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A b s t r a c t .  We present completion methods for rewriting modulo a congruence, generalizing 

previous methods by Peterson and Stickel (1981) and Jouannaud and Kirchner (1986). We for- 
malize our methods as equational inference systems and describe techniques for reasoning 

about such systems. 

1. I n t r o d u c t i o n  

Rewrite methods have been applied to a variety of problems in automated deduction, equa- 
tional programming, and symbolic computation. Unfortunately, s tandard rewrite techniques 

such as the Knuth-Bendix completion method are inadequate for many equational theories. 
For  example, using commutativity as a rewrite rule destroys the termination property and 
causes standard completion to fail. Equational theories comprising such problematic axioms 
can often be handled by generalizing the basic concepts of rewriting, matching, and unification, 

defining them with respect to the congruence generated by a given set of equational axioms A .  
Various methods have been proposed for rewriting modulo a congruence. Lankford and Ballan- 
tyne (1977) present Church-Rosser theorems for sets A of permutat ivi ty  axioms; Peterson and 
Stickel (1981) describe a completion procedure for associative-commutative rewriting; Jouan- 
naud (1983) and Jouannaud and Kirchner (1986) formulate completion for congruence~ with 

finite equivalence classes. 
In this paper, we formalize completion for rewriting modulo a congruence as an equational 

inference system. The individual inference rules represent elementary computation steps of 
completion. They can be combined in different w~vs to yield a wide range of completion pro- 

cedures. We outline techniques for reasoning about such inference systems, adapting the con- 
cept of proof ordering (Bachmair, Dershowitz and Hsiang 1986). Correctness proofs based on 
these techniques are comparatively simple and cover a large class of completion procedures, not 

just  a specific version. 
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We first present a completion method  tha t  can be applied to theories A for which the 

subterm ordering modulo A is well-founded. This method  includes, as a special case, the pro- 

cedure described by Jouannaud and Kirchner  (1986). It is less restrictive, in general, and 

allows construction of reduced canonical systems, since we do not  require the use of protected 

or extended rules. We also prove a conjecture by Jouannaud and Kirchner  (1986) tha t  the 

assumption of well-tbundedness of the A -subsumption ordering is not  needed for establishing 

the correctness of their completion procedure. Fur thermore ,  our results imply the correctness 

of criteria for deleting redundant  critical pairs. 

We then present another completion method tha t  generalizes the associat ive-commutat ive 

completion method of Peterson and Sticke] (1981) to arbitrary equational  theories A .  This 

method is based on the systematic use of extended rules. It imposes no restrictions on A ,  

other  than the existence of a finite complete A-uni f ica t ion  algorithm. In part icular ,  it can be 

applied to theories with infinite congruence classes, a case tha t  can not be handled by any 

other method. 

2. Equat ions  and R e w r i t e  Rules  

We will consider terms over some set of operator  symbols F and some set of variables V.  We 

u s e s , t ,  u ,  " - -  to denote terms; f , g ,  h ,  • - • to denote operator  symbols; x ,  y , z ,  • • " 

to denote variables. By t / p  we denote the subterm of t at  position p .  We write s [t ] to indi- 

cate that  s contains t as a subterm and (ambiguously) denote by s [u ] the result of replacing 

a particular occurrence of t by u .  If necessary, the position p of the replacement  may  be 

indicated by writing s [p/u ]. We write s [t 1 . . . . .  t n ] if s contains subterms t 1 . . . .  , t~. A 

subterm of t is called proper if it is distinct f rom t .  

By t e We denote the result of applying the subst i tut ion cr to t .  The te rm t ~ is called an 

instance of t .  An instance s of t is proper if t is not  an instance of s .  For  example, x +0  

and z +x  are proper instances of x + y ,  whereas x + z  is not. 

A binary relation --+ on terms is monotonic (with respect to the t e rm structure) if s--+t 

implies u Is ]-+u It ], for all terms s ,  t and u .  It is stable (under substi tut ion) if s -+t  implies 

s e-+ta, for any substi tut ion a. The symbols --*+, --+* and ~-+ denote the transit ive,  

transitlve-reflexive, and symmetr ic  closure of - h  respectively. A reduction ordering is a well- 

founded ordering that  is stable and monotonic.  

