
A Hypercomputational Alien ⋆

Udi Boker and Nachum Dershowitz

School of Computer Science, Tel Aviv University

Ramat Aviv, Tel Aviv 69978, Israel

Abstract

Is there a physical constant with the value of the halting function? An answer to this
question, as in other discussions of hypercomputation, assumes a fixed interpretation
of nature by mathematical entities. Without agreeing on such an interpretation, the
question is without context and meaningless.

We discuss the subjectiveness of viewing the mathematical properties of nature,
and the possibility of comparing computational models having alternate views of the
world. For that purpose, we propose a conceptual framework for power comparison,
by linking computational models to hypothetical physical devices. Accordingly, we
deduce some mathematical notions of relative computational power, allowing for
the comparison of arbitrary models over arbitrary domains.

In addition, we demonstrate that the method commonly used in the literature for
establishing that one model is strictly more powerful than another is problematic,
as it can allow for a model to be “more powerful” than itself. On the positive side,
we note that Turing machines and the recursive functions are not susceptible to this
anomaly, justifying the standard means of showing that a model is more powerful
than Turing machines.

Key words: hypercomputation, Turing machine, computability, computational
power, computational models

How can we ever exclude the possibility
of our being presented,

some day (perhaps by some extraterrestrial visitors),
with a (perhaps extremely complex) device or “oracle”

that “computes” an uncomputable function?

—Martin Davis

⋆ This work was carried out in partial fulfillment of the requirements for the Ph.D.
degree of the first author.

Email address: {udiboker,nachumd}@tau.ac.il (Udi Boker and Nachum
Dershowitz).

Preprint submitted to Elsevier Science 15 July 2005

0 Prelude

E.V., youngest daughter of E.T., arrived on Earth a couple of days ago. Con-
sidering the sophisticated equipment of her spaceship, the speculation is that
she—presumably like other of her planet’s inhabitants—is capable of hyper-
computation. E.V., in addition to her strange and fascinating beauty, acts
extremely friendly and appears willing to share her advanced knowledge with
us Earthlings. The problem is an apparent lack of common language, and,
moreover, the very different ways in which she and we humans seem to view
the universe.

Yesterday, E.V. demonstrated an interesting device, one that we believe to
be a computational machine of some sort, but with most peculiar input and
output entities. E.V. seems to pay great attention while mixing colored clays
and shaping them into a ball, which she proceeds to insert into the device,
and then meaningfully stares at the colored ball sliding out of the machine
a few moments later. It has been suggested that we compare the computa-
tional power of E.V.’s computer, henceforth nicknamed Nuri, with our own
Turing machines (TMs). Now, it is clear that Nuri and TMs operate over dif-
ferent domains. Though unlikely, it might even be that Nuri’s domain is of a
greater cardinality (for instance, it may be sensitive to non-enumerable colors
or dimensions of the clay shapes). The question is: How can we know whether
Nuri’s architecture is as powerful, or perhaps more powerful, than TMs?

Nuri, as a physical device, ought not be compared directly with our TM,
which is an abstract computational model. It is quite likely that Nuri’s physical
input/output entities will remain gibberish to us, exactly as the flashing pixels
on our 21st-century monitors might be undecipherable for E.V. Thus, the
object we really wish to compare with the TM is the computational model of
Nuri, as viewed by E.V. Generally speaking, every physical device might be
understood as implementing various computational models, depending on the
user’s interpretation of its physical interface.

Today has seen a blossoming of suggestions for the possible computational
models of Nuri. Before speculating whether a suggested computational model
really fits the way E.V. sees Nuri, we need to define how to compare the
power of the suggested models with TM. Comparing the power of arbi-

trary computational models operating over arbitrary domains, is

the main subject of this paper.

What we are basically interested in knowing is if E.V. is capable of computing
with a device that implements her model (e.g. Nuri with unlimited resources)
all that we humans can compute with a device that implements the TM (e.g. a
p.c. with unlimited resources). If yes, we’ll say that E.V.’s model is as powerful

2

as ours. If it turns out that E.V. can make additional computations with her
Nuri, over and above those of our TMs, we will be forced to conclude that the
Nuri model is actually more powerful; that is, it is hypercomputational.

Now, there are two common meanings to hypercomputability :

(1) Computing more than a TM. See, for example, [15, p. 1]: “Hypercompu-
tation: computing more than the Turing machine.”

(2) Computing some non-TM (incomputable) function. See, for example, [11],
or [7, p. 1]: “Hypercomputation is the computation of functions or num-
bers that cannot be computed in the sense of Turing. . . .”

Assuming a fixed view of the world, the two meanings coincide: once you have
an incomputable function, you may add it as an oracle to TM and get the
hypercomputation of the first definition. This is not the case, however, with
E.V. She might compute what seems to us to be the halting function, while for
her it’s just the parity function—on account of her differing view (coding) of
her machines. So, to venture a claim that E.V. is capable of hypercomputation,
we need to adopt the first definition above, which we will refer to as strong-
hypercomputability, to avoid any confusion in the sequel.

The need to compare computational models embodying different worldviews is
not unique to the current situation provoked by E.V. We find it also relevant,
for example, when comparing a model operating over the reals with TMs.

A reasonable starting point for comparing models over different domains might
be the belief that isomorphic models are of identical power. That is, models
computing the same set of functions, up to a different naming of their domain
elements, are—for all intents and purposes—deemed equipotent. But can we
be sure that TM is not isomorphic to a strongly-hypercomputational model?
Surprisingly, perhaps, it turns out that a computational model can be isomor-
phic to one computing more functions. Fortunately, we can show that TMs
are an exception and are not susceptible to this anomaly. So, as long as the
Nuri model is countable, we know how to proceed with our investigation.

