Formal Methods 2. Lambda Calculus

Nachum Dershowitz

March 2000

The lambda calculus was designed as a general theory of (comptable) functions.

Lambda expressions are constructed from formal parameters, applications (denoted by juxtaposition) AB, where A and B are lambda expressions, and function abstractions of the form $\lambda v.A$ where v is a formal parameter and A is a lambda expression in which occurrences of v are *bound*.

The λ -calculus consists of the axioms of equality plus the following schema:

$$(\lambda v.A[v])B = A[B]$$

Here A and B are arbitrary λ expressions and A[B] is A with each free occurrence of the parameter v replaced by B. More formally, one can define substitutions, like $\{v \mapsto B\}$ and their application to expressions, $A\{v \mapsto B\}$, replacing all free occurrences of v in A with B.

As a rewrite rule, we use beta-reduction:

$$eta: (\lambda v.A[v])B o A[B]$$

Theorem 1 Beta-reduction is Church-Rosser.

The reason is basically the same as for orthogonal systems (think of v as a constant symbol, B as a variable, and both A and A[B] as schemata). Thus, A = B is a theorem of the lambda calculus iff $A \downarrow B$. But β is not terminating, so not all lambda expressions have normal forms.

Theorem 2 The lambda calculus is consistent in the sense that one cannot prove every closed equation.

A redex is a subterm at which a rewrite rule applies (β in our case).

Theorem 3 (Leftmost Normalization) The normal form of any expression having one can be computed by repeated application of β to the leftmost redex.

Proof Suppose $A \to {}^{\ell} B$ at the leftmost redex, and $A \to C$ at an arbitrary redex. Then, $C \to {}^{\ell} D$ for some D such that $B \to {}^{\parallel} D$, where $\to {}^{\parallel}$ signifies parallel reduction. It follows that were there an infinite leftmost computation, then there could not be any normalizing computation. \Box

Functions of multiple arguments can be "Curried" so that only lambda abstraction with one formal parameter are needed. Hence, we will use $\lambda x_1 \dots x_n A$ as an abbreviation for $\lambda x_1 (\dots (\lambda x_n A) \dots)$.

Lambda expressions and beta-reduction provide a (Turing-) complete model of computation. In particular, (partial) recursive functions over the natural numbers can be simulated by lambda expressions. Arithmetic and logical operations are simulated as in the following table:

Т	$\lambda uv.u$
F	$\lambda uv.v$
if x then y else z	(xy)z
cons(y,z)	$\lambda u.($ if u then y else $z)$
car(x)	$x\mathrm{T}$
$\mathbf{cdr}(x)$	$x\mathbf{F}$
0	$\lambda v.v$
x+1	$\mathbf{cons}(\mathbf{F},x)$
x = 0	x T

Recursion is effected by the following mechanism: Suppose

$$f(x) \stackrel{!}{=} A[f]$$

where A is the **body** of the definition, containing recursive calls to f. The expression

$$(\lambda v.(A[v](vv))(\lambda v.(A[v](vv)))$$

computes f.

The lambda calculus as described above does not fully capture the notion of equality of functions. For one thing, the names of parameters are immaterial: $\lambda u.u$ is the same identity function as $\lambda v.v$. Considering expressions equal if they are teh same except for parameter renaming is called α -conversion. A more serious deficiency is that $\lambda v.Av$ and A are not convertible, though for all x one has

$$Ax \downarrow (\lambda v.Av)x$$

In general, one may want to infer equality by extensionality:

$$\frac{\forall \boldsymbol{x}.A\boldsymbol{x} = B\boldsymbol{x}}{A = B}$$

Definition 1 A lambda expression of the form $\lambda x_1 \dots x_n (x(\dots (A_1A_2)\dots A_k))$ is called a head normal form.

Head normal forms are not unique.