An equationis a pair of terms s - - t .  For  any set of equations E ,  *-+B denotes the smal- 

lest stable, monotonic, and symmetric  relation that  contains E .  The relation *-+E is the smal- 

lest stable congruence that  contains E ;  a congruence is, by definition, monotonic.  Directed 

equations are called rewrite rules and are wri t ten  s - + t .  A rewrite system is a set of rewrite 

rules. The reduction relation -+R is the smallest stable and monotonic  binary relation tha t  

contains R .  

Let  A be a set of equations and R be a rewrite system. The rewrite system R / A  (R 
rood A) consists of all rewrite rules l --+r such tha t  l '-+A u --+R v +-+A r , for some terms u and 

v .  The system R .A consists of all rules l --~r such tha t  l *-+A u a and r ~-v a, for some rule 

u -+ v in R and some substi tut ion a. For  example, if A consists of the associat ivi ty and com- 

muta t iv i ty  axioms for addition, and R contains rules - x  + z - + 0  and f (x ,x)---~g (z) ,  then  

f (z + y  ,y + z  ) i s  irreducible in R ,  but  reduces to g (x + y ) i n  R "A.  The te rm - x  +(x  + y ) i s  

irreducible in R "A , whereas it reduces to 0 + y  in R / A .  A rewrite step in R -A corresponds 

to the application of a rule in R using A-matching, i.e. matching with respect to the  
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congruence ~-+A" Thus,  we speak of rewri t ing  modulo a congruence.  

We will s~udy rewrite systems R tha t  are par t i t ioned into two sets L and N ,  where L 

contains only left-linear rules, and consider corresponding rewrite relations R A _~ L U N . A  . 

(A rule is left-linear if no variable occurs more than  once on its Ieft-hand side.) Thus, s --~RA t 

if and only if s --+L t or s --~IV.A t .  In other  words, A -matching is restricted to rules in N .  

A reduct ion ordering > is compatible with A if s > t  implies u > v ,  for all terms s ,  t ,  

u ,  and v wi th  u ++A s and t ~-~A v .  Any  ordering compatible  with A induces an ordering on 

congruence classes of ~-~A" A system R / A  is te rminat ing if and only if there is a reduction 

ordering > tha t  contains R and is compatible  with A . A system R is called Church-Rosser  

modulo A if, for all terms s and t with s +-~AUI~ t ,  there are terms u and v ,  such that  

s - -~Ru+-~AV+--Rt .  We say tha t  R is canonical  modulo A if R / A  is terminat ing and R is 

Church-Rosser  modulo A .  

8. P r o o f  O r d e r i n g s  

The concept  of proof orderings (Bachmair, Dershowitz,  and Hsiang 1986) is the key to our 

approach to rewrit ing modulo a congruence. 

Let  E be a set of equations and R be a rewrite system. A proof  in E [JR of an equation 

s = t  is a sequence ( S o , . . . ~ s r ~ ) ,  such tha t  s o is s ,  s,, is t and, for O < i ~ n ,  one of 

s i_x+-~E s i ~ s i_ l -÷R s i , or s i_I+--R s i holds. Every  single proof' step (s i_l ,s i  ) has to be justified 

by an equat ion t t i : v i ~  a subst i tut ion a i ,  and a position Pi~ such t h a t  S i _ l / P i ~ U i ( Y i ,  

s i ~ s i  l [Pl /V i (Xi] ,  and u i - v  i is in E U R  ( u - - v  denotes, ambiguously, u ~ v  or v = u ) .  

The  j u s t i f i ca t i on  of a proof is the muttiset  of all tuples (s i_ i , s  i ,u i ,v i ,a  i ,Pi ), 1 < i  < n .  It may 

be (partially) indicated by writing s O+-~E s I-+R - - • +--R s n ,  etc. A proof step s ~-+E t is called 

an equality step; a step s --~n t ,  a rewri te  step; a proof s *-R u -~R t ,  a peat:. We abbreviate a 

proof So--~R " " "--~RSn by s0--+Rs n. A proof s--+Ru~-~EV*--Rt is called a rewrite proof  

modulo E.  

