
1

Specifying and Testing
Software Components using ADL

Sriram Sankar
Roger Hayes

SMLI TR-94-23 April 1994

Abstract:

This paper presents a novel approach to unit testing of software components. This approach uses the
specification language ADL, that is particularly well-suited for testing, to formally document the intended
behavior of software components. Another related language, TDD, is used to systematically describe the
test-data on which the software components will be tested.

This paper gives a detailed overview of the ADL language, and a brief presentation of the TDD language.
Some details of the actual test system are also presented, along with some significant results.

email addresses:
sriram.sankar@eng.sun.com
roger.hayes@eng.sun.com

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

2

3

Specifying and Testing Software Components using ADL

Sriram Sankar Roger Hayes

Sun Microsystems Laboratories, Inc.

2550 Garcia Avenue

Mountain View, California 94043

1 Introduction

At the start of the programming task, the programmer is supplied with aspecification of the prob-
lem. The specification can range from being quite detailed, such as a document that describes the
intended behavior of the program in all possible circumstances, to being quite informal, such as a
prose description of what the program is supposed to do in a few situations.

In practice, the programmer has several sources of information available that comprise the speci-
fication. These may include a formal specification document, a working prototype, instances of
program behavior, anda priori knowledge about similar software.

Working from this specification, the programmer develops the program. Thevalidation of the
program lies in the comparison of the program with the specification of intended behavior.

To automate the validation process, it is essential to formalize the specification of the program.
For this purpose (among others), various specification languages and specification techniques
have been designed—an overview of which can be found in [10]. Some examples of specification
languages are Anna [11], Z [15], Larch [7], and VDM [2].

Our approach to program validation is throughtesting. In this approach, the program is run with
many different test inputs in a systematic manner. Correct behavior is determined by examining
the results of the program or function in terms of the specification that describes its behavior. Cor-
rect execution of the program on these test inputs increases the level of confidence in the program.

There are two parts to software testing. First, there is the problem oftest-data selection. Since any
test-data will necessarily be a very small sample of all the possible inputs, test-data should be

4

selected in such a way that successful execution of a program on these test-data gives us a reason-
able amount of confidence in the correctness of the program for all possible inputs. At the same
time, the test-data should be such that redundancy in the testing process is minimized.

For this purpose, we have designed a high-leveltest-data description (TDD) language in which
test-data for a program is described in a systematic manner.

Second, the program needs to be run on each set of test-data to determine if the program behaves
as intended for this set of test-data. In most published work on testing, the details of this determi-
nation have not been dealt with. Rather, anoracle is assumed to exist. This oracle can judge for
any specific set of test-data, whether or not the program behaves as intended. The idealization of
the oracle has been essential for software testing. Lately, however, much work has been done to
realize this oracle. In nearly all cases, this has been achieved by comparing the behavior of a pro-
gram against its specifications that have been written in some formal specification language (e.g.,
see [5, 3, 14]).

We have designed a specification language called ADL (Assertion Definition Language). The
design of ADL is well-suited for testing—generating a test oracle from an ADL specification is a
straightforward process.

Pilot implementations for an ADL-based test generation system have been undertaken, and we
have had significant results from these experiments. For example, we discovered an anomaly in
an implementation of thewrite system call in the UNIX® operating system. Thewrite func-
tion is specified to update the last modification time of a file. On a particular version of the UNIX
operating system, performing a write with a 0 byte data value changed the modification time on
local files, but did not in the case of remote files. Since a write of 0 bytes does not change the file,
either behavior is defensible, but the English specification is not clear on the point. The anomaly
had not been detected earlier, even though standard rigorous testing schemes had been applied on
this system call. The reason we were able to detect this was due to the systematic nature of devel-
oping the specifications and test-data descriptions.

Overview of this paper
This paper presents an overview of our testing methodology. The ADL and TDD languages are
described, although more attention is paid to the ADL language. Other aspects (other than ADL)
are covered in brief in this paper, but will be covered in detail in future papers.

The remainder of the introduction lists the high-level features of ADL and TDD, and then pro-
vides some background information on test-data selection and on earlier work of the PrimaVera
group at Sun Microsystems Laboratories, Inc.

Section 2 describes the ADL language. Section 3 describes howassertion-checking functions (our
oracle) are generated from ADL specifications, and provides a description of the TDD language.
Finally, Section 4 concludes the paper with a discussion of ongoing work.

More information on the ADL testing methodology and environment is available in [16] and [17].

