refers to the time of return from a call to an

implementation of the function. Another important ADL expres-

sion is the exception expression (p <:> q) . An exception expres-

sion prescribes an exceptional outcome of the specified function

and is defined as follows (here “-->” is the ADL logical implica-

tion operator): p <:> q is equivalent to

(p --> exception) &&

( (exception && q) --> p)

We shall use the term exception pre-conditions to refer to the left

operands of exception expressions.

The first two assertions of moveEl evator describe its

exceptional behavior. The first exception expression (Assertion 1)

represents the situation where the current location of the elevator is

above the highest floor or lower than the bottom floor. The second

exception expression (Assertion 2) represents the situation where

an up call is made on the highest floor or a down call is made on

the lowest floor. The specification therefore requires that in either

of these cases, moveEl evator behaves exceptionally, that is, it

returns –1. In addition, the specification also prescribes that

error be set to INVALI D_FLOOR if the first exception pre-con-

dition is true, and that error be set to INVALID_CALL if the

second exeeption pre-condition is true, The specification also

requires that if error is equal to INVALI D_FLOOR after a func-

tion call that returns -1, the first exception pre-condition must be

true. Similarly, if error is equal to INVALID_CALL after a

function call that returns -1, the second exception pre-condition

must be true.

The normal behavior of the function is specified by the nor-

mally expression. It has the following form:

normally ( el, e2, . . . }
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module elevator imports floors {

const int INVALID_FLOOR;

cOnSt int INVALID_CALL;
int error;

typedef enum direction { UP, DOWN } direction;

int moveElevator(

direction *currentDirection,

floor *currentFloor,

flOorSet re~ests,

floorSet upcalls,

floorSet downCalls)

semantics {

exception := (return == -1) ,

normal := !exception,

prevFloor := @(*currentFloor) ,

prevRecpests := @(duplicate (requests)),

prevUpCalls := @(duplicate(upCalls)),

prevDownCal 1s := @(duplicate (downfalls)),

/. Assertion 1 ./

@(*currentFloor > MIS-FLooFt

II *currentFloor < 1)

<:> error .= INVALID_FLOOR,

/* Assertion 2 */

@(isMember(MAX_FLOOR, upCalls)

II isMember(l, downfalls))

-=:> error .= INVALID_CALL,

normally {

I* Assertion 3 *I
Q (*currentDirectiOn == UP

&& *currentFloor

<= max(setUnion(requests, Upcalls)) )
.- >

(*currentDirection == UP
&& *currentFloor ==

min(deleteElements (setUnion (prevRequests,

prevUpCalls), 1, prevFloor - 1))

&& equal(reweats, deleteElement (prevRequests,

*currentFloor) )

&& equal(upCalls, deleteElement (prevUpCalls,

*currentFloor) )

&& equal(downCalls, prevDownCalls)),

/’ Assertion 4 *I
@(*currentDirectiOn . . Do~

&& *currentFloor
.= min(setUnion(rQ~ests, downCall*) ) )

-- >

(*currentDirection . . DowN

&& *currentFloor =.

max(deleteElements (setUnion(prevRequests,

prevDownCalls) ,prevFloor + 1, MAX_FLOOR))

&& equal(requests, deleteElement (prevRequests,

*currentFloor) )

&& equal (downfalls, deleteElement (prevDownCalls,

*currentFloor) )

&& equal(upCalls, prevupcalls)),

/’ Assertion 5 ‘j

@(*currentDirection == UP

&& *currentFloor >

max(setUnion(requests, upCalls))

&& !empty(setUnion(requests, downfalls)))
-- >

(*currentDirection . . DOWN

Fc& *currentFloor == max(setUnion(prevReqJests,

prevDownCalls ))

&& equal(re~estsr

deleteElement (prevRegaests, *currentFloor))

&& equal(upCalls, prevUpCalls)

&& equal (downCalls,deleteElement (prevDownCalls,

*currentFloor))) ,

/’ Assertion 6 *I
Q(*currentDirectiOn . . DOWN

&& *currentFloor

< min(setUnion(requests, downCalls) )