Isomorphism may be a good starting point, but it is not general enough, if only
because Nuri’s domain of operations may be of a larger cardinality than our
countable, earth-bound devices. The common approach, in this case, would
be to require an injection between the domains, up to which the stronger
model mimics the functionality of the weaker one. We will claim that such an
approach is too permissive, allowing one to hide computational power in the
mapping. A somewhat philosophical outlook on these questions will lead us to
a formal method for comparing arbitrary computational models over arbitrary
domains. With this method in hand, we will be ready to return to an analysis
of E.V.’s Nuri.

3

1 Introduction

Our goal is to formalize comparisons of computational models, that is, the
determination when one set of partial functions is computationally more pow-
erful than another set. We seek a robust definition of relative power, one that
does not depend itself on any notion of computability. It should allow one to
compare arbitrary models over arbitrary domains in some quasi-ordering that
captures the intuitive concept of computational strength. Such a comparison
notion (or notions) should also allow one to prove statements like “analogue
machines are strictly more powerful than digital devices,” even though the
two models operate over domains of different cardinalities.

With a satisfactory comparison notion in place, we look into mathematical
relations between computational models, and properties they confer on mod-
els. We call a model that is not as powerful as any of its proper expansions
“complete.” We investigate completeness, and check whether some classical
models enjoy this property.

Extensionality. We are only interested in the computational aspect of com-
putational models (extensionality), that is, which problems can be solved by
a model, regardless of the solution’s complexity or the model’s mechanisms.
Hence, a computational model is represented simply by a set of (partial) func-
tions (or multivalued functions) over the domain of its operation.

The Problem. Though model comparison is a common practice in the lit-
erature, it is usually done without a formal comparison notion and without
justification for the chosen method. To the best of our knowledge, there is cur-
rently no satisfactory, general means for comparing arbitrary computational
models operating over arbitrary domains. A notion is lacking via which one
could show, for example, that analogue computers are strictly more powerful
than Turing machines, as well as show that finite automata are more powerful
than some weak analogue model. In Section 4, we list some of the familiar
comparison methods and discuss their ramifications.

The Framework. In Section 2.1, we propose a general, philosophical, def-
inition of a computational model: we understand a computational model to
be a mathematical modeling and idealization of some hypothetical physical
device, from a specific point of view of the world. Accordingly, we provide, in
Section 2.2, some possible meanings of relative computational power. In Sec-
tion 3, we formalize these meanings into mathematical notions, and further
develop one of them.

4

Completeness. In Section 5, we recall results from [2], showing that the
method usually used in the literature for “more powerful” (´) is mathemat-
ically problematic, as it allows for a model to be more powerful than itself
(A ´ A). A model that is not as powerful as any of its proper expansions
will be said to be complete. The standard method of comparison is suitable
only for such complete models. On the positive side, Turing machines and
the recursive functions are complete with respect to the desired comparison
notions.

Computability. In Section 6, we show that some of the models known to
be of equivalent power to Turing machines (the recursive functions, random
access machines and counter machines) are indeed so in our formal framework.

Strong Hypercomputation. Using the fact that Turing machines and the
recursive functions are complete models in the above sense, allows a simpler
comparison relation for showing that a model is strongly hypercomputational.
Accordingly, Section 6 provides justification for the (otherwise improper) com-
parison method used in the literature for showing that a model is (strongly)
hypercomputational.

Note. We write dom A for the domain over which a computational model A
operates, and rng ψ for the range of a function ψ. We use the Z-standard [4]
for function arrows. For example, −7→ denotes a partial function, →→ is used for
a total surjective function, and is an injection. We use double-arrows for
mappings (multi-valued functions). So ⇉⇉ denotes a total surjective mapping.

2 Conceptual Framework

We propose a general, philosophical, definition of a computational model. We
then suggest, in Section 2.2, some possible meanings of relative computational
power. These intuitions will be formalized in Section 3. It should be noted
that the conceptual framework is inspired by linkage to hypothetical physical
devices, providing definitions with “world entities” (Definitions 2, 4 and 6);
however, these entities are later obviated by mathematical simplifications (Def-
initions 3, 5 and 7).

5

W

D

The physical world

The computational

model

v

Device
In

Out

f
In

Out

Fig. 1. A computational model is a mathematical modeling of some hypothetical
physical devices, from a specific point of view of the world

2.1 What is a Computational Model?

We can think of a computational model as a mathematical modeling and
idealization of some hypothetical physical device, from a specific point of view
of the world (see Fig. 1).

• A physical device receives a physical input and returns a physical output.
For example, an electric device may take some electric voltage at two of its
pins as input, and return a voltage at two other pins as output.

• A corresponding computational model takes a specific point of view of the
physical world. For example, a model of a digital computer might view a
voltage lower than 0.5v as the binary value 0 and of 0.5v or higher as 1.
That is, the domain of the model, D, is a “view” of the physical world, W .
This view is a partial surjective function v : W →7→ D.

• The device computes a function on world entities (in our example above,
ξ : R → R), while from the model’s point of view it computes a function
on its domain (in our example, f :{0, 1} → {0, 1}).

A computational model, by itself, can be viewed as a “black box,” computing
a set of partial functions. The domain and range of functions are identical,
except that the range is extended with ⊥, representing “undefined.”

The modeling of a hypothetical device from a specific point of view of the world
will be at the heart of our method of comparing different models. The world
can be chosen to be any set of cardinality at least as large as the cardinality
of the model’s domain.