5

1.1 ADL

ADL is a language designed for formal specification of software components. It is well-suited for
the purpose of testing. ADL defines a set of general-purpose specification concepts applicable for
the specification of software written in most programming languages. Some of the key features of
ADL are listed below:

• ADL is a language framework that provides a set of high-level specification concepts. These
concepts may be specialized for use with a programming language by rendering them into a
syntax similar to that of the programming language.

• All ADL specifications are post-conditions on operations (or functions) of software compo-
nents. Therefore, ADL specifications are constraints on the program state at the time of ter-
mination of operation evaluations.

• ADL specifications are written as separate units—i.e., they are not embedded in the pro-
gram. The ADL specification writer defines a binding between the specifications and the
functions in the program to provide the necessary association. This makes them suitable for
specifying extant program libraries.

• ADL specifications may be partial. That is, the complete details of the function do not have
to be written in ADL. Typically, ADL specifications are augmented with informal natural
language documentation.

• ADL provides specialized constructs for the specification of errors. Most specifications
written as natural language documents (such as UNIXman pages) describe error situations
separately. ADL’s error specification constructs allow a formal specification to be organized
in a similar manner.

• ADL constructs are designed to allow translation of formal specifications into natural lan-
guage documents. ADL’s constructs are at a high-level of abstraction and permit a specifica-
tion writer to write specifications very similar to the way they would do it in a natural
language; hence the translation process is straightforward.

• ADL is well-suited for the purpose of testing software components. Difficult to evaluate
constructs such as quantifiers have been excluded from the language for the time being.

1.2 TDD

The TDD language offers the test designer a formal and structured framework for describing test-
data. TDD provides a structure for characterizing and documenting the data used in testing.
Through the use of TDD’s syntax, test-data becomes the subject of a design process. The impor-
tant features of TDD are listed below:

• Data is characterized in an abstract and systematic way. By using a formal system for notat-
ing the description of test-data, we focus on the test designer’s intention rather than on the
details of generating a particular instance of test-data.

6

• Test-data is generated without prejudice. By isolating the description of test-data from its
realization, we explore what might otherwise have been blind spots. TDD encodes the
designer’s insight into formal descriptions, which are decompositions of the properties of
the data. These descriptions are recombined into test cases. This ensures that all combina-
tions of properties are tested; without the decomposition/recomposition process, it is very
easy to omit an important test because it does not occur in an imagined scenario of use.

• Input is characterized independently of any particular implementation. TDD describes the
input data from the point of view of a user of the tested software component. A TDD
description may be constructed with insight into implementations, but its correctness does
not depend on a particular implementation. This means that a TDD test suite is portable
across implementations.

• Iteration over the test cases is systematic and thorough. The regularity of the process allows
for better statistics and also helps reduce the incidence of errors missed due to oversight.

• Data manufacture is isolated. The messy task of generating actual test values is encapsulated
in well-defined functions. These functions, that translate symbolic descriptions into actual
values, can be used in manually written tests as well as in ADL-generated tests.

1.3 Background on Test-Data Generation

A large number of tools have been designed for test-data generation since the early 1970’s. The
emphasis has been to generate test-data that exercises as much of the program code as is practi-
cally possible. Some approaches have been to generate test-data that force every program state-
ment to be executed (statement coverage), while others force every edge in the program’s
flowchart to be traversed (path coverage). A useful technique for test-data generation is symbolic
execution of the program [3, 9]. Symbolic execution can be performed in a forward traversal or a
backward traversal of the program paths. During these traversals, various constraints are estab-
lished which are then used to generate the test-data. This falls under the general category ofwhite-
box testing. In white-box testing, the structure of the program is examined and test-data are
derived from the program’s logic. The other category isblack-box testing. This is also known as
functional testing. In this case, the internal structure and behavior of the program is not consid-
ered. The objective is solely to find out when the input-output behavior of the program does not
agree with its specification. In this approach, test-data are constructed from the specification [8,
12].

Weyuker and Ostrand [18], building on the work of Goodenough and Gerhart [6], attempt to
define a theoretically sound and practical definition of what constitutes an adequate test. The idea
is to divide the test-data into a finite number of equivalence classes where testing on a representa-
tive of an equivalence class will, by induction, test the entire class. The equivalence classes are
derived from both the program specification (called a problem partition of the input in [18]) and
an examination of the program structure (called a path domain partition). TDD is very nearly an
implementation of the concept of revealing subdomains from this work.

