
On the Complexity of
Verifying Stateful Networks

A. Panda S. Shenker Y. Velner K. Alpernas A. Rabinovich M. Sagiv S. Shoham

Milestones
• [91] Logic programming for static analysis
• [95] nterprocedural Analysis

– Context free reachability
– Susan Horwitz & Tom Reps

• [03]CSSV: Proving the absence of buffer overrun
– Dor, Rodeh, PLDI’03, Airbus

• [96-] Shape Analysis
– Reasoning about heap reachability
– TVLA

"Things like even software verification, this has
been the Holy Grail of computer science for
many decades but now in some very key areas,
for example, driver verification we’re building
tools that can do actual proof about the
software and how it works in order to
guarantee the reliability." Bill Gates, April 18,
2002. Keynote address at WinHec 2002

Panaya Impact Analysis Tool
•Yossi Cohen and Nurit Dor
• Acquired by Infosys

http://www.microsoft.com/billgates/speeches/2002/04-18winhec.asp
http://www.microsoft.com/winhec/
http://www.microsoft.com/winhec/
http://www.microsoft.com/winhec/

The Internet: A Remarkable Story

• Tremendous success
– From research experiment

to global infrastructure

• Brilliance of under-specifying
– Network: best-effort packet delivery

– Hosts: arbitrary applications

• Enables innovation in applications
– Web, P2P, VoIP, social networks, virtual worlds

• But, change is easy only at the edge… 

4

Inside the Net: A Different Story…
• Closed equipment

– Software bundled with hardware

– Vendor-specific interfaces

• Over specified

– Slow protocol standardization

• Few people can innovate

– Equipment vendors write the code

– Long delays to introduce new features

5

Impacts performance, security, reliability, cost…

Do We Need Innovation Inside?

6

Many boxes (routers, switches, firewalls, …), with
different interfaces.

• Networks provide end-to-end connectivity

• Just contain host and switches

• All interesting processing at the hosts

Alice Bob

Trent

Ted Stevens was right
Classical Networking

Mallory

• Security (firewalls, IDSs,…)

• Performance (caches, load balancers,…)

• New functionality (proxies,…)

Alice Bob

Trent Mallory

Security & Performance

Firewall

Load
Balancer

Cache

Middleboxes

• Middleboxes are intermediaries
– Interposed in‐between the communicating hosts

– Often without knowledge of one or both parties

• Examples
– Network address translators (NAT)

– Firewall

– Traffic shapers

– Intrusion detection systems (IDSs)

– Transparent Web proxy caches

– Application accelerators

NAT

local prt global

10.0.0.1 1 138.76.29.7

Firewalls

Trusted Hosts

A H

H

HA

B

A

Firewalls

Trusted Hosts

H

HB

B

A

A

C

D

Learning Switch

Learning
Switch

A on 1
D on 3

1

2 3

B

14

Web Clients and Servers
• Most Web applications use client-server protocol

– Client sends a request

– Server sends a response

• Proxies play both roles

– A server to the client

– A client to the server

www.cnn.com

www.google.com

Cache

Two Views of Middleboxes

• An abomination (toevah)
– Violation of layering

– Breaks the functional model

– Responsible for many subtle bugs

• A practical necessity
– Significant part of the network

– Solving real and pressing problems

– Needs that are not likely to go away

– Local functionality enhancements

Local enhancements: Riverbed

Overloaded

Cache
Proxy

Normal Load

Middlebox code can get complex

• Source code complexity

– Bro Network Intrusion

• 101,500 lines of C++, Python, Perl, Awk, Lex, Yacc

– Snort IDS 220,000 C, …

– Pfsense 476438 locs of C,php,scripts,…

• Hard to specify correctness

– What is a correct IDS?

Middlebox code can get complex

• Source code complexity

– Bro Network Intrusion

• 101,500 lines of C++, Python, Perl, Awk, Lex, Yacc

– Snort IDS 220,000 C, …

– Pfsense 476438 locs of C,php,scripts,…

• Hard to specify correctness

– What is a correct IDS?