Conceptual Assumption. We want to allow the world-domain W to be
as big as required, as well as the resolution of its elements to be enlarged as
much as required. That is, all elements x ∈ W may be considered as sets of

6

the same cardinality.

The idea that a model encapsulates a point of view of the world is shared by
Minsky [13]:

We use the term “model” in the following sense: To an observer B, an
object A* is a model of an object A to the extent that B can use A* to
answer questions that interest him about A. The model relation is inher-
ently ternary. . . . It is understood that B’s use of a model entails the use of
encodings for input and output, both for A and for A*. If A is the world,
questions for A are experiments.

Different Domain and Range. There are models with different domain
and range, like string input and boolean output. A generalized view is to
consider the “actual” model’s domain to be the union of the original domain
and range.

Uniform Computation. It is common to have models with functions of
any fixed arity (f(x), g(x, y), h(x, y, z), . . .), like the recursive functions, for
instance, while we deal here only with unary functions (f(x)). We consider the
“actual” domain (and range) of the former models to be the set of all finite
tuples of elements of the original domain, allowing us to restrict attention
to unary functions. This accords with the standard view taken for Turing
machines, the view taken for the BSS model [1, pp. 69–70], and implicitly the
view taken for the recursive functions when compared to Turing machines.

Computing over Structures. There are models defined over structures,
that is, over sets of elements, equipped with “built-in” functions and relations.
See, for example, [1,3,18]. We consider the underlying set to be the domain,
and include the structure’s functions and relations in the model.

Local Nondeterminism. A model with nondeterministic functions, oper-
ating within equivalence classes, may be interpreted as a deterministic model
operating over those equivalence classes. For example, we can view a digital
computer as operating over intervals of real-valued voltages. (Only some of
the comparison notions developed below are general enough to handle nonde-
terminism.)

7

W
The world

Model B

Model A

u

v

Device
In
Out

f ′
In
Out

f
In
Out

Fig. 2. The “stronger” model, B, should have the potential to provide all the func-
tionality of the “weaker” model, A, from any user point of view

2.2 Comparing Computational Power

We generally say that a model B is at least as powerful as A, written B %

A, if it can do whatever A does. When both models have the same domain
representation, it means “containment”: B is at least as powerful as A if
it computes all the functions that A does. The question is how one should
compare models operating over different domains, as they compute formally-
different functions.

There are various options to extend the above characterization for addressing
arbitrary domains, among which are: B is at least as powerful as A if

(%R) Resemblance. B has the potential to do whatever A does for some
user (an abstract user, not necessarily human). See Definitions 2 and 3
below for the formal notion, and Sections 4.1 and 4.2 for special cases of
resemblance.

(%M) Mimic. B has the potential to do whatever A does for every possible
user. See Fig. 2, and Definitions 4 and 5 below for the formal notion.

(%I) Incorporation. B has the potential to do whatever A does for every
possible user, and has the abstraction capabilities of A. See Fig. 2, and
Definitions 6 and 7 below for the formal notion.

We will formalize the above characterizations as mathematical relations in the
next section.

8

3 The Formal Comparison Notion

We need to formalize the conceptual framework of the previous section. We
first define computational models, and then, in Section 3.2, specify three sug-
gestions for power comparison (%R, %M, and %I).

3.1 Formal Computational Model

Definition 1 (Computational Model)

• A domain is a nonempty set of elements.
• A computational model A over domain D is an abstraction of an object that

computes a set of partial functions f : D−7→ D, which may be interpreted as
total functions f : D → D ∪ {⊥}.

• We write dom A for the domain over which model A operates.
• The extensionality of a model A, denoted ext A, is the set of partial func-

tions that A computes.
• For models A and B, and a function f we shall write f ∈ A as shorthand

for f ∈ ext A, and A ⊆ B as short for ext A ⊆ ext B.
• We say that a model B properly expands model A if B) A.

Some clarifications regarding function notations:

• Two partial functions, f and g, over the same domain are (extensionally)
equal, denoted f = g, if they are defined for exactly the same elements of
the domain (f(x) = ⊥ iff g(x) = ⊥) and have the same value whenever they
are both defined (f(x) = g(x) if f(x) 6= ⊥).

• A function f : D−7→ D′ is defined over the subsets of D, f : P(D)−7→ P(D′),
by f(X) := {f(x) : x ∈ X}.

• A mapping ρ : D ⇉ D′ is a binary relation between D and D′, that is, a
subset of D × D′. Its inverse ρ−1 is defined as usual as {〈y, x〉 : 〈x, y〉 ∈ ρ}.
Any mapping may also be viewed as a total function ρ : D → P(D′), from
D to subsets of D′, in the sense that ρ : x 7→ {y : 〈x, y〉 ∈ ρ}. Thus, its
inverse, ρ−1 : D′ ⇉ D, is the function ρ−1 : D′ → P(D), from D′ to the
subsets of D, such that ρ−1 : y 7→ {x : y ∈ ρ(x)}.

• A total surjective mapping ρ : D ⇉⇉ D′ is a total function, ρ : D → P(D′),
from D to the subsets of D′, such that

⋃
x∈D ρ(x) = D′, and ρ(x) 6= ∅ for all

x ∈ D.

9

3.2 Formal Comparison Notions

Conceptually, we demanded, in Section 2.2, that the “stronger” model, B,
should have the potential to provide all the functionality of the “weaker”
model, A, from some/any user point of view.

How should we formalize it? We will require that the user of model A will be
able to use a physical device modeled by B instead of the device modeled by
A. That is, the user will get exactly the same results, from her point of view,
as if she was using the device modeled by A.