7

1.4 The PrimaVera Project

The PrimaVera group at Sun Microsystems Laboratories, Inc. has been working on applying for-
mal specification techniques to software testing for eight years. Our emphasis is on good engi-
neering solutions, minimizing the cost of adoption and training. We strive for systems that
combine the benefits of formal methods with a low entry cost, and systems that allow incremental
adoption with an early payback.

After several years of internal development and deployment, it was decided to make our work
externally available. The PrimaVera technology was submitted in response to a request for pro-
posals for automated testing technology issued by X/Open Company Limited, and was selected
for a joint research project sponsored by a research grant from Information-Technology Promo-
tion Agency, Japan (IPA), a governmental organization under Ministry of International Trade and
Industry (MITI).

2 The ADL Language

ADL is a language framework designed for the formal specification and testing of software com-
ponents. ADL defines a set of general-purpose specification concepts applicable for the specifica-
tion of software written in most programming languages. ADL excludes specification concepts
that, although useful, are difficult to implement using state-of-the-art technology.

The concepts of the ADL language framework may be specialized for use with a programming
language by rendering these concepts into a syntax similar to that of the particular programming
language. This syntax may then be augmented with constructs from the programming language,
such as its expression syntax. This approach of defining a language framework that may be spe-
cialized for use with any language has been used successfully in other projects, e.g., IDL [4],
Rapide [1], and Larch [7].

The ADL language framework has been specialized for use with the C programming language,
and with IDL—Object Management Group’s interface definition language for the CORBA archi-
tecture specification. We intend to specialize ADL for use with C++ and Ada® shortly. For the
purposes of this paper, ADL will be described through its specialization for the C programming
language.

Other important aspects of ADL are described below.

• Post-condition specifications
All ADL specifications are post-conditions on operations (or functions) of software compo-
nents. Therefore, an ADL specification is a constraint on the program state at the time of ter-
mination of operation evaluation. This constraint may be contingent on pre-operation
program state by use of thecall-state operator.

8

This is an example of ADL’s client orientation. An ADL specification does not give
conditions under which the function must be called, but instead tells what will happen if
it is called.

• Non-intrusive
ADL specifications are written as separate units—i.e., they are not embedded in the program
(e.g., as in Anna). The ADL specification writer defines a binding between the specifications
and the functions in the program to provide the necessary association. This binding provides
sufficient information for the ADL testing tools to generate frameworks to test these func-
tions.

This approach is non-intrusive to the extent that the functions being specified need not
be recompiled for testing purposes. Hence, the ADL testing technology may be applied
to precompiled code, including code such as operating systems, that by their very nature
cannot be recompiled and reloaded in a straightforward manner.

• Constructs for specification of errors
Figure 1 illustrates the possible outcomes of an operation evaluation. The outcomes can be
divided into two categories—expected andunexpected. Expected outcomes (the white por-
tion of Figure 1) are those that are included in the documented behavior of the function,
while unexpected outcomes (the grey portion of Figure 1) are outcomes that are not sup-
posed to happen (e.g., (2+2) evaluating to 5).

Figure 1.The Possible Outcomes of an Operation Evaluation

Unexpected

Outcomes

Normal

Outcomes

Exception

Outcomes

9

Our research has shown that it is convenient to divide the expected outcomes of an
operation intonormal and exception (or abnormal) outcomes. This division is usually
subjective, but some general guidelines may be laid down. For example, the outcome of
(2+2) evaluating to 4 is usually considered a normal outcome, while the outcome of
(128+128) being an overflow is usually considered an exception outcome.

ADL provides constructs to separate the handling of normal and exception outcomes of
an operation, and to specify against unexpected outcomes.

• Simple natural language mapping
One of the mandates of the ADL project has been to develop a capability to transform a
specification written in ADL into an equivalent natural language representation. This prob-
lem is, in general, untractable. However, ADL’s constructs are at a high-level of abstraction
and permit a specification writer to write specifications very similar to the way they would
in a natural language. The error specification mechanisms discussed earlier are an example
of these high-level constructs. The task of translating ADL specifications into equivalent
natural language documents (e.g., UNIX man pages) becomes quite simple if the specifica-
tion writer adheres to these high-level constructs while writing ADL specifications.

• Enables testing
The fact that the ADL design emphasizes applicability to testing of software components
has already been mentioned. We reiterate this in the context of the other features such as the
specification being non-intrusive, and being from a client’s point of view. Furthermore,
specification constructs such as quantifiers and algebraic specifications have been omitted
from the current version of ADL. We have plans to explore the introduction of these con-
structs in the future.