&& !empty(setUniOn(re~estS, upCalls)))
-- >

(*currentDirection . . UP
&& *~urrentFloor . . min(setUnion(prevReWeSts,

prevUpCalls))

&& equal(requests, deleteElement (prevRe~ests,

*currentFloor) )

&& equal(upCalls, deleteElement (prevUpCalls,

*currentFloor) )

&& equal(downcalls, prevDownCalls)),

I* Assertion 7 */
@(’currentDirection =. UP

&& !empty(Upcalls)

&& *currentFloor > maX(UPCalls)

&& empty(setUnion(downCalls, requests)))
-- >

(*currentDirection . . UP

&& *currentFloor =. min(prevUpCallS)

&& equal(requests, prevReqJests)

&& equal(upCalls, deleteElement (prevUpCalls,

*currentFloor) )

&& equal(downcalls, prevDownCalls)),

I* Assertion 8 *I
@(*currentDirection . . DOWN

&& !empty(downCalls)

&& *currentFloor < min(downCalls)

&& empty(setUnion(upCalls, requests)))

–>

(’currentDirection == DOWN
&& *currentFloor . . max(prevDownCalls)

&& equal(re~ests, prevRe~ests)

&& equal(upCalls, prevUpCalls)

&& equal(downCalls,

deleteElement (prevDownCalls, *currentFloor)))

}

);

};

Figure 2: ADL specification of the elevator module.
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Each of the ei’s must be true for all function calls that behave nor-

mally. For moveEl evator, the~ are six assertions in the nor-

mally expression. The specification states that if moveEl eva tor

behaves normally, that is, it returns anything other than -1, all six

assertions must be true.

Here we provide an informal description of the elevator’s nor-

mal behavior to help the reader understand the Elevator specifica-

tion. The elevator will alternate upward and downward cycles. In a

upward cycle, the elevator will move up to the nearest higher floor

with an outstanding request or up call (Assertion 3). It will repeat

this until there is no longer a higher floor for a request or an up

call. If there are down calls or requests for a lower floor, it will

change direction (Assertion 5) and will then execute an analogous

downward cycle (Assertion 4). It may also be that there are no

requests and the only outstanding calls are up calls from lower

floors. Since a downward cycle would not service these, the eleva-

tor will travel to the lowest floor having such an up call (Assertion

7) and then behave according to the rules for an upward cycle. A

dual situation exists at the end of a downward cycle and is handled

analogously (Assertions 6 and 8).

3 Terminology

A test condition is a set of boolean conditions that are constraints

on values of parameters — input parameters, output parameters,

global variables, and the return value — of the function under test.

A call-state test condition is a test condition that constrains values

of input parameters and input values of global variables. Below is

a call-state test condition for the Elevator example

{ @( *currentFloor <= MAX_FLOOR) ,

@( *currentFloor >= 1) ,

@( ! ( isMember (MAX_FLOOR, uPCalls ) ) ) ,
@( ! (isMember(l, downCalls) ) ) ,

@( *currentDirection .= UP) ,

@( *currentFloor

> max(setUnion (requests, upCalls) ) ) )

This test condition represents a condition that some test data

should satisfy. It can be used by a tester to select test data that sat-

isfy this condition. It can also be used by tools to automatically

determine whether this condition is satisfied by some test suite. For

example, assuming MAX_FLOOR is greater than 4, a tester can

select the following test data to satisfy this test condition:

@( *currentDirection) : UP

@( *currentFloor) : 4

@(requests) : ( 1 }

@(upCalls): { 3 }

@(downCalls) : { 2, 5 }

As will be discussed in more details later, call-state test conditions

are derived from call-state evaluatable expressions in ADLspeci-

fications. A call-state evaluatable expression is an expression

where the values of variables in the expression either cannot

change during the execution of the function or are evaluated before

the function is called. In C, all parameters are passed by value.