Programming error

• The middlebox code fails to implement the required
functionality

• Incorrect intrusion detection system
– 10 CVE reports for pfsense in 2014, a popular firewall
– CVE on Firewall hardware from Palo Alto Networks (2010)

• Misinterprets HTTP cookie options, etc

• Heartbleed bug
– allows anyone on the Internet to read the memory of the

systems protected by the vulnerable versions of the
OpenSSL software

• Requires code analysis

Hypothesis

• There are only few types of middleboxes

• Can abstract the model of middleboxes as
finite state machines

Misconfiguration errors

• Do the topology and the middlebox configuration
implement the specification?

• Responsible for 43% of network failures
[IMC:RJ13]

[IMC:RJ13] R. Potharaju and N. Jain
 Demystifying the dark side of the middle: field study of middlebox failures in datacenters
 The Internet Measurement Conference, 2013

Safety of Computer Networks

• Show that something bad cannot happen

• Early detection of potential bugs

• Isolation:

• A packet of type t sent from host A never reaches host
B

• Isolation between two universities

• SSH packets from host A cannot reach B

Safety with middleboxes

• Safety can be checked when the network only has
switches with static routing rules

• Trace the forwarding graph

• Middleboxes make everything harder

• Arbitrary behavior – black box

• Rewrite packet headers

• Middlebox behave differently over time – need to
reason about history

• Composition may violate safety

Firewall Misconfiguration

Proxy P A B

A B P B

A is isolated from B

Deny A
Cache Proxy Firewall

Complex misconfiguration

Load
Balancer

IDS

IDS

B A

B

At most one packet from B

At most one packet from B

Load Balancer

Topology Assumptions

• Finite set of hosts H
• Fixed set of middleboxes M

– Switches are degenerate middleboxes

• Fixed undirected topology
 E  (H  Pr  M)  (M  Pr  Pr M)

Packet Assumptions

• Finite set of packet types T

• Finite set of ports Pr per middlebox

• Finite set of packet headers
(t, src, dst, pr) P = T  H  H  Pr

• No bound on the number of packet sent

• Many packets may be sent before a safety
violation occurs

Middlebox Abstract Semantics

• The abstract semantics of each middlebox is a
function

– m: P*  P  2P = P*  (P  2P)

– Packet bodies are unchanged

Common middleboxes

Middlebox Function

Switch h, p = {p[outpr} | pr  PR – p.ip}

Firewall h, p = if trusted(p, h)
 then {p[outpr} | pr  PR – p.ip} // forward
 else {} // drop

Learning
Switch

h, p = if there exists pr0 Prt such that
 connected(p.dst, h, pr0)
 then {p[outpr0] } // forward
 else {p[out}  pr :pr Prt, pr p.ip} // flood

IDS h, p = if trusted(p, h)
 then {p[outpr} | pr  PR – p.ip} // forward
 else {} // drop

Cache Proxy h, p = if avail(p.body, h, response)
 then {p[srcme, dst p.src,body response]}
 else {p[src me]}

Modeling Middliboxes by FSMs

• A Transducer m =<S, s0, P, , >
where
– S are the states of the middleboxes
– s0  S is the initial state
– : S  P  2P is the current forwarding behavior
– : S  P  2S is the next state
– Extend  to histories

•  ([]) = {s0}
•  (h . p) =  ( (h), p))

• m models m: P*  P  2P when for all h P* and
P P:
– ((h), p) = m(h, p)

Partial FSM for Firewall

… …

…

…

…

…

…

…

…
…

(Type, Source, Destination, Port)/{Forwarded Packets}

Trusted ={2}

The Safety Problem

• Given a fixed topology of middleboxes

• A finite state transducer for each of the
middleboxes

• Prove that there exists no scenario of packet
transmissions leading to a bad state

• Identify such scenariors

Undecidability

• Checking safety properties such as isolation is
undecidable even for finite state middleboxes

– Cycles in the topology allows counting

– Even in the absence of forwarding loops

Obtaining Decidability

• Show that if there is a scenario leading to a
safety violation then there is also bounded
one

• Reduction to a decision procedure

Non-Deterministic Packet Handling

• Assumes that order of packet processing is
arbitrary

• It may be that a packet p arrives before q and yet
the middlebox processes q first