2.1 ADL Constructs

The constructs provided by the ADL framework are described in this section. Some of these con-
structs are illustrated through examples in Section 2.2.

An ADL specification is made up of a set ofmodules. Each module encapsulates a set ofconstitu-
ents that describe the entities in the C program that are being specified. Modules may also refer to
each other’s constituents by importing constituents from one module to another.

A constituent of a module may be one of the following:

• Type constituent
A type constituent defines a type and gives it a name. It’s syntax is identical to the C
typedef statement.

10

• Object constituent
An object constituent introduces an object1 and associates it with a type. It’s syntax is simi-
lar to that of a C object declaration. Objects introduced by object definitions are bound to C
objects with the same type.

• Function constituent
A function constituent introduces a function and specifies its parameter and result types. It’s
syntax is similar to that of a C function declaration. Functions introduced by function defini-
tions are bound to C functions that have the same parameter and result types.

Function constituents may containsemantic descriptions. A semantic description describes the
behavior of the C function that is mapped to it’s function constituent. The semantic description
constrains the program state at the end of calls to this C function. A semantic description has two
components:

• Bindings
Bindings are associations between expressions and names. These names may be used subse-
quently as a short form for their associated expressions.

• Assertions
An assertion is a Boolean expression that must be true whenever control returns from the
function constrained by the semantic description.

It is often useful to make use of existing specification concepts while writing assertions. Some-
times these concepts may already exist as part of an module. However, there will be situations
where these concepts are missing. In such situations, missing, but necessary, specification con-
cepts can be declared asauxiliary definitions. Auxiliary definitions are simply ADL declarations
that are visible only within bindings and assertions.

Predefined ADL operators and functions
Some of ADL’s primitives for use in assertions are described below:

• Call-state operator
The call-state operator (“@”) takes one argument and evaluates it at the time of call to the
function being specified.

• normal andexception
normal andexception are predefined names that may be bound to boolean expressions
that characterize the normal and exception outcomes respectively (see Figure 1).

1. The word “object” is used here in the same sense as in C.

11

• Implication operators
ADL provides the standard logical implication and equivalence operators. It also provides
anexception operator (<:>) that characterizes error situations by listing the conditions that
cause the function to fail, and relates them to the error conditions that take place. This oper-
ator is used to characterize the exception outcomes of the function being specified.

• normally
This is a function that characterizes the normal outcomes of the function being specified. It
takes a list of boolean parameters that must all be true on any normal outcome.

2.2 ADL Examples

This section provides two examples of an ADL specification of a bank module. The first example
defines three operations,balance , deposit , andwithdraw , within an module. These functions
map to C functions with similar names and signatures. The specifications written in ADL describe
the intended behavior of these C functions. The ADL specification is shown in Figure 2.

The bank specification of Figure 2 contains 7 constituents:

1. errno : This is an object constituent. It is defined to be of typeint . This maps to the stan-
dard C global variableerrno .

2. NEG_AMT: This is also an object constituent. It describes a particular value thaterrno can
take. This maps to a C integer constant.

3. INS_FUND: Just asNEG_AMT, this describes another value thaterrno can take and maps to
a C integer constant.

4. acct_no : This is a type constituent. This definesacct_no as another name forint .

5. balance : This is a function constituent. It describes a function that takes a parameteracct
of typeacct_no and returns a value of typeint . The parameter is qualified to be of mode
in , which indicates that only the input value of the parameter is relevant.balance maps to
a C function with the same name, and same parameter and return types.

6. deposit : This is another function constituent. It takes two parameters and has a semantic
description associated with it. Just as in the case ofbalance , this too maps to a C function
with the same name, and same parameter and return types.

7. withdraw : This is another function constituent with a more detailed semantic description.

Semantic descriptions
The semantic description of deposit contains two assertions. The first assertion contains the
call-state operator “@”. The call-state operator evaluates its argument (in this case
balance(acct)) in the state at the time the function is called. This assertion states that the

12

balance of accountacct (i.e., balance(acct)) after the call todeposit is equal to the sum
of the balance before the call and the amount deposited (i.e.,amt).