Thus, the value of any parameter cannot changel. However, the

value of an object pointed by a pointer parameter can change. Ele-

ments of an array parameter can change. Function calls may also

modify values of global variables. Therefore, any subexpression of

an assertion that does not contain any pointers, arrays, function

calls, or global variables (except constants)is acall-state evaluat-

able subexpression of that assertion. Also, the operands of the call-

state operator (’Q”) is evaluated before the function call. Thus,

they are also call-state evaluatable.

A return-state test condition is a test condition that constrains

values of input parameters, output parameters, global variables,

and the return value. Below is a return-state test condition for the

Elevator example:

{ @(*currentFloor <= MAX_FLOOR),
@(*current~loo~ >= 1),

@(! (i.sMember (MAX_FLOOR, upCalls) )),
@(i(isMember(l, downfalls))),

return != -1,
@(*currentDirection == W’),

@(*currentFloor

c= max(setUnion(requests, upCalls) )),

*currentDirection == UP,

*currentFloor == min(deleteElements (

setUnion(@ (duplicate (requests)) ,

@(duplicate(upCalls) )), 1,

@(*currentFloor) - l)),

QWal(reWests ,deleteElement (
@(duplicate(recrdests)), *currentFloor)),

eqttal(upCalls, deleteElement(

@(duplicate(upCalls)), *currentFloor)),

equal(downCalls, @(duplicate(downCalls))) )

For example, a test case with the following test input values and

output values would satisfy this test condition:

~(.currentDirectiOn) : up

@(*currentFloor) : 3

@(requests): { 2 )

@(upCalls): { 1, 4 }

@(downCalls): { 3, 4 )

return: O

*currentDirection: UP

*currentFloor: 4

requests: { 2 }

upCalls: { 1 }

downCalls: { 3, 4 }

4 Approach

In short, our approach derives test conditions by traversing the

parsetr~ of thespecification, collecting and combining boolean

conditions from various parts of the specification. The methods for

generating and combining these boolean conditions are called

rtdes. Rules are associated with thetypesofnodes intheparsetree

andarebasedon various test selection strategies.

To generate call-state test conditions, rules are only applied to

call-state evaluatable expressions in the specification. To generate

retnrn-state test conditions, rules are applied to all expressions.

1 Actually this not entirely true. If a parameter is aliased (referenced by

another parameter or a global variable), the value of the parameter could

change. We do not consider tkis situation m tfus paper.
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4.1 Test Selection Strategies

The ADLconstructx that aremost relevant to testing are logical

expressions (e.g. “&&”, “1 l“, “ -->”) and relational expressions

(e.g.’’>’’,”>= , <,“ “ “ “<=”), Forlogical expressions, rules based

onthemulticondition strategy [Mye79] andthe meaningful impact

strategy [Fos84, WGS94] can be used. The multicondition strategy

selects every possible value for each operand of alogicalexpres-

sion. The meaningful impact strategy requires each logical oper-

and to individually affect the value of the expression. Rules for

relational expressions are based on boundaxy value strategy

[Mye79] and domain testing strategies [WC80, CHR82]. These

strategies select test points on or near a boundary.

Rules can be developed for other constructs also. For a particu-

lar application, strategies that are suitable for that application can

be developed. For example, rules that are based on computation

testing strategies [Fos80, CR83] can be used on mathematical

expressions to test scientific or numerical programs.

For the Elevator example, we shall use the multicondition

strategy for logical expressions. For clarity, we provide two exam-

ples of the multicondition strategy here. For the expression (a I I

b) , the multicondition strategy produces the following conditions:

{ !u, !b}, { !a, b), and {a}. Fortheexpression(a --> b), the

following conditions are produced: { ! a), {a, ! b) and {a, b}.

Our approach uses a top-down tree tiaversal algorithm where each

parse tree node may have an inherited attribute. This attribute is a

constraint on the value of tie expression associated with the node.

When such a constraint is present, only the cases, as required by

the multicondition strategy, that are consistent with the constraint

are generated. For example, we might require the value of (a \ \

b) be true, the multicondition strategy would yield only the cases

that make the expression true: { ! a, b} and {a}. If the value of

(a I I b) is constrained to false, only one case is generated:

{!a, !b).

