
Formal Methods

2. Lambda Calculus

Nachum Dershowitz

March 2000

The lambda calculus was designed as a general theory of (comptable)
functions.

Lambda expressions are constructed from formal parameters, applications
(denoted by juxtaposition) AB, where A and B are lambda expressions, and
function abstractions of the form �v:A where v is a formal parameter and A

is a lambda expression in which occurrences of v are bound.
The �-calculus consists of the axioms of equality plus the following schema:

(�v:A[v])B = A[B]

Here A and B are arbitrary � expressions and A[B] is A with each free
occurrence of the parameter v replaced by B. More formally, one can de�ne
substitutions, like fv 7! Bg and their application to expressions, Afv 7! Bg,
replacing all free occurences of v in A with B.

As a rewrite rule, we use beta-reduction:

� : (�v:A[v])B ! A[B]

Theorem 1 Beta-reduction is Church-Rosser.

The reason is basically the same as for orthogonal systems (think of v
as a constant symbol, B as a variable, and both A and A[B] as schemata).
Thus, A = B is a theorem of the lambda calculus i� A # B. But � is not
terminating, so not all lambda expressions have normal forms.

Theorem 2 The lambda calculus is consistent in the sense that one cannot

prove every closed equation.

1



A redex is a subterm at which a rewrite rule applies (� in our case).

Theorem 3 (Leftmost Normalization) The normal form of any expres-

sion having one can be computed by repeated application of � to the leftmost
redex.

Proof Suppose A!` B at the leftmost redex, and A ! C at an arbitrary
redex. Then, C !` D for some D such that B !k D, where !k signi�es
parallel reduction. It follows that were there an in�nite leftmost computation,
then there could not be any normalizing computation. 2

Functions of multiple arguments can be \Curried" so that only lambda
abstraction with one formal parameter are needed. Hence, we will use
�x1 : : : xn:A as an abbreviation for �x1:(� � � (�xn:A) � � �).

Lambda expressions and beta-reduction provide a (Turing-) complete
model of computation. In particular, (partial) recursive functions over the
natural numbers can be simulated by lambda expressions. Arithmetic and
logical operations are simulated as in the following table:

T �uv:u

F �uv:v

if x then y else z (xy)z
cons(y; z) �u:(if u then y else z)
car(x) xT

cdr(x) xF
0 �v:v

x+ 1 cons(F; x)
x = 0 xT

Recursion is e�ected by the following mechanism: Suppose

f(x)
!

= A[f ]

where A is the body of the de�nition, containing recursive calls to f . The
expression

(�v:(A[v](vv))(�v:(A[v](vv))

computes f .
The lambda calculus as described above does not fully capture the notion

of equality of functions. For one thing, the names of parameters are immate-
rial: �u:u is the same identity function as �v:v. Considering expressions equal

2



if they are teh same except for parameter renaming is called �-conversion. A
more serious de�ciency is that �v:Av and A are not convertible, though for
all x one has

Ax # (�v:Av)x

In general, one may want to infer equality by extensionality:

8x:Ax= Bx

A = B

De�nition 1 A lambda expression of the form �x1 : : : xn:(x(� � � (A1A2) � � �Ak))
is called a head normal form.

Head normal forms are not unique.

3