The second assertion aboutdeposit contains the reserved wordreturn . This is used to refer to
the value returned by the function (in this casedeposit). This assertion states that the value
returned bydeposit is the new balance of accountacct .

module bank {

int errno;
int NEG_AMT, INS_FUND;

typedef int acct_no;

int balance(in acct_no acct);

int deposit(in acct_no acct, in int amt)
semantics {

balance(acct) == @balance(acct) + amt,
return == balance(acct)

};

int withdraw(in acct_no acct, in int amt)
semantics {

exception := (return == -1),
normal := !exception,
negative_amount := (errno == NEG_AMT),
insufficient_funds := (errno == INS_FUND),
@(amt < 0) <:> negative_amount,
@(amt > balance(acct)) <:> insufficient_funds,
exception --> unchanged(balance(acct)),
normally (

balance(acct) == @balance(acct) - amt,
return == balance(acct)

)
};

};

Figure 2.The Bank Module in ADL

13

The semantic description ofwithdraw contains four bindings (the first four lines) and then a list
of assertions. The bindings bind expressions to names. Use of these names in subsequent expres-
sions then refer to the bound expressions.

The first two bindings bind expressions to the special namesexception andnormal . The bind-
ings to these names, together with their use in specifications, characterize the normal and excep-
tion outcomes ofwithdraw . exception is bound to the expression(return == -1) , while
normal is bound to the expression!exception , (i.e.,!(return == -1)). In addition to pro-
viding a binding forexception andnormal , these bindings also define the meanings of the
exception operator<:> and the functionnormally . These are described in the following para-
graphs.

The next two bindings provide short forms for the expressions(errno == NEG_AMT) and
(errno == INS_FUND) .

The first assertion aboutwithdraw contains the exception operator<:> . The exception operator
characterizes error situations by listing the conditions that cause the function to fail and relating
them to the error conditions that result. More specifically, the exception operator states that if its
left operand is true, then the function will fail (i.e.,exception will be true), and if the function
fails and the right operand is true, then the left operand must be true. The intent is that the left
operand defines the only program state that can cause the particular exception defined by the right
operand, without prohibiting another independent exception.

This particular assertion states that ifamt is less than 0 whenwithdraw is called, the function
will fail (the function will return the value -1). Also, if the function fails andnegative_amount
is true(errno == NEG_AMT) , thenamt had to be less than 0 whenwithdraw was called.

Similarly, the second assertion aboutwithdraw states that ifamt is greater than the balance of
accountacct whenwithdraw is called, then the function will fail. Also, if the function fails and
insufficient_funds is true, thenamt has to be greater than the balance of accountacct
whenwithdraw was called.

The third assertion aboutwithdraw contains a predefined function calledunchanged . This
function returns true if its argument has the same value after the call as before the call. This asser-
tion therefore states that ifwithdraw fails, the balance of accountacct will not change.

The fourth assertion aboutwithdraw uses the predefined functionnormally . normally takes
an arbitrary number of boolean parameters and returns true if all its parameters are true whenever
normal is true. Therefore, on a normal return from the function being specified, all the parame-
ters ofnormally must be true.

This particular assertion states that on a normal return fromwithdraw (i.e., the function does not
return -1), the balance in accountacct is decremented byamt , and the function returns the new
account balance.

14

The second example illustrates the use of auxiliary definitions. Suppose the bank module did not
define the functionbalance . Then it would not be possible to write assertions fordeposit and
withdraw in the style of the previous example, since these assertions make use of the notion of
balance . In this case,balance may be introduced as an auxiliary definition. Figure 3 shows the
bank module with the functionbalance introduced as an auxiliary definition. The auxiliary defi-
nition must be bound to a Ctest function with the same parameter and result types as balance for
testing to be possible.

3 Software Testing using ADL

ADL may be used in the testing of software in a variety of ways. In this section, we describe how
ADL is used for the unit testing of C functions. A brief summary of other ways of testing being
considered is presented in Section 4.

The following components are required for unit testing:

1. A function to be tested.

2. Test-data on which to execute the function. In this case, test-data is specified through the
TDD file. This is described in Section 3.2.

3. A means of determining whether or not the function executed correctly. In this case,
assertion-checking functions generated from the ADL specifications handle this task. This is
described in Section 3.1.

module bank {

. . .

auxiliary {
int balance(in acct_no acct);

}

int deposit(in acct_no acct, in int amt)
. . .;

int withdraw(in acct_no acct, in int amt)
. . .;

};

Figure 3.Auxiliary Definitions in ADL

15

Figure 4 illustrates the steps required to perform unit testing. The three components required for
unit testing are shown on the left column. The double-edged arrow between the function under
test and the ADL specification illustrates the binding between these two entities. From these two
entities is constructed the assertion-checking function. Also, from the third component, the TDD
file, is constructed the test driver that calls the function under test with different sets of test-data.
The three shaded boxes are then linked and loaded together to obtain the test executable. When
the text executable is run, it produces the test results that describe how the function performed on
the given test-data.