For relational expressions, we shall use a simple boundmy

testing strategy. This strategy selects test points on both sides of a

boundary. For example, for (a > b) , this strategy requires: {a

== b + 1} and {a == b}. If there is a boolean constraint on the

value of the expression, only cases that are consistent with the con-

straint will be generated. For example, if ( a > b ) is constrained

to true, assuming a and b are integers, one condition, {a == b +

1 } is generated. If the value of (a > b) is constrained to false,

only {a == b] is generated.

4.2 Generating Test Conditions

ADL allows the specification of both the normal behavior and the

exceptional behavior of the function under test. Both of these

behaviors should be tested.

4.2.1 Testing Normal Behavior

To test the normal behavior, exception must have the value

f als e. Also, all the exception pre-conditions must be suppressed,

that is, for all exception expressions p, <:> q,, we require that all

pi’s must have the value f al se. In addition, each expression ei in

the normally expression, normal lY { el, e2, . . . }, should

have the value true.

In the Elevator example, exception is bound to the expres-

sion (return == -1) . The multicondition strategy requires all

cases that would make this expression false. The boundary testing

strategy does not apply since there is no relational operator in this

expression. Our algorithm traverses the parse tree of this expres-

sion in a top down manner and passes the “false” constraint down

the tree as a parameter. Upon reaching the equality node (“==”),

the algorithm generates a boolean condition, &fl, to make the equal-

ity “false”:

{ return != -1 } . (J’fl)

As mentioned earlier, we require that all the exception pre-condi-

tions, pi’s, must be false.The pi’s in the Elevator example are

@( *currentFloor > W_FLOOR

I I *currentFloor < 1)

and

@( isMember (MAKFLOOR, upCalls )

I I isMember(l, downcalls) ) .

For the first expression, the algorithm traverses the parse tree of

that expression top-down with the “false” constraint. Upon reach-

ing the logical OR node (“\ I “), the multicondition strategy

requires that both the left-hand side and the right-hand side must

be false. Thus, the algorithm traverses the left subtree with the

“false” constraint. It then traverses the right subtree also with the

“false” constraint. For the left subtree, requiring the value of (

* currentFloor > MAX_FLOOR) be false, the algorithm gen-

erates the following condition:

{ @(*currentFloor <. MAX_FLOOR) } . (M2)

Requiring the expression be false, the boundary testing strategy

generates the following boundary condition B,:

{ @( *currentFloor == MAX_FLOOR) } . (%)

Requiring the value of the right subtree ( * currentFloor <

1 ) be false, the algorithm generates:

{ @( *currentFloor >= 1) } (M3)

and the boundary condition:

{ @( *currentFloor == 1) } . (B2)

We use the same algorithm to generate conditions from the second

exception expression:

{ @( ! isMember (MAX_FLOOR, upCalls ) ) ) W4)

and

{ @( !isMember(l, downCalls) ) } . (M5)

Note that no boundary conditions are generated from the second

exception expression.

Each expression e, in the normally expression, normal lY {

el, e2, . . . ), should have the value true. For each ei, we use

the same top-down tree traversal to generate conditions. For Asser-

tion 3 of the Elevator example, the multicondition stiategy requires

the following conditions:

{ @( *currentDirection ! = UP) } , (M6)
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{ @(*currentDirection == UP),

@(*currentFloor >

max(setUnion(requestsr upCalls))) ), (%)

and

{ @(*currentDirection == UP),

@(*currentFloor <=

max(setUnion(requests, upCalls) )),

*currentDirection . . UP,

*currentFloor . .

min(deleteElements (setUnion (prevRe~ests,

prevUpCalls) , 1, prevFloor - l)),

eqyal(requests, deleteElement (prevRequests,

*currentFloor) ) ,

equal(upCalls, deleteElement (prevUpCalls,

*currentFloor)) ,

e~al(dowcalls, prevDownCalls))

). (M,)

M6 and kf~ represent all pssible cases that make the left-hand side

of the implication expression of Assertion 3 false. M8 represents

the case where both the left-hand side and the right-hand side of

the implication expression are true.