We use the symbols P and Q to denote proofs. I f P  is (s0, • " ' , s n ) , t h e n  p - l d e n o t e s  

(s~, . . . ,  So). The nota t ion  P [Q] indicates tha t  P contains Q as a subproof. A binary rela- 

t ion ~ on (justified) proofs is monoton ic  if Q ~ Q '  implies P [Q ]=~P [Q ' ] ,  for all proofs P ,  

Q ,  and Q '  It is stable if P ~  ( s ,  . . . ,  u i ,  . . . ,  t ) ~  ( s ,  . . . ,  v j , .  . . ,  t ) ~ Q  implies 

( c [ s~ ] ,  . . . ,  c [ u  in! ,  . . . ,  c [ t c ~ ] ) ~  (c [s~], . . . ,  c [ v i a l ,  . . . ,  c [t a]), for all proofs P and 

Q ,  terms c , and subst i tut ions a. A proo f  ( reduc t ion)  ordering is stable, monotonic and well- 

founded ordering on proofs. 

A proo f  pa t t e rn  is a schema for a class of proofs and describes proofs that  share a common 

structure.  For  example, the  pat tern  s ---~R t ,  where s and t are metavariables denoting arbi- 

t rary terms and R denotes aa  arbi t rary rewrite system, characterizes all single step rewrite 

proofs in R ; s --+R u +--R t describes all rewrite proofs in R ; s +--R U--*R t ,  all peaks. An 

ins tance  of a pa t t e rn  is any specific proof of the given structure.  An el iminat ion  pa t tern  is a 

pair of proof  patterns.  For  any set of el imination pat terns 5:, we denote by ~ s  the smallest 

stable and monotonic  ordering that  contains any instance of an elimination pat tern of S .  

4. C o m p l e t i o n  fo r  R e w r i t i n g  M o d u l o  a C o n g r u e n c e  

We describe methods for constructing, given sets of equations A and E ,  a rewrite system 

R ~-L UN such that  L U N - A  is canonical modulo A and the congruence relations +-~A UE 
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and ++A oR are the same. The set A is assumed to be symmetric, for simplicity. Thus, the 

relations -+A and ++A are identical. We formulate completion as an equational inference sys- 

tem for manipulating pairs (E i ,Ri ) of sets of equations Ei and rewrite systems R i . 

Let > be a reduction ordering that  is compatible with A .  The inference system A (com- 
pletion for rewriting modulo a congruence) consists of the following inference rules, where E 
may be any set of equations and R any rewrite system contained in > : 

Orienting an equation 

(EU{s - -  t },R) i f s > t  (1) 
(E ,R U{s + t  }) 

Adding an equational consequence 

(E ,R ) 
if s +-R UA u --+R uA t (2) (~ u{8 = t  },R ) 

Simplifying an equation 

(E U{s - ;  t },R ) if s -+R/A u (3) 
(E u{u - t },R ) 

Deleting an equation 

ul -t,R)}'R ) if s + + ; t  (4) 
Simplifying the right-hand side of a rule 

(E ,R U{s -*t }) if t -'+R/A u (5) 
(E ,R u{s -+u }) 

Simplifying the left-hand side of a rule 

(E ,R U{s -+t }) if at a position not at the top (6) 
(E U{u = t  },R ) s --+R/A u 

(E ,R U{s --+t }) i f s - + R u  by l - -+ r  a n d s D l  (7) 
(E u{u = t  },R ) 

The symbol D denotes the proper subsumption ordering. 
We write (E ,R ) I---A ( E '  , R '  ) if ( E '  , R ' )  can be obtained from (E ,R ) by (one or more) 

applications of inference rules of A. We implicitly assume that R and R ~ are partitioned into 
L UN and L l UN t , respectively, where L and L I are left-linear. If a rule s -+t is in L ,  then 
simplification of its right-hand side by (5) yields a rule s -+u in L r ; if s --+t is in N ,  then 
s - + u  is i n N  t .  