The next two parts of this section present an overview of assertion-checking functions and TDD
files.

3.1 Assertion-Checking Functions

An assertion-checking function is a wrapper around the function under test which, in addition to
calling the function under test, also evaluates its ADL assertions to determine whether or not the
function is behaving correctly. The assertion-checking function works roughly as follows:

1. Evaluate all sub-expressions qualified by the call-state operator, and save these results.

2. Call the function under test with the same parameters that were passed to it.

3. Evaluate all assertions after replacing the sub-expressions qualified by the call-state operator
with their corresponding values as evaluated in the first step.

4. If any of the assertions evaluate to false, then report it as an error.

Figure 4.The Steps Involved in Unit Testing

Function under

Test

ADL

specification

TDD

file

Assertion-checking

function

Test driver

Test

executable

Test

results

16

Advantages
The assertion-checking function isolates into a single function the task of checking that the func-
tion meets its specifications. Being a wrapper, assertion-checking functions can be used with any
input. It could be used with exhaustive input which would not be feasible in any system that
required human attention to each test case.

The assertion-checking function also isolates the task of checking from the preparation of test
input and from function implementation.

Auxiliary definitions
If assertions refer to auxiliary code (such as functions), the assertion-checking functions will eval-
uate this auxiliary code. Hence, the implementations of auxiliary definitions have to be trusted.
Care must be taken in choosing implementations of auxiliary definitions, for if they fail, they can
jeopardize the testing process too.

3.2 TDD Files

The TDD file offers the test designer a formal and structured framework for describing test-data.
The TDD file provides a structure through which the type of data used to test the function is char-
acterized and documented. Through the use of the TDD syntax, test-data becomes the subject of a
design process.

The testing process has both mechanical and creative aspects. Writing iterative loops to supply
test-data to a function is rather mechanical work. However, deciding which test-data to supply
requires some ingenuity. The possible universe of test-data for any one function parameter may be
very large. The problem is breaking down that possibly very large universe into a finite set of test
cases.

There are many analysis tools available for examining test results and relating them to the code
under test, performing coverage analysis and error analysis of various sorts. TDD is not a tool in
that category; instead, it is a design tool for test-data. It gives test designers a language for record-
ing their insights in a systematic and easily communicated way. The design can then be used to
help generate test programs.

The mathematical foundation for the language is the idea of dividing the possible test-data into
equivalence classes and then selecting a representative for each class.

Equivalence and representatives
The basis for selecting a subset of all possible inputs is the notion of equivalence. Two test inputs
are equivalent, with respect to a particular correctness check for a particular function under test, if
they produce the same test result. The two inputs are equivalent if it is not possible to tell them
apart by running the test.

Note that this definition of equivalence depends on the measure of correctness as well as on the
function under test.

17

If a group of test inputs is equivalent, it is not necessary to run the test on more than one of the
inputs; any one can be chosen. No additional information can be gathered by running the test on
another input in the same equivalence class.

The art of the test designer is to define an equivalence partition; it requires insight into the imple-
mentation and into possible errors, as well as into the typical uses of the function under test and
the structure of the data. There are tools to assist in the process of analysis. The TDD language is
a tool to help record the results of the analysis, not to perform the analysis. In the terminology of
[18], TDD is a tool to specify the problem partition.

The result of the analysis is a set of test cases that provide the desired coverage of the function
under test. Mathematically, these are a set of representatives of the equivalence classes in the test
input space. Operationally, they are the values on which to test the function.

Abstraction of test input
The TDD file describes the test-data symbolically. It is not simply a list of test inputs, but a set of
characteristics of the test inputs. These characteristics are calledproperties. These symbolic prop-
erties serve as documentation of the test-data; they describe the intent of the data. In addition, by
separating the characterization of the data from the actual data, the test specification can survive
changes in the system environment.

Formally, a property is applied to a data type and notates a partition of that data type. Each datum
in the data type is described by exactly one of the choices for the property. A data type is typically
described by the cross-product of several properties. Each element in the data type is described by
a tuple of choices from the cross-product of properties. The data type is hence partitioned into
classes, each of which is an intersection of the classes determined by the individual properties of
the data type.