The boundary testing strategy requires the following condi-

tions for Assertion 3:

( @(*currentDirection == UP),
@(*CurrentFloor ==

max(setUnion(requests, upCalls)) + l)}, (113)

{ @(*currentDirection . . UP),

&l(*currentFloor ==

max(setUnion(requests, upCalls) )),

*currentDirection == UP,

*currentFloor .=

min(deleteElements (setUnion(prevRequests,

prevUpCalls), 1, prevFloor - l)),

eqyal(re~ests, deleteElement (prevReWests,

*currentFloor) ) ,

eWal(upCalls, deleteElement (prevUpCalls,

*currentFloor) ) ,

equal(downCalls, prevDownCalls) )}. (%)

Finally, we combine the conditions generated from the expression

bound to exception and the exception pre-conditions with the

boolean conditions generated from the assertion k the normally

expression. For Assertion 3 of the Elevator example, the multicon-

dition strategy requires three return-state test conditions (Tl, 1“2,

and TJ:

T1=M1UMZUM3UMAUM5 UM6,

T2=M1uM2uM3uM4uM5 UM7,

T3=M1uM2uM3 uMduM~uM8.

For clarity, we show the conditions associated with T,:

{ return != -1,

@(*currentFloor <= MAX_FLOOR),

@(*currentFloor >. 1),

@( !isMember(W_FLOOR, UpCallS)),

@(!isMember(l, dOWCallS)),

@(*currentDirection != UP) 1.

We can generate two kinds of boundary test conditions. Both rep-

resent boundary cases of the normal behavior. Test conditions of

the first kind are obtained by combining the boundary conditions

generated from the normally expression with the non-boundary

conditions generated from the expression bound to exception

and the exception pre-conditions. For Assertion 3, the boundary

testing strategy requires these return-state test conditions:

Td=M1UM2UM3UMdUM5U B3,

T5=Mlukf2uM3uM4uM5 UB4.

We can also combine boundary conditions generated from the

exception pre-conditions and the expression bound to exc ep –

t ion with non-boundary conditions generated from the normally

expression. For Assertion 3, the following return-state test condi-

tions are required

T6=M1uB1uM3uM4uM5uM6,

T7=M1UB1UM3UM4UM5 UM7,

T8=M1UB1UM3UM4UM5U M8,

T9=M1UM2UB2UM4UM5U M6,

TIO=M1UM2UB2UM4UM5 UM7,

T11=M1UM2UB2UM4UM5U M8,

Note that in the above test conditions, each boundary is tested sep-

arately. We could also generate additional test conditions, each

with multiple boundaries, but this would substantially increase the

number of test conditions. Also we could have generated fewer

boundary test conditions if we have chosen not to generate bound-

ary conditions from exception pre-conditions. Whether to generate

more or fewer test conditions depends on what level of rigor is

requid and also on how much resonrce is allocated to testing.

The call-state test conditions are obtained exactly the same

way except that only call-state evaluatable expressions are consid-

ered. In the Elevator example, the expression bound to exc ep -

t ion is not call-state evaluatable. ‘Ihus, no condition is generated

from it. The conditions that are derived from exception pre-eondi-

tions are the same as those generated for return-state analysis (M2,

M3, M4, M5, B,, and B2) since both exception pre-conditions are

call-state evaluatable. Since only the left operand of the implica-

tion expression of Assertion 3 is call-state evaluatable, only the left

operand is considered. The following conditions are required by

the multicondition strategy:

{

{

and

(

@(*currentDirection != UP) ),

@(*currentDirection == Up),

@(*currentFloor >

max(setUnion(requests, upCalls))) ),

@(*currentDirection == UP),

@(*currentFloor <=

max(setUnion(requests, upCalls))) }.

The following conditions are required by the boundary testing

strategy:

( @(*currentDirection .= UP),

@(*currentFloor . .

max(setUnion(requests, upCalls)) + 1) ),
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and

{ @(*currentDirection == UP),
@(*currentFloor =.

max(setUnion(reWests, upCalls))) }.