• If a the network is safe under non-deterministic
assumption it is also safe under FIFO assumption

• May lead to false alarms

– Middlebox can impose orders based on
acknowledgements

Decidability

• Under non-deterministic assumptions safety is
decidable

• More packets per state means more forwarding
options
– Order is immaterial

– Terminating backward reachabilty

• Well Quasi-Order on Packet Multisets

• Reduction to Coverability in Petri Net
– But complexity is high

• EXPSPACE-Complete

Middlebox classification

Arbitrary

Progressing

Increasing

Switch

Nat Learning
Switch

Firewall IDS

Cache
Load
Balancer

Stateless

Stateless Middleboxs

• Behavior independent of the history
– Can maintain configuration information

• For all h, h’  P*:
– m(h) = m(h’)

– For all p  P: m(h, p) = m(h’, p)

• Examples
– Switches and Routers

– ACL Firewall

– Simple load-balancer

Increasing Middleboxs

• For every history, adding packets increase
forwarding behavior

• For all h1, h2  P* , p, p’  P:
– m(h1:h2, p)  m(h1:p’:h2, p)

• Good examples
– Stateless
– Firewall

• Bad Examples
– Learning Switch
– Cache

Progressing Middleboxs

• No state reset

• No cycles in the automaton besides self-cycles

• Good examples

– Learning switches

– IDS?

– Cache

• Bad Examples

– Round-robin load balancer

Middlebox classification

Arbitrary

Progressing

Increasing

Switch

Nat Learning
Switch

Firewall IDS

Cache
Load
Balancer

Stateless

Abstract Middlebox Definition Language

• Powerful enough to express the behavior of interesting

middleboxes

• Succinct

– Sometimes exponential state saving

• Simple enough for analysis

• Lends itself to classification of middleboxes

– Same worst case complexity

– But sometimes exponential saving

Firewall (AMDL)

firewall(self) =

 receive(p, prt)

 when prt = 1

 trusted_hosts.insert p.dst

 forward p to 2

 when prt = 2 and p.src  trusted_hosts

 forward p to 1

Proxy (AMDL)

proxy(self) =

 receive(p, prt) 

when (p.type, response) cache

 //stored response

 forward response[src=self.host] to prt

 when (p.type, p.src, p.dst,rport)requested

 // first response

 cache.insert (p.type, p);

 forward p[src = self.host] to port

 otherwise // new message

 requested.insert (p.type, p.src, p.dst, prt);

 forward p[src = self.host] to oprt

 forall oprt  AllPrt and oprt != pr

Firewall vs. FSM
firewall(self) =

 receive(p, prt)

 when prt = 1

 trusted_hosts.insert p.dst

 forward p to 2

 when prt=2 and

 p.srctrusted_hosts

 forward p to 1

The MuteVer Toolset

AMDL spec

Front-End

LogicBlox

DataLog
First Order

Formula
Petri-Net

z3

Counterexample Proof

Lola

Amazon EC2 Security Groups model

Fat Tree Switch

Tenant 1 Tenant 2 Tenant n

Public 1

Public 2

Private 1

Private 2

Public 1

Public 2

Private 1

Private 2

Public 1

Public 2

Private n

Private 2

Query

• Q1: can a packet arrive from tenant 7 to
private host of faulty tenant, provided that the
private host never sent a packet to tenant 7?
(YES)

• Q2: can a packet arrive from tenant 7 to
private host at tenant 2 (not faulty), provided
that the private host never sent a packet to
tenant 7? (NO)

Results (muZ)

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

Time per query
(sec)

Number of tenants (4 hosts per tenants)

SAT (bug)

UNSAT (no bug)

(Some) Related Work

Dynamic

• Veriflow

– Online verification

– Handles dynamic networks

pretty well

• Header Space Analysis

– Offline and online verification

Static

• Firewall Verification

– Margrave

• SDN

– Netkat

– Vericon

• Reductions to Datalog

– Badfish

– Checking Beliefs

Summary

• Middlebox classification

• Complexity results

• Initial toolset

Acknowledgments

• The Noun Project

• Nate Foster, Michael Freedman, and Jane
Rexford