Example
Consider testing a function that appends to the end of a file a transaction with a particular size and
kind. In the TDD file, one would not list a set of numbers to use as the number of bytes, but
instead describe the numbers symbolically:

prop trans_size =
{negative, zero, small, large, huge}

Thus, the size of a transaction is characterized by one of the properties:negative , zero , small ,
large , or huge . Similarly, the kind of transaction is described symbolically:

prop trans_kind =
{read, write, create, delete}

Anyone reading the TDD file has, at a glance, an idea of the tests that will be run on the function.

As a consequence, as the implementation is modified over time, the design of the test-data can
survive. In testing a file system, the specific values for the size of a transaction will typically

18

depend on the block size of the file system implementation. By using an abstract definition, the
same test design can be used for any block-structured file system.

This symbolic description of the input, as well as being independent of the details of the data
structures described, is also independent of the particular implementation of the function under
test. While the TDD file should be written with insight into the possibilities of an implementation,
it specifies a black box test. There is no direct input in terms of code coverage, for example,
although feedback from such measurements can certainly be used to improve the quality of the
input descriptions when developing and running tests.

Provide functions
The TDD file gives a symbolic description of the desired test input. That symbolic description is
converted into actual data values during the execution of a test, byprovide functions. These are
functions written by the test engineer and linked with the generated test program; they encapsu-
late the task of generating test values. All too often, the complexity of the mechanism that pro-
duces test-data hides the intent of the data. Provide functions, in contrast, have a well-defined
interface and perform a clearly defined task: to generate one data value with a specific set of char-
acteristics described by a set of properties.

Isolating the data-generation code into the provide functions is an important benefit. The often-
messy details of generating data values are encapsulated in the provide function; the property
arguments to the provide function express the intent of the test variable. Provide functions are
modular, reusable, and have a clearly defined task; the technique would be useful even without
automatic test generation.

Relation to ADL and the test program
The purpose of the TDD language is to describe data values that will be used in tests. Those val-
ues are data in the host programming language. Values of test variables are described symboli-
cally; the test designer writes a provide function to translate those symbolic descriptions to
programming language data during the execution of the test. The ADL type of the test variable
determines the signature of the provide function.

A test directive in the TDD file is translated into a test driver program; that test driver makes calls
to the provide functions and to the assertion-checking functions.

A TDD file is written with respect to a fixed ADL file; the type names and function names that can
be used in the TDD file are those declared in the ADL file. There can be more than one TDD file
for a particular ADL file.

4 Conclusions and Future Work

In this paper, we presented an overview of a capability to test software components in a system-
atic and non-intrusive manner. We have not yet published any details of our experience in imple-
menting and using a test generation system implementing these capabilities. We are currently

19

constructing an implementation targeted for an ANSI C environment, which will be made widely
available.

There is also scope to extend our capability in many ways. Keeping the ADL specifications and
assertion-checking functions, we can replace the TDD file with many other test-data generating
schemes. A straightforward approach is the generation of random data; another approach is the
generation of large volumes of (possibly similar) data for stress-testing.

We are also considering more involved extensions of our testing capability. One extension is to
test the behavior of combinations of operations (as opposed to unit testing). As a motivating
example, there is very little that unit testing can do for a stack in this case; the push and pop oper-
ations have to be run in various combinations for comprehensive testing. Another extension is to
test the behavior of an operation when multiple processes attempt to access it simultaneously.
This happens frequently with system calls.

Research is currently underway to develop methods for translating ADL specifications into natu-
ral language documents. This will be the subject of a future paper.

Finally, we intend to apply the ADL specification methods to other languages such as C++ and
Ada.

5 Acknowledgements

The original work on ADL was done by Sun Microsystems Laboratories, Inc. This has now been
extended in collaboration with X/Open Company Limited with funding from the Information–
Technology Promotion Agency, Japan. All results are being made publicly available and open
industry review is invited.

6 References

[1] Belz, Frank and Luckham, David C. “A New Approach to Prototyping Ada-based Hard-
ware/Software Systems.” Proceedings of the ACM Tri-Ada Conference (December 1990).

[2] Bjorner, D. “VDM '87—A Formal Method at Work.” Vol. 252 ofLecture Notes in Com-
puter Science. New York: Springer-Verlag, 1987.

[3] Boyer, R. S., B. Elspas, and K. N. Levitt. “SELECT—A Formal System for Testing and
Debugging Programs by Symbolic Execution.”Proceedings of the International Confer-
ence on Reliable Software (April 1975): 234–245.