An element x ∈ dom A represents some physical elements v−1(x), where
v : W →7→ dom A is the view of the world W by A. Model B views these physical
elements as u◦v−1(x) (which might be many different elements in dom B),
where u : W →7→ dom B is the view of the world by B. Analogously, an element
y ∈ dom B represents some physical elements u−1(y), which are viewed by A
as v◦u−1(y). Hence, a function f ′ ∈ B provides the functionality of a function
f ∈ A, from the point of view of a user of A, if v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)}

for all x ∈ dom A.

Below, we formalize the three conceptual characterizations of Section 2.2 (%R,
%M, and %I). We first formalize them directly, as explained in the paragraph
above, and then provide their simplified versions (%r, %m, and %i), replac-
ing the “world views” with a direct “correlation mapping” between model
domains. We continue by showing that the simplified definitions are, indeed,
equivalent to the original ones (Theorems 1, 2, and 3).

The first characterization, resemblance, requires that there are specific views
by A and B, via which B has all the functionality of A.

Definition 2 (Conceptual Resemblance) Model B resembles model A,
denoted B %R A, if there are a domain W (the world), a partial surjec-
tion v : W →7→ dom A (the view of W by A), and a partial surjection
u : W →7→ dom B (the view of W by B), such that for every function f ∈ A
there is a function f ′ ∈ B, such that v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all

x ∈ dom A.

Definition 3 (Resemblance) Model B resembles model A, denoted B %r A,
if there is a partial surjective mapping ρ : dom B |⇉⇉ dom A (correlation
mapping), such that for every function f ∈ A there is a function f ′ ∈ B such
ρ◦f ′

◦ρ−1(x) = {f(x)} for all x ∈ dom A.

Comparison via a correlation mapping that is a partial surjective mapping is
in the spirit of the “representation” of [20, p. 33].

10

The second characterization, mimic, requires that for all possible worlds and
views by A, there is a view by B via which B has all the functionality of A.

Definition 4 (Conceptual Mimic) Model B mimics model A, denoted
B %M A, if for every domain W (the world) and partial surjection v : W →7→
dom A (the view of W by A), there is a partial surjection u : W →7→ dom B
(the view of W by B), such that for every function f ∈ A there is a function
f ′ ∈ B, such that v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all x ∈ dom A.

Definition 5 (Mimic) Model B mimics model A, denoted B %m A, if there
is a total surjective mapping ρ : dom B ⇉⇉ dom A (correlation mapping),
such that for every function f ∈ A there is a function f ′ ∈ B such that
ρ◦f ′

◦ρ−1(x) = {f(x)} for all x ∈ dom A.

Note that the conceptual difference between the first and second characteri-
zations yielded a difference in the correlation mapping, requiring a total sur-
jective mapping rather than a partial one.

The third characterization, incorporation, requires also that the “stronger”
model, B, should have an “abstraction” function, which ensures that when it
has a more detailed view of the world, it may also gather various points into
a single one, obtaining the abstraction capabilities of the “weaker” model, A.

Definition 6 (Conceptual Incorporation) Model B incorporates model
A, denoted B %I A, if for every domain W (the world) and partial surjec-
tion v : W →7→ dom A (the view of W by A), there are a partial surjection
u : W →7→ dom B (the view of W by B) and abstraction function g ∈ B, such
that

(a) for every function f ∈ A there is a function f ′ ∈ B, such that
v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff v◦u−1(z) = v◦u−1(y) for all y, z ∈ dom B, and
(c) v◦u−1

◦g(y) = v◦u−1(y) for all y ∈ dom B.

Note that by the conceptual assumption all elements x ∈ W may be considered
as sets of a fixed cardinality. The first condition, (a), says that B computes ev-
ery function of A, up to the mapping between the domains (v◦u−1). Condition
(b) says that the abstraction function g ∈ B distinguishes between the equiv-
alence classes generated by the mapping, while (c) says that the distinction is
made by choosing a representative element within each class.

Definition 7 (Incorporation) Model B incorporates model A, denoted
B %i A, if there are a total surjective mapping ρ : dom B ⇉⇉ dom A
(correlation mapping) and function g ∈ B (abstraction function), such that:

(a) for every function f ∈ A there is a function f ′ ∈ B such that

11

ρ◦f ′
◦ρ−1(x) = {f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff ρ(z) = ρ(y) for all y, z ∈ dom B, and
(c) ρ◦g(y) = ρ(y) for all y ∈ dom B.

Comparison up to Equivalence Classes. With the definitions above, we
required the “stronger” model, B, to have all the functionality of the “weaker”
model, A, providing exactly the same values up to the mapping between do-
mains (v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)}). This requirement may be loosened, by

requiring B to provide the same values as A, up to the distinguishing ability
of A. That is, two elements, e and r, are indistinguishable by model A if for
all f ∈ A we have that f(e) = f(r). Indistinguishable elements, e and r ∈ A,
may be considered equivalent with respect to A, denoted e ≈A r. The three
comparison notions above may be loosened accordingly, denoted %R′ , %M′ and
%I′ , by requiring that v◦u−1

◦f ′
◦u◦v−1(x) ≈A {f(x)}.

Theorem 1 Definitions 2 and 3 are equivalent. That is B %R A iff B %r A.

Proof.

