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Notes by: Nadav Rephaelli

Semantics of Concurrency

Introduction
In interleaving semantics, we consider the execution two instances of a parallel
program P || R to be equivalent to the union of all possible interleavings of the
execution sequences P0;P1;P2;... and R0;R1;R2;... of atomic statements of P and R.

For concurrent programs, it is convenient to view the program as a labeled
state-transition relation, that is, as a possibly infinite graph, called the process graph,
with nodes Q called states, and edges labeled by actions A. There’s also a
distinguished root node. The one-step transition relation τ is a subset of Q × A × Q.

Our motivation is to formalize a way for organizing requests for the resource put by
the concurrent occurrences of P, P1||P2||…||Pn, so that it’s not used by more times than
its limit.

Example
Suppose we have a program P, and we would like to run it in several parallel
occurrences. Suppose also, that P uses some kind of a common resource, which is
limited in the system.

Let P be the following program:

0. Let y be 1; forever:
1. Play
2. Ask for permission to use slide when y=1, otherwise stay in this state
3. Slide, decrement y
4. Leave slide, increment y

And let B and G be two concurrent occurrences of P. A state of this system is, as
specified above, an ordered quadrate: Q=(b,y,g), where b,g∈{0,1,2,3,4}, and y∈N, or
Q={0,1,2,3,4,5}×N×{0,1,2,3,4,5}.

Lemma 1: y∈{0, 1} for a single process.

Lemma 1.1: if in state q=k, in the same iteration, y will be either k or k-1.
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Proof:
1. In state q=1, y=k.
2. In state q=2, y=k.
3. In state q=3, y=k-1.
4. In state q=4, y=k.

Lemma 1.2: in the state q=1, a will always be 1.
Proof: by induction on the number of iterations.
Base: on the first time we reach q=1, a is 1.
Step: suppose we ran k loop iterations, and the lemma is true. According to lemma
1.1, in the k+1-th iteration, a is 1.

Proof of lemma 1: by induction on the number of iterations.
Base: for state q=0, the lemma is true.
Step: suppose we ran k loop iterations in the loop, and we’re inside the k+1-th

iteration. If q=1, the lemma is true according to lemma 1.2. Otherwise, according to
lemma 1.1, in any other state, a=0 or a=1.

Lemma 2: y∈{0, 1} for two concurrent processes.
Proof: the only places where y’s value changes, are states 3 and 4. Only a single
process can reach state 3 at any given time. The value of y is then restored when
reaching state 4, and only then can another process reach state 3.

So actually, our Q is {0,1,2,3,4,5}×{0,1}×{0,1,2,3,4,5}, yet states (3,_,3) are
unreachable.

The process  graph in this case would be:
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In branching time semantics, we interpret processes as their computation trees. In
linear time semantics, we interpret processes as the set of all their computations.

Formal Definition of CTL*1

There are two types of formulas in CTL*: state formulas (which are true in a specific
state), and path formulas (which are true along a specific path). Let AP be the set of
atomic proposition names. A state formula is either:

 • A, if A∈AP.
 • If f and g are state formulas, then ¬f and f∨g are state formulas.
 • If f is a path formula, then E(f) is a state formula.

A path formula is either:
 • A state formula
 • If f and g are path formulas, then ¬f,  f∨g, Xf, and fUg are path formulas.

Semantics of CTL*  
CTL* semantics is interpreted over Kripke Models. A Kripke model is an ordered
quadrate M=(S,R,L), where:

 • S is a finite set of states
 • R ⊆ S × S is a transition relation
 • L : S → 2AP is a function, that assigns each state the set of atomic formulas that

are true in it
A path π=s0s1... for a Kripke model M is an infinite series of states, for which forall i,
(si,si+1)∈R.

Formal Definition of LTL (Linear Temporal Logic)
Linear temporal logic (LTL) consists of formulas that have the form Af, where f is a
path formula, in which the only state subformulas permitted are atomic propositions.

LTL is a private case of CTL*.

Temporal Operators and Quantifiers
Theorem (not proved here): a system containing only the E quantifier and the Xf and
fUg  operators, is complete (meaning, has the same expression power as a system
containing the A quantifier and the G, F temporal operators).

Additional Requirements from Concurrent Systems

Safety
We prohibit certain conditions from happening. In our example, the state (3,y,3) is
forbidden for any possible y, or: AG¬ (b=g=3).

                                                
1 E.M.Clarke, O.Grumberg: “Research on automatic verification of finite-state concurrent systems”,
Annual Reviews of Computer Science, Vol. 2, 269-290, 1987 (J.F. Traub, editor)
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Response
We demand that every request we have is fulfilled within finite time frame, or:
AG[b=2→AFb=3] ∧ AG[g=2→AFg=3]

Fairness
Let H={h1,h2,...}⊆2Q (where Q is the set of states and for every i, hi is a subset of
Q) be a set of fairness requirements. A computation path π=q0q1... is considered to
be fair regarding to H, if for all i, π has an infinite number of states that fulfill hi.

In our example, h0 is a set containing the state on which B plays, and h1 is a set
containing the state on which G plays.

Model Cheching
Model checking for CTL* is an NPC problem.

Bisimulation
Two processes P, R are bisimilar, if for every action a∈A, the subtrees of P following
a are each equivalent to some subtree of R following a, and vice-versa. The smallest
bisimilarity exists, and is an equivalence.

Example: These are samples for bisimilar processes.
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Example: This is a sample for non-bisimilar processes.
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