[4] Digital Equipment Corporation, Hewlett Packard Company, HyperDesk Corporation, NCR
Corporation, Object Design, Inc., and SunSoft, Inc.The Common Object Request Broker:
Architecture and Specification. revision 1.1. OMG document number 91.12.1 edition.
December 1991.

20

[5] Gannon, J., P. McMullin, and R. Hamlet. “Data-abstraction Implementation, Specification,
and Testing.” ACM Transactions on Programming Languages and Systems 3, no. 3 (July
1981): 211–223.

[6] Goodenough, J. B. and S. L. Gerhart. “Towards a Theory of Test-data Selection.”Proceed-
ings of the International Conference on Reliable Software(April 1975): 493–510.

[7] Guttag, J. V., J. J. Horning, and J. M. Wing. “The Larch family of Specification Lan-
guages.”IEEE Software 2, no. 5 (September 1985): 24–36.

[8] Infotech International.Infotech State of the Art Report. Software Testing Volume 1: Analysis
and Bibliography. 1979.

[9] King, J. C. “A New Approach to Program Testing.”Proceedings of the International Con-
ference on Reliable Software(April 1975): 228–233.

[10] Liskov, B. and S. Zilles. “Specification Techniques for Data Abstraction.” IEEE Transac-
tions on Software EngineeringSE-1, no. 1 (March 1975): 7–19.

[11] Luckham, David C., Friedrich W. von Henke, Bernd Krieg-Bruckner, and Olaf Owe.
“ANNA, A Language for Annotating Ada Programs.” Vol. 260 ofLecture Notes in Com-
puter Science. New York: Springer-Verlag, 1987.

[12] Meyers, G. J.The Art of Software Testing. New York: John Wiley & Sons, 1979.

[13] Richardson, D. J., S. L. Aha, and T. O. O’Malley. “Specification-based Test Oracles for
Reactive Systems.”Proceedings of the Fourteenth International Conference on Software
Engineering (May 1992).

[14] Sankar, S. “Automatic Runtime Consistency Checking and Debugging of Formally Speci-
fied Programs.” Ph.D. thesis, Stanford University, 1989. Also Stanford University Depart-
ment of Computer Science Technical Report No. STAN-CS-89-1282 and Computer
Systems Laboratory Technical Report No. CSL-TR-89-391.

[15] Spivey, J. M. “Understanding Z, A Specification Language and its Formal Semantics.”
Tracts in Theoretical Computer Science, vol. 3. Cambridge University Press, 1988.

[16] Sun Microsystems, Inc., U. S. A. and Information-Technology Promotion Agency, Japan.
ADL Language Reference Manual. document no. MITI/0002/D/0.1 edition. August 1993.

[17] Sun Microsystems, Inc., U. S. A. and Information-Technology Promotion Agency, Japan.
ADL Translator Design Specification. document no. MITI/0001/D/0.1 edition. August
1993.

[18] Weyuker, Elaine J. and Thomas J. Ostrand. “Theories of Program Testing and the Applica-
tion of Revealing Subdomains.”IEEE Transactions on Software Engineering6, no. 3 (May
1980): 236–246.

21

About the authors
Sriram Sankar is currently a member of the PrimaVera group at Sun Microsystems Laboratories,
Inc. Previously, he was a research staff member at the Computer Systems Laboratory at Stanford
University. His current research interests include programming methodologies, programming and
specification languages, and the application of formal reasoning in software development and val-
idation. His earlier work includes the development of compilers and environments for Ada and
Anna. He received a BTech in Computer Science at the Indian Institute of Technology, Kanpur,
and MS and Ph.D. degrees at Stanford University, California.

Roger Hayes received the BS degree in computer science from Portland State University in 1982,
the MS degree in computer science from the University of Arizona in 1986, and the Ph.D. degree
in computer science from the University of Arizona in 1989. Since 1989, he has worked at Sun
Microsystems, Inc. in platform software and automated testing methods. He is currently a mem-
ber of the PrimaVera group at Sun Microsystems Laboratories, Inc., Mountain View, California.

22

© Copyright 1994 Sun Microsystems, Inc. The SMLI Technical Report Series is published by Sun Microsystems Laboratories, Inc.
Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are regis-
tered trademarks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered
trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPARCompiler are licensed exclusively
to Sun Microsystems, Inc. Ada is a registered trademark of U. S. Department of Defense A. J. P. O. All other product names mentioned herein are
the trademarks of their respective owners.