(1) B %R A implies B %r A: Let B %R A via a domain W and views
v : W →7→ dom A and u : W →7→ dom B. Define a partial mapping
ρ : B |⇉ A by ρ := v◦u−1. By Definition 2 we have that for every function
f ∈ A there is a function f ′ ∈ B, such that v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)}

for all x ∈ dom A. Therefore, ρ is surjective, and ρ◦f ′
◦ρ−1(x) = {f(x)}

for all x ∈ dom A. Hence, B %r A via ρ.
(2) B %r A implies B %R A: Let B %r A via a partial surjective mapping

ρ : dom B |⇉⇉ dom A, and let e be an element not included in dom A.
Define a domain W (a world) by W := {〈a, b〉 : 〈a, b〉 ∈ ρ} ∪ {〈e, b〉 :
〈c, b〉 6∈ ρ for every c}. Define partial surjections v : W →7→ dom A and
u : W →7→ dom B (the views) by v(〈a, b〉) := a and u(〈a, b〉) := b, for all
〈a, b〉 ∈ W . We have specific views by A and B for which the condition
of the conceptual definition is satisfied, that is for every function f ∈ A
there is f ′ ∈ B, such that v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all x ∈ dom A.

2

Theorem 2 Definitions 4 and 5 are equivalent. That is B %M A iff B %m A.

Proof.

(1) B %M A implies B %m A: Definition 4 refers to every domain W (world),
therefore if there is a view of W by A by a partial surjection v : W →7→

12

dom A, then there is also a view of W ′ := dom v by A by a total surjection
v′ : W ′ →→ dom A. Hence, the corresponding view of W ′ by B is also a
total surjection u′ : W ′ →→ dom B. Define a total surjective mapping
ρ : dom B ⇉⇉ dom A, by ρ := v′

◦u′−1. We have that B %m A via ρ.
(2) B %m A implies B %M A: Let B %m A via a total surjective mapping

ρ : dom B ⇉⇉ dom A. We construct the proof in three steps:
(a) Specific world and views. Define a domain W (a world) as a subset of

dom A × dom B, by W := {〈a, b〉 : a ∈ ρ(b)}. Define total surjective
functions v : W →→ dom A and u : W →→ dom B (the views) by
v(〈a, b〉) := a and u(〈a, b〉) := b, for all 〈a, b〉 ∈ W . We have specific
views by A and B for which the condition of the conceptual definition
is satisfied, that is for every function f ∈ A there is f ′ ∈ B, such
that v◦u−1

◦f ′
◦u◦v−1(x) = {f(x)} for all x ∈ dom A.

(b) Specific world and all views. Let W, v and u be as in the previous
step. Let m : W →7→ dom A be an arbitrary view by A of the world
W . By the conceptual assumption, we may consider the domain W
as a domain W ′, by replacing each element y ∈ W with a set Y of
cardinality |W |. Accordingly, the view m becomes a view v′ : W ′ →7→
dom A, where |v′−1(x)| = |W | for all x ∈ dom A. Define a partial
surjective function ξ : W ′ →7→ W , such that v′(z) = v◦ξ(z) for all
z ∈ W ′. Define the view by B of the world, as the partial surjective
function u′ : W ′ →7→ dom B, by u′(z) := u◦ξ(z) for all z ∈ W ′.
We have that for every function f ∈ A there is f ′ ∈ B, such that
v′

◦u′−1
◦f ′

◦u′
◦v′−1(x) = {f(x)} for all x ∈ dom A.

(c) All worlds and all views. Let W be as in the previous step. Let W̃
be an arbitrary world and ṽ : W̃ →7→ dom A an arbitrary view by A
of the world W̃ . By the conceptual assumption we can enlarge the
world |W̃ | as required, thus we may assume that |W̃ | ≥ |W |. Define
a total surjective function τ : W̃ →→ W such that τ(x) = τ(y) implies
that ṽ(x) = ṽ(y) for every x, y ∈ W̃ . Define a view v : W →7→ A
by v := ṽ◦τ−1. By the previous step there is a corresponding view
u : W →7→ B, hence we have the required view ũ : W̃ →7→ B by
ũ := u◦τ .

2

Theorem 3 Definitions 6 and 7 are equivalent. That is B %I A iff B %i A.

Proof. The equivalence of the definitions with respect to their condition (a)
is achieved exactly as in the proof of Theorem 2. The definition equivalence
with respect to their conditions (b) and (c) is due to the construction of
the proof for condition (a), in which the correlation mapping between model
domains, ρ : dom B ⇉⇉ dom A, equals to the composition of the world views,
v : W →7→ dom A and u : W →7→ dom B, by A and B, respectively. That is

13

ρ = v◦u−1. 2

Example 1 Consider a modeling of a simple electric-cable by a model EC,
providing only the identity function over the reals. Then TM 6% EC and EC 6%
TM, by any of the suggested comparison notions above.

Example 2 Let Rec be the standard recursive functions over N, and RR a
duplication of the recursive functions over two different copies of the natural
numbers (e.g. red and blue numbers). That is, dom RR = N ∪ Ñ, where Ñ
is a different copy of the natural numbers, and every function of RR operates
independently on each copy of the naturals. Meaning, for every g ∈ RR we
have that g(x) ∈ N if x ∈ N and g(x) ∈ Ñ if x ∈ Ñ. We have then that Rec
incorporates RR, Rec %I RR, (and accordingly also mimics and resembles
it) via the bijection ρ(2n) = n and ρ(2n + 1) = ñ. On the other hand, RR
only mimics (and resembles) Rec via the mapping ρ(n) = n and ρ(ñ) = n.
RR cannot incorporate Rec, since it does not have the necessary abstraction
function.

