
Formal Methods

Semantics of Concurrency

Nachum Dershowitz

May 2000

In interleaving semantics, one considers the execution of a parallel pro-
gram A k B to be equivalent to the union of all possible interleavings of the
execution sequences A0;A1;A2; � � � and B0;B1;B2; � � � of atomic statements
of A and B.

This approach is not conducive to compositionality.
For concurrent programs, it is convenient to view the program as a la-

belled state-transition relation, that is, as a possibly in�nite graph, called the
process graph, with nodes Q called \states" and edges labelled by \actions"
A. There is a distinguished root node. The \one-step" relation � is a subset
of Q � A � Q and describes the possible state transitions and associated
actions. A computation tree is a possibly in�nite tree of state-transitions
beginning at the root; a computation is a path in such a tree.

A concurrent programming language can be de�ned in terms of its labelled
transitions.

In branching-time semantics, one interprets processes as their computa-
tion trees. In linear-time semantics, one interprets processes as the set of all
their computations.

We seek a notion of equivalence of processes which looks at the possible
sequences of actions but takes into account the possibility of deadlocks.

Two processes P and R are bisimular if for every action a 2 A the subtrees
of P following a are each equivalent to some subtree of R following a and
vice-versa. The (smallest) bisimularity relation exists and is an equivalence.

Complications enter when one allows \stutter" via \silent", action-less
transitions.

1



In the algebraic approach to semantics of concurrency, one gives axioms
for programming constructs, such as

P k (S k R) = (P k S) k R

When the number of states is large or in�nite, the state-transition � is
often described by a set of formulas that refer to state-variable values and
program-statement labels.

In the computation tree logic CTL� one has the following operators for
describing properties of computation trees: A (for all paths), E (for some
path), G (always), F (sometimes), X (next time), U (until), V (unless).

Fairness of scheduling excludes certain computation paths from consid-
eration, because of the in�nite occurrence of some situation along the path.

More generally, one can use second-order monadic logic to describe tem-
poral properties of concurrent programs.

For compositionality, we want to be able to describe interactions be-
tween processes. There are two forms of interaction: synchronous and asyn-
chronous.

There are two means of controlling interaction: via shared registers or
via shared communication channels. Thus, we can speak of a shared memory

models or message passing models with shared ports.
To model continuous time, many new issues arise.

2


