Formal Methods
2. Lambda Calculus

Nachum Dershowitz

March 2000

The lambda calculus was designed as a general theory of (comptable)
functions.

Lambda expressions are constructed from formal parameters, applications
(denoted by juxtaposition) AB, where A and B are lambda expressions, and
function abstractions of the form Av.A where v is a formal parameter and A
is a lambda expression in which occurrences of v are bound.

The A-calculus consists of the axioms of equality plus the following schema:

(MWw.AR])B = A[B]

Here A and B are arbitrary A expressions and A[B] is A with each free
occurrence of the parameter v replaced by B. More formally, one can define
substitutions, like {v — B} and their application to expressions, A{v — B},
replacing all free occurences of v in A with B.

As a rewrite rule, we use beta-reduction:

B: (WwAp)B — A[B]
Theorem 1 Beta-reduction s Church-Rosser.

The reason is basically the same as for orthogonal systems (think of v
as a constant symbol, B as a variable, and both A and A[B] as schemata).
Thus, A = B is a theorem of the lambda calculus iff A | B. But 8 is not

terminating, so not all lambda expressions have normal forms.

Theorem 2 The lambda calculus is consistent in the sense that one cannot
prove every closed equation.



A redez is a subterm at which a rewrite rule applies (3 in our case).

Theorem 3 (Leftmost Normalization) The normal form of any ezpres-
ston having one can be computed by repeated application of B to the leftmost
redez.

Proof Suppose A —* B at the leftmost redex, and A — C at an arbitrary
redex. Then, C —* D for some D such that B —/l D, where —!l signifies
parallel reduction. It follows that were there an infinite leftmost computation,
then there could not be any normalizing computation. O

Functions of multiple arguments can be “Curried” so that only lambda
abstraction with one formal parameter are needed. Hence, we will use
Azy ... 2, A as an abbreviation for Az.(--- (Az,.A)---).

Lambda expressions and beta-reduction provide a (Turing-) complete
model of computation. In particular, (partial) recursive functions over the
natural numbers can be simulated by lambda expressions. Arithmetic and
logical operations are simulated as in the following table:

T Auv.u

F Auv.v

if z then y else z | (zy)z

cons(y, z) Au.(if u then y else 2)
car(z) zT

cdr(z) zF

0 Av.v

z+1 cons(F, z)

z =0 zT

Recursion is effected by the following mechanism: Suppose

fl=) = Alfl]
where A is the body of the definition, containing recursive calls to f. The
expression

(Av.(Alv](v0)) (Av.(Alv](v0))

computes f.

The lambda calculus as described above does not fully capture the notion
of equality of functions. For one thing, the names of parameters are immate-
rial: Au.u is the same identity function as Av.v. Considering expressions equal



if they are teh same except for parameter renaming is called a-conversion. A
more serious deficiency is that Av.Av and A are not convertible, though for
all z one has

Az | (Av.Av)e

In general, one may want to infer equality by extensionality:

Vz.Ax = Bz
A=B

Definition 1 A lambda expression of the form Azy ... zn.(z(- - (A142) - - - Ag))
1s called a head normal form.

Head normal forms are not unique.