The inference system A is sound, i.e. whenever ( E , R ) b - - A ( E ' , R ' ) ,  then the 
congruence relations ++A U/~ UR and +~A UB' uR ' are the same. 

A (possibly infinite) sequence (Eo,Ro) , ( E l , R 1 ) , - - -  is called a derivation in A if 

(EI_I,Ri_I) t--A (Ei ,Ri ), for all i >0 .  The limit of a derivation is the pair (E °~,R ~) of the set 

Ui >oAj >i Ej of all persisting equations and the set Ui >0fl i >i Rj  of all persisting rules. 
A completion procedure (for a given set. of equational axioms A ) is a strategy for applying 

inference rules of A to given inputs E0 and R0 to generate a derivation 

(Eo,R o), (E1,R ~),'" ". (The reduction ordering > ,  which has to be compatible with A ,  is 
usually regarded as an additional parameter. The initial set of rules R 0 must be contained in 

this ordering.) We will derive conditions under which the derivation generated by a completion 
procedure converges to a limit (E ~,R o~) for which E °°~0 and (R ~)A is canonical modulo A .  
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First  observe ~hat the application of inference rules of A is reflected on the proof level by 

an ordering on proofs. For  instance, application of inference rules (1), (3), and (4) can be 

expressed by equality (elimination) patterns 

s +-+t~ t ~ s --+R ~ t 

s +-~E t ~ s -+R '/A u +-~E t t 

Application of (5), (6), and  (7) can be expressed by the simplification patterns 

S - + R t  =ff S--->R~U+--RI/A t 

S--+Rt ~ s - -~R,we+g~t  

where s --+R t is by  application of a rule l -+r  at position p ; s --+R ~ u is by l--~r s at  position 

p;  s "+R'/A v is by application of a rule strictly below p ;  and s--+R' w is by a rule l r--+r ~ 

with li:>l ~ at position p .  By =-~c we denote the ordering induced by these el imination pat- 

terns. We have 

L e m m a  1. Let ~ A  be any ordering containing ~ c •  Whenever ( E , R  ) b---A(E' ,R t ), then 
* ! 

there is, for every proof P in E UR , a proof P t in E ~ UR I , such that P ~ AP . 

Proof. Only inference rule (2) is not  covered by ~ c .  If ( E , R )  F--A ( E '  , R ' )  by application 

of (2), then R and R t are identical and E is contained in E i . Therefore every proof P in 

A U E U R  i s a l s o a p r o o f l n A U E r U R I . .  

Lemma i shows that  completion can be viewed as a process of transforming proofs. The 

problem of constructing a Church-Rosser system, on the other hand,  consists of t ransforming 

any non-rewrite proof into a rewrite proof. A proof in A UE UR is a rewrite proof modulo A 

if and only if it contains no equality step s e - ~ t  and no peak s + -AuR~U-+R~t .  For con- 

struction of a Church-Rosser system it suffices to reduce (i,e. simplify) such "critical proofs" 

with respect to some (well-founded) ordering on proofs• Proof orderings formalize the intui t ive 

notion of proof simplification° 
We extend the ordering ~ c, which can be used for reducing equality steps, to a proof ord- 

ering =CA that  can also be used for el iminating peaks. 

The problem of simplifying peaks s +'-A uR A u--~R A t can be reduced to the problem of 

simplifying peaks s ~--A UR u --+R A t • (Recall tha t  l --+R~ r abbreviates l - %  r or l --~N.A r ,  
$ • and that  l -'+/V-A r abbreviates 1 +-~A l ~ ---~/v r .) Let P be a peak between A UR and R A 

ff both proof steps in P apply at disjoint positions, then there is no overlap. We have a 

corresponding el imination pa t te rn  

u [ p / r ]  ~--AuR u -+R~ u [ q / r ' ]  ~ u[p / r] - -~RA u [ p / r , q / r ' ] + - - A u  R u [ q / r ' ]  

wherep  and q are disjoint positions, u / p  is l ,  u / q  i s l  I , I - + A u R r , a n d l r - - - ~ R  ~ r l .  