The conditions are combined in the same way as in return-state

analysis. For example, the call-state test conditions generated

using only the multicondition strategy for Assertion 3 of the Eleva-

tor example are shown below:

{

{

and

(

@(*c~rrentFloOr <. MAX-FLQOR)I

@(*currentFloor >= 1),

@( !isMember(MAX_FLOOR, upCalls)),

@(!isMember(l, downfalls)),
@(*currentDirection != UP) },

@(*currentFloor <= MAX_FLOOR),
@(*currentFloor >= 1),

k3(!isMember (M,W_FLOOR, upCalls)),

@(!isMember(l, downfalls)),

@(*currentDirection == UP),

@(*currentFloor >

max(setUnion(requestsr upCalls) )) ),

@(*currentFloor <. MAX_FLOOR)I

@(*currentFloor >= 1),

@( dismember (WX_FLOOR, UpCallS)),

@(!isMember(l, downfalls)),
@(*~urrentDirQction == up),

@(*currentFloor <=

max(setUnion(requests, upCalls))) }.

The method that we have described also applies to Assertions 4-8

oftheElevator example.

4.2.2 Testing Exceptional Behavior

To test the specified exceptional behavior of the function, exc ep -

tionmusthave the value true. In the Elevatorexample, requir-

ingexcepti onbetrueproduces

{ (return == -1) ) (M9)

To test the exceptional behavior prescribed by an exception

expression pi <:> ql in the specification, we require that all other

exception pre-conditions ~j’s in ~j <:> Q, take the value f als e and

requirebothpl andqlbe true.

To test the behavior prescribed by Assertion 1 of the Elevator

example, the exception pre-condition of Assertion 2 must be false.

Applying the multicondition strategy to the pre-condition of Asser-

tion2, requiring its valuebefalse yields:

{ @( !isMember(MAX_FLOOR, uPCalls)) } (MIO)

and

{ @(!isMember(l, downfalls)) ]. (Mu)

Requiring both operands of Assertion 1 be true, the multicondition

strategies requires:

{ @(*currentFloor > MAX_FLOOR),

error =. INVALID_FLOOR }, (M12)

{ @(*currentFloor . . MAX_FLOOR),

@(*currentFloor < 1),

error == INVALID_FLOOR }, (M13)

Applying the boundary testing strategy yields the following

boundary conditions:

{

{

{

@(*currentFloor == MAX_FLOOR + 1),

error == INVALID_FLOOR ), (B5)

@(*currentFloor =. MIS_FLOOR),

@(*currentFloor < 1),

error == INVALID_FLOOR },

@(*currentFloor <= W_FLOOR),

(B6)

@(*currentFloor == 1 - 1),

error == INVALID_FLOOR } . (B7)

Our algorithm then combines conditions generated from the excep-

tion expression being considered, from other exception expres-

sion5(pj<:>qj),and from the expression bound to exception.

Two return-state test conditions are generated using the multicon-

dition strategy on Assertion 1 of the Elevator example:

T12=M9uM10 UM11UM12,

T13=M9uM10uM11 UM13.

Three return-state test conditions are generated using the boundary

testingstrategyon Assertion:

T14=M9u M1Ou M1lu B5,

T15=M9uM10uM11uB6,

T16=M9u M1Ou M1lu B7.

Call-state test conditions can be obtained using the same method

except that only call-state evaluatable expressions are considered.

Call-state test conditions for Assertion 1 of the Elevator example

are:

{ @( !isMeaber(M.AKFLOOR, upCalls)),
@(!isMe~er(l, d~~calls)),

@(*currentFloor > MAX_FLOOR) },

{ @( !isMember(MAX_FLOOR, upcalls)),

@( !isMernber(l, downfalls)),

@(*currentFloor <= MX_FLOOR),

@(*currentFloor < 1) },

{ @( !isMember(MAX_FLOOR, upCalls)),

@(!isMember(l, downfalls)),

@(*currentFloor =. MAX_FLOOR + 1) },

{ @( !isMember(MAX_FLOOR, upCalls)),

@(!isMember(l, downfalls)),

@(’currentFloor == MAIFLOOR),

@

and

*currentFloor < 1) },

dismember (MX_FLOOR, UPCallS) ) ,

!isMember(l, downfalls)),

*currentFloor <= W_FLOOR) ,

*currentFloor == 1 - 1) ] .