Example 3 Let A be a model over the reals, treating all numbers [n, n+1) the
same. That is, for every f ∈ A and x ∈ R we have that f(x) = f(⌊x⌋) ∈ N.
Then there is no model B over N that can resemble A (B 6%R A, B 6%M A and
B 6%I A), however using the loosened notions, there are models B over N that
can incorporate it (B %R′ A, B %M′ A and B %I′ A).

3.3 Further Development

We choose, from this point on, to use and further develop the firmest of the
suggested notions – incorporation.

Definition 8 (Power Comparison Notion)

(1) Model B is (computationally) at least as powerful as model A, denoted
B % A, if B incorporates A (B %I A).

(2) Model B is (computationally) more powerful than A, denoted B ´ A, if
B % A but A 6% B.

(3) Models A and B are (computationally) equivalent if A % B % A, in
which case we write A ≈ B.

Proposition 1 The computational power relation % between models is a
quasi-order. Computational equivalence ≈ is an equivalence relation.

Inclusion of the Identity Function. When the “weak” model includes
the identity function (λx.x), the general comparison notion may be simplified,

14

requiring the correlation mapping (ρ) to be a surjective function instead of a
surjective mapping. If the “stronger” model is closed under functional compo-
sition, it may be further simplified, replacing the surjective function with an
opposite injection (ψ : dom A dom B). This is similar to the “embedding”
notion (Definition 9 below) with the additional requirement for an abstraction
function (g).

Lemma 1 Let A be a computational model with the identity function (λx.x ∈
A), then a model B % A iff there exist a total surjective function ϕ : dom B →→
dom A and a function g ∈ B, such that:

(1) for every function f ∈ A there is a function f ′ ∈ B such that ϕ◦f ′(y) =
f ◦ϕ(y) for all y ∈ dom B,

(2) ϕ◦g(y) = ϕ(y) for all y ∈ dom B, and
(3) g(z) = g(y) iff ϕ(z) = ϕ(y) for all y, z ∈ dom B.

Proof. The first direction is obvious, as a function is also a mapping. For
the other direction, let A be a computational model with the identity function
(ι := λx.x ∈ A), and let model B % A via a total surjective mapping ρ :
dom B ⇉⇉ dom A. Assume, by contradiction, that ρ is not a function, hence
elements e 6= t ∈ dom A and z ∈ dom B, such that ρ−1(e) = ρ−1(t) = z. Since
B % A, it follows that there is a function ι′ ∈ B, such that ρ◦ι′◦ρ−1(x) = {ι(x)}
for all x ∈ dom A. Therefore, ρ◦ι′(z) = {e} = {d}. Contradiction. 2

Theorem 4 Let A be a computational model with the identity function
(λx.x ∈ A). Then a model B, closed under functional composition, is at least
as powerful as A (B % A) iff there exist an injection ψ : dom A dom B
and a total function g ∈ B onto rng ψ (g : dom B →→ rng ψ), such that for
every function f ∈ A there is a function f ′ ∈ B such that ψ◦f(x) = f ′

◦ψ(x)
for all x ∈ dom A.

Proof. Let models A and B, injection ψ and function g as defined in the
theorem. Define a surjective function ϕ : dom B →→ dom A, by ϕ := ψ−1

◦g.
Since B is closed under functional composition, it obviously follows that the
constraints of Lemma 1 are satisfied. Hence, B % A.

For the other direction, if B % A there are function ϕ : dom B →→ dom A and
g ∈ B as defined in Lemma 1. By the constraints of Lemma 1 on g, we can
define an injection ψ : dom A dom B by ψ(x) := ϕ−1(x) ∈ rng g. Hence,
satisfying the required constraints on ψ and g. 2

Example 4 Real recursive functions (Rrec) [14], are more powerful than Tur-
ing machines (TM). That is Rrec ´ TM. The comparison is done via the

15

injection ψ : N R, where ψ(n) = n [14, p. 18], and the floor function
(λx. ⌊x⌋) to provide the abstraction capabilities of Rec (the above function g)
[14, p. 10].

See also Theorem 7 for the power equivalence of Turing machines and other
models.

4 Ramifications of Familiar Notions

Various methods have been used to compare the computational power of com-
peting models.

4.1 Extended Domains.

It is common to claim that a function can be replaced by any of its extensions.
That is, a function f : D → D can be replaced by f ′ : D′ → D′ if D ⊆ D′ and
f = f ′ ↾D. See, for example, [5, p. 654]: “Here we adopt the convention that
a function on N is in an analog class C if some extension of it to R is, i.e. if
there is some function f̃ ∈ C that matches f on inputs in N.”

By the conceptual framework, it is a special case of resemblance (Definition 2).
“B extends A” can be interpreted as “B having the potential to be at least
as powerful as A for a user who has both domain views.” For example, one
can consider a user who views the world as real numbers, but can identify the
natural numbers among them.

This approach is not appropriate as a general power comparison notion, since
the extended model B doesn’t necessarily have the abstraction capabilities of
A. For example, a mathematician working with paper and pencil may consider
various physical entities to “be” the symbol ‘a’ (e.g. a, a, a, a, a). A model
that lacks the abstraction of the various ‘a’s, treating each of them totally
differently, is not as powerful. Another example is a model that accurately
doubles a real number (λx.2x). It cannot replace the doubling function on the
natural numbers for a user who doesn’t have the ability to see so accurately
(as might be the case with human users). Consider, also, a model with real
input/input, but it’s a voltage or frequency or something that is really real.
Imagine it has a chaotic function h that is exactly the TM-halting function for
integer inputs, but is discontinuous. So that unless we give it the exact value as
input, the result is meaningless. Would one say that it is hypercomputational
in any meaningful sense?