ff one step in P applies below the other, then there exist positions p and q and rules 
v--+w and l - -~r ,  such that  u / p  is v a  and v a / q  is l a .  (We assume that  v and 1 have no 

variables in common.) It" q is not  a position in v or if v / q  is a variable, then one rule applies 
in the variable or subst i tu t ion pa~rt of the other, and P is called a variable overlap. We speak 
of an overlap if v / q  denotes a non-variable subterm of v .  
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Variable overlaps have the general structure 

w e [ I n , . . . ,  1o]~- R v o [ t ° , . . . ,  I°]-+R, ve [ r  e , t ° , . . . ,  10] 

and can be replaced by proofs 

oil o , . . . ,  1 w o[r o , . . . ,  r o]+-R v o[r o , . . . ,  r old-R, V o[r o, l  l o]. 
From this schema we derive elimination patterns 

S + - R  U --+R a i; ==~ S --+R a V + - R  W + - R  A t 

S + -A u ---+L t ~ s - + L  V + - A  W +--L t 

S + - L  u ---+A t :=} s - '+A v +'-L t 

s +-A U -+N,A t ~ s -+N-A V +-A w +--N.A t 

where all left-hand sides denote variable overlaps with the second step below the first (strictly 

below in the ]°st pattern). 

Remark .  A variable overlap P of the form s +-N u -~A t , wherein the second step applies 

below the first, simply translates into a rewrite step s +-N.A t . It  could be replaced by a proof 

Q of the form (s -+A v ~--N w +--A t ), bu t  if u --+N s is by application of a non-left-l inear rule, 

then Q contains a subproof v +-N w +-A+t that  is essentially equivalent to the original variable 

overlap P .  (The set A is symmetric.) Thus, replacements of this form do not  define a well- 

founded ordering. The concepts of A -matching and rewriting modulo a congruence provide an 

effective way of handling such problematic variable overlaps involving non-left-l inear rules. 

Overlaps can be effectively eliminated if a finite, complete unification algorithm for the 
theory A is known. 

Two terms s and t are A-unifiable if there exists a subst i tu t ion (an A-uni f ier)  a, such  

that  s °~-+A t 0. A set E of A -unifiers of s and t is complete if for any A -unifier r of s and t 

there exists a substi tution p, such that  x T4-+ A (X O)p, for all variables x .  We will consider, 

from now on, sets of axioms A for which a finite complete sets of unifiers for A exist and can 

be computed. Finite, complete unification algorithms are known for many  theories of practical 

importance (Siekmann 1984). ff A is the empty set, then the set consisting of the (unique) 
most general unifier of s and t is complete. 

Let u --+v and t -+r  be rules in R and R t ,  respectively, with no variables in common 

(the variables of one rule are renamed if necessary). Let p be a non-variable  position in u ,  

such that  u / p  and t are A -unifiable with a complete set of unifiers E. For  any ° in E, the 

proof v °+-R u a--+ R, .A u a[p / r  el is called an A -crit ical overlap of R t on R .  The equation 

v a = u  a [ p / r  a] is called an A-cri t ical  pair of l - + r  on u -+v at position p (or an A -critical 
pair of R I on R ). An A -critical pair between R and R i is either an A -critical pair of R on 

R ' or of R r on R .  If A is empty, then we speak of critical pairs. 

The following lemlnata characterize the connection between critical pairs and overlaps. 

L e m m a  2. (Critical Pair Lemma, Knu th  and Bendix 1970) I f  s +--R u --+R' t is an overlap, 

then s =_v [e a] and t ~-v [d cr], for some term v and critical pair c = d  between R and R ' 

L e m m a  3. (Extended Critical Pair  Lemma, Jouannaud 1983). Le t  A be a set  of  equations for 

which there exists a f inite complete unif icat ion algorithm. Le t  u --+v and 1 -+r be rules and p 

a posi t ion in u ,  such that u / p  is not a variable and is A -unifiable with l ,  E being a complete 

set  of  A -unifiers. Then there exist, for any overlap v v+-- R u 7-+ R , u r[p / r  T], subst i tut