Themethod wehave described also applies to Assertion2.
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4.2.3 Elevator Results

Using the multicondition strategy, our algorithm would generate a

total of 28 call-state test conditions and 28 return-state test condi-

tions fmm the Elevator specification. These test conditions are all

feasible.

Applying the boundary testing strategy to the normally expres-

sion, our algorithm would generate 16 call-state test conditions and

16 return-state test conditions, These test conditions are all feasible

also.

Applying the boundary testing strategy to exception pre-condi-

tions and requiring exception take the value true, our algo-

rithm would generate 3 call-state and 3 returt-state test conditions.

One call-state test condition and one return-state test condition (i”l~

in Section 4.2.2) are infeasible. Both conditions require *cur-

rentFloor be equal to MAX_FLOOR and be less than 1.

Applying the boundary testing strategy to exception pre-condi-

tions and requiring exception take the value f al se, our algo-

rithm generates 48 call-state and 48 return-state test conditions.

Six call-state and six return-state test conditions are infeasible.

5 Related Work

Many papers have focused on specification-based testing. Goode-

nough and Gerhart [GG76] and GourIay [Gou83] demonstrate the

importance of specification-based testing. Many papers have since

focused on deriving tests from the specification. Weyuker and

Ostrand [W080] develop theories of program testing using reveal-

ing subdomains. They emphasize the importance of deriving test

cases tlom both the specification and the implementation. How-

ever, they do not provide a systematic way for creating the specifi-

cation partition. Richwdson and Clarke [RC85], Cartwright

[Cm81], and Richardson, O’Malley, and Tittle [ROT89] all pro-

pose using symbolic execution techniques to create the specifica-

tion partition. However, symbolic execution techniques cannot

easily be applied to several languages, ADL being one of them.

Our technique is an alternative approach that does not require sym-

bolic execution. Several other papers are also related. Ostrand and

Balcer [OB88] provide a methodology, the Category-partition

Method, for developing functional tests from informal system-

level specifications. Stocks and Barrington [SC93] introduce the

Test Template Framework in which specification-based testing can

be conducted. Whereas their approach focuses on providing a

framework for deriving specification-based tests, the focus of our

approach is on actually deriving the test conditions. Chang, San-

kar, and Richardson [CSR95] present some early ideas on deriving

tests from ADL, This paper is the continuation of that work,

Doong and Sankar [DS95] describe an implementation of a cover-

age ~alyzer for measoring multicondition coverage based on

z. It so haPP~~ th~ for tie Elevator eXWUpk?, there k a one-to-one cOme-

spondence between a call–state test condition and a return-state condition,

‘Ilms, the number of call-state test conditions is the same as the number

return-state conditions. ln general, tius is not the case.

ADL. We adopted a few ideas fmm tfds work, in particulw, on

how exception expressions are handled.

6 Conclusion and Future Work

Having the ability to automatically derive test conditions from for-

mal specifications offers several benefits. It provides a systematic

method for developing a black-box test suite. It also provides a

way to measure coverage of test data with respect to the specifica-

tion. We believe that having this capability would further encour-

age the use of formal specifications.

We are currently working on a tool based on the techniques

discussed in this paper. As part of future work we would liie to

apply our work to industrial applications and experiment with dif-

ferent test selection strategies. In addition, we would like to con-

duct an experiment to measure code coverage of test data

developed from test conditions that we generated by our method.
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Appendix The floors Module

isMember (e, s ) returns true if e is a member of the set s.

duplicate (s) returns a copy of the sets. setUnion (s, t )

returns the union of sets s and t. max (s ) returns the largest ele-

ment of the set s. min (s) returns the smallest element of s.

deleteElement (s, e ) returns a copy of s with e removed

from the copy. deleteElements (s, a, b) returns a copy of

s with elements ranging from a to b removed. equal (s, t )

retorns true if two sets have the same set of elements. emp -

ty (s ) returns true if s is empty.
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