16

4.2 Embedding.

Extending the domain is a special case of embedding, which is still a special
case of resemblance (Definition 2). A model B embeds A, if there is an injection
from the domain of A to the domain of B, via which B has all the function-
ality of A over the range of the injection. Actually, embedding is exactly as
extending the domain, up to isomorphism.

Definition 9 (Embedding) A computational model B embeds a model A,
denoted B %E A, if there is an injection ψ : dom A dom B, such that
for every function f ∈ A there is f ′ ∈ B such that f ′

◦ψ(x) = ψ◦f(x) for all
x ∈ dom A.

The above definition of embedding is the same as the definition of “at least
as powerful” in [2].

For example, Turing machines and the (untyped) λ-calculus were shown by
Church [6], Kleene [12], and Turing [19] to embed the partial recursive func-
tions via a unary representation of the natural numbers, and Church numerals,
respectively.

The reasons for the inadequacy of embedding as a generic power comparison
notion are analogous to that of domain-extending.

Example 5 Let RE be the recursively enumerable predicates over N. RE may
embed an expansion with infinitely many non-r.e. partial predicates {hi}. Let

h(n) =

0 program n halts uniformly

1 otherwise
hi(n) =

0 n < i ∨ h(n) = 0

⊥ otherwise .

We have that RE %E RE ∪ {hi}, by an injection ψ(n) = 2n + h(n), as

h′

i
(n) =

0 ⌊n/2⌋ < i or n mod 2 = 0

⊥ otherwise
f ′ =

f(⌊n/2⌋) f ∈ RE

h′

i
(n) f = hi .

where f ′ ∈ RE and f ′ = ψ◦f ◦ψ−1 for every f ∈ RE ∪ {hi}. (Without loss of
generality, we are supposing that ψ(0) = h(0) = 0.)

4.3 Effective Encoding.

A common approach for comparing models over different domains is to require
some manner of effectiveness of the encoding; see [8, p. 21] and [9, p. 290], for

17

example. Two basic methods are usually applied for effective encoding:

(1) One can demand informal effectiveness: “The coding is chosen so that it
is itself given by an informal algorithm in the unrestricted sense” [16, p.
27].

(2) Or one can require encoding effectiveness via a specific model, say, Turing
machines: “The Turing-machine characterization is especially convenient
for this purpose. It requires only that the expressions of the wider classes
be expressible as finite strings in a fixed finite alphabet of basic symbols”
[16, p. 28].

By the conceptual framework, an “effective comparison” means that B is at
least as powerful as A for a human user, assuming humans are capable of
“effective” representations.

Effectivity is a useful notion; however, it is unsuitable as a general power
comparison notion. The first, informal approach is too vague, while the second
can add computational power when dealing with subrecursive models and is
inappropriate when dealing with non-recursive models.

5 When is a Model More Powerful?

We demonstrate that the method commonly used in the literature for “strictly
more powerful” (´) is mathematically improper, as it allows for a model to be
more powerful than itself (A ´ A). We define “complete” models, for which
the common method is appropriate.

The Common Method. Intuitively, one would expect that a proper ex-
pansion of a model (additional functions) is also more powerful, that is, for
B) A to imply B ´ A. For example, general recursion is considered more
powerful than primitive recursion as it expands it (e.g. with the Ackermann
function), and a model that computes more than Turing machines is consid-
ered more powerful (see, e.g., [17]). Hence, the common method of showing
that a model B is more powerful than model A, for some comparison notion
%∗, is to show that B %∗ C) A for some model C.

The Problem. Unfortunately, it turns out that a proper expansion of a
model is not necessarily more powerful by the standard comparison methods.
That is, B) A does not imply B ´∗ A, where ´∗ may be embedding, our
suggested notion, or “containment up to isomorphism” (Theorem 5).

18

Example 6 Define the set R2 of “even” recursive functions (Rec):

R2 =

λn.

2f(n/2) n is even

n otherwise

: f ∈ Rec

R2 embeds all the recursive functions via the injection λn.2n, though R2 (Rec.

See also Example 5, for the embedding of non-r.e. predicates in RE.

Note that the common comparison method (see above) permits a model to be
more powerful than itself! For example, one might say that “R2 ´E R2,” since
R2 %E Rec) R2.

Theorem 5 ([2]) There are models isomorphic to proper expansions of them-
selves. That is, there is a set of functions M over a domain D, and a bijection
π : D → D, such that {π◦f ◦π−1 : f ∈ M}) M .

The Solution. The general solution is to use the strict part of the quasi-
order. In general, the strict part ´∗ of a quasi-order %∗ is defined as B ´∗ A
if B %∗ A but not A %∗ B. For example, with embedding one should show
that B embeds A, while there is no injection at all via which A may embed
B.

In addition, one can check whether a specific model is “complete” in the sense
that it is not equivalent (with respect to the relevant notion) to any of its
proper expansions. For complete models, such as Turing machines (Theorem 8)
the common (generally improper) method is suitable, saving the necessity of
precluding all possible mappings.

Definition 10 (Complete Models) Let %∗ be a quasi-order (comparison
notion). A computational model A is complete, with respect to %∗, if A %∗

B ⊇ A implies A = B for all B.

Proposition 2 Let %∗ be a quasi-order (comparison notion), and A a com-
plete model with respect to %∗. Then B ´∗ A iff there is a model C, such that
B %∗ C) A.

Theorem 6 Let A be a model with the identity function, closed under function
composition, and complete with respect to embedding (%E), then A is complete
with respect to power-comparison (%).

