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Semantics of Concurrency

Introduction

In interleaving semantics, we consider the execution two instances of a parallel program P || R to be equivalent to the union of all possible interleavings of the execution sequences P0;P1;P2;... and R0;R1;R2;... of atomic statements of P and R.

For concurrent programs, it is convenient to view the program as a labeled state-transition relation, that is, as a possibly infinite graph, called the process graph, with nodes Q called states, and edges labeled by actions A. There’s also a distinguished root node. The one-step transition relation ( is a subset of Q ( A ( Q.

Our motivation is to formalize a way for organizing requests for the resource put by the concurrent occurrences of P, P1||P2||…||Pn, so that it’s not used by more times than its limit.

Example

Suppose we have a program P, and we would like to run it in several parallel occurrences. Suppose also, that P uses some kind of a common resource, which is limited in the system.

Let P be the following program:

0. Let y be 1; forever:

1. Play

2. Ask for permission to use slide when y=1, otherwise stay in this state

3. Slide, decrement y
4. Leave slide, increment y
And let B and G be two concurrent occurrences of P. A state of this system is, as specified above, an ordered quadrate: Q=(b,y,g), where b,g({0,1,2,3,4}, and y(N, or Q={0,1,2,3,4,5}(N({0,1,2,3,4,5}.

Lemma 1: y({0, 1} for a single process.

Lemma 1.1: if in state q=k, in the same iteration, y will be either k or k-1.

Proof: 

1. In state q=1, y=k.

2. In state q=2, y=k.

3. In state q=3, y=k-1.

4. In state q=4, y=k.

Lemma 1.2: in the state q=1, a will always be 1.

Proof: by induction on the number of iterations.

Base: on the first time we reach q=1, a is 1.

Step: suppose we ran k loop iterations, and the lemma is true. According to lemma 1.1, in the k+1-th iteration, a is 1.

Proof of lemma 1: by induction on the number of iterations.

Base: for state q=0, the lemma is true.

Step: suppose we ran k loop iterations in the loop, and we’re inside the k+1​​-th iteration. If q=1, the lemma is true according to lemma 1.2. Otherwise, according to lemma 1.1, in any other state, a=0 or a=1.

 Lemma 2: y({0, 1} for two concurrent processes.

 Proof: the only places where y’s value changes, are states 3 and 4. Only a single process can reach state 3 at any given time. The value of y is then restored when reaching state 4, and only then can another process reach state 3.
 So actually, our Q is {0,1,2,3,4,5}({0,1}({0,1,2,3,4,5}, yet states (3,_,3) are unreachable.
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The process  graph in this case would be:

In branching time semantics, we interpret processes as their computation trees. In linear time semantics, we interpret processes as the set of all their computations.

 Formal Definition of CTL*

There are two types of formulas in CTL*: state formulas (which are true in a specific state), and path formulas (which are true along a specific path). Let AP be the set of atomic proposition names. A state formula is either:

 A, if A(AP.
 If f and g are state formulas, then (f and f(g are state formulas.
 If f is a path formula, then E(f) is a state formula.
A path formula is either:

 A state formula

 If f and g are path formulas, then (f,  f(g, Xf, and fUg are path formulas.

 Semantics of CTL* 
 CTL* semantics is interpreted over Kripke Models. A Kripke model is an ordered quadrate M=(S,R,L), where:

 S is a finite set of states

 R ( S ( S is a transition relation

 L : S ( 2​​AP is a function, that assigns each state the set of atomic formulas that are true in it
A path (=s0s1... for a Kripke model M is an infinite series of states, for which forall i, (si,si+1)(R.

Formal Definition of LTL (Linear Temporal Logic)

Linear temporal logic (LTL) consists of formulas that have the form Af, where f is a path formula, in which the only state subformulas permitted are atomic propositions.

LTL is a private case of CTL*.

Temporal Operators and Quantifiers

Theorem (not proved here): a system containing only the E quantifier and the Xf and fUg  operators, is complete (meaning, has the same expression power as a system containing the A quantifier and the G, F temporal operators).

Additional Requirements from Concurrent Systems

Safety

We prohibit certain conditions from happening. In our example, the state (3,y,3) is forbidden for any possible y, or: AG( (b=g=3).

Response

We demand that every request we have is fulfilled within finite time frame, or: AG[b=2(AFb=3] ( AG[g=2(AFg=3]

Fairness

Let H={h1,h2,...}(2Q (where Q is the set of states and for every i, hi is a subset of Q) be a set of fairness requirements. A computation path (=q0q1... is considered to be fair regarding to H, if for all i, ( has an infinite number of states that fulfill hi.

In our example, h0 ​​is a set containing the state on which B plays, and h1 ​​is a set containing the state on which G plays.

Model Cheching

Model checking for CTL* is an NPC problem.

Bisimulation

Two processes P, R are bisimilar, if for every action a(A, the subtrees of P following a are each equivalent to some subtree of R following a, and vice-versa. The smallest bisimilarity exists, and is an equivalence.

Example: These are samples for bisimilar processes.
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Example: This is a sample for non-bisimilar processes.
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� E.M.Clarke, O.Grumberg: “Research on automatic verification of finite-state concurrent systems”, Annual Reviews of Computer Science, Vol. 2, 269-290, 1987 (J.F. Traub, editor)
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