Proof. Follows directly from Theorem 4. 2

19

Corollary 1 Let A be a model with the identity function, closed under func-
tion composition, and complete with respect to embedding. Then a model B
is more powerful than A iff B is at least as powerful as A and embeds some
proper expansion C of A. That is, B ´ A iff there is a model C such that
B % A (C -E B.

6 Computability

Some computational models considered to be of equivalent power to Turing
machines are still so according to our suggested comparison notion (Defini-
tion 8).

Theorem 7 Turing machines (TM), recursive functions (Rec), counter ma-
chines (CM), and random access machines (RAM) are all of the same com-
putational power. That is, TM ≈ Rec ≈ CM ≈ RAM.

Proof. These equivalences are well-known. Though the comparison method
of [10], for example, is based on embedding, specifically for the above models
it is done via bijective functions, therefore satisfying the power comparison
notion of Definition 8. See [10, pp. 116–118; pp. 131–133; pp. 207–208]. 2

Since the term “hypercomputation” has two common meanings—both com-
puting more than TM, and computing a (possibly single) incomputable func-
tion, we use the term “strong hypercomputation” to denote the first meaning
(see Section 0).

Definition 11 (Strong Hypercomputation) A model A is strongly hy-
percomputational if it is more powerful than Turing machines, that is, if
A ´ TM.

In Section 5, we saw that a proper expansion of a computational model is
not necessarily more powerful (by any of the common comparison methods).
What does this mean for hypercomputation? Can it be that Turing machines
are as powerful as a model that computes additional functions?

In [2], we proved that Turing machines and the recursive functions are com-
plete models, thus are not susceptible to such an anomaly.

Theorem 8 ([2]) Turing machines (TM) are complete with respect to em-
bedding.

Accordingly, we can provide means to show that a model is strongly hyper-
computational:

20

Corollary 2 Model A is strongly hypercomputational if any one of the fol-
lowing conditions is satisfied:

(1) A ´ TM.
(2) A) TM.
(3) There is a model C, such that A % C) TM.
(4) There is a model C, such that A %E C) TM and also A % TM.

7 Conclusions

We have raised two potential problems with claims for hypercomputation:

(1) Different power comparison notions have different conceptual meanings,
as seen by linking computational models to hypothetical physical devices.

(2) The common method of demonstrating that one model is strictly more
powerful than another, based on the fact that it computes more functions,
is—in general—unsound.

The first problem motivated our seeking a formal relation between the differ-
ent conceptual meanings of relative power. The second led us to investigate
“complete” models, for which the set-based method is valid. Finally, we were
able to justify the standard means for showing that a model is hypercom-
putational, by appeal to the completeness of the Turing-machine model, and
taking into account the relationship between the various formal comparison
notions.

References

[1] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, New York, 1998.

[2] U. Boker and N. Dershowitz. Comparing computational power. Logic Journal

of the IGPL, to appear. Available at: http://www.cs.tau.ac.il/∼udiboker/
files/ComparingPower.pdf.

[3] O. Bournez, F. Cucker, P. J. de Naurois, and J.-Y. Marion. Computability
over an arbitrary structure. sequential and parallel polynomial time. FoSSaCS,
pages 185–199, 2003.

[4] J. P. Bowen. Glossary of Z notation. Information and Software Technology,
37(5–6):333–334, May–June 1995. Available at: http://staff.washington.
edu/∼jon/z/glossary.html.

21

[5] M. L. Campagnolo, C. Moore, and J. F. Costa. Iteration, inequalities, and
differentiability in analog computers. Journal of Complexity, 16:642–660, 2000.

[6] A. Church. An unsolvable problem of elementary number theory. American

Journal of Mathematics, 58:345–363, 1936.

[7] B. J. Copeland. Hypercomputation. Minds and Machines, 12:461–502, 2002.

[8] E. Engeler. Formal Languages: Automata and Structures. Lectures in Advanced
Mathematics. Markham Publishing Company, Chicago, IL, 1968.

[9] F. Hennie. Introduction to Computability. Addison-Wesley, Reading, MA, 1977.

[10] N. D. Jones. Computability and Complexity from a Programming Perspective.
The MIT Press, Cambridge, Massachusetts, 1997.

[11] T. D. Kieu. Quantum algorithm for Hilbert’s Tenth Problem. International

Journal of Theoretical Physics, 42:1461–1478, 2003.

[12] S. C. Kleene. Lambda-definability and recursiveness. Duke Mathematical

Journal, 2:340–353, 1936.

[13] M. L. Minsky. Matter, mind and models. Proc. International Federation of

Information Processing Congress, 1:45–49, 1965. Available at http://web.

media.mit.edu/∼minsky/papers/MatterMindModels.html.

[14] J. Mycka and J. F. Costa. Real recursive functions and their hierarchy. Journal

of Complexity, 2004. In print.

[15] T. Ord. Hypercomputation: Computing more than the Turing machine.
Technical report, University of Melbourne, Melbourne, Australia, 2002.

[16] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1966.

[17] H. T. Siegelmann. Neural Networks and Analog Computation: Beyond the

Turing Limit. Birkhäuser, Boston, 1998.

[18] J. V. Tucker and J. I. Zucker. Abstract versus concrete computation on metric
partial algebras. ACM Transactions on Computational Logic, 5(4):611–668,
2004.

[19] A. M. Turing. On computable numbers, with an application to the
‘Entscheidungsproblem’. Proceedings of the London Mathematical Society,
42:230–265, 1936–37.

[20] K. Weihrauch. Computable Analysis — An introduction. Springer-Verlag,
Berlin, 2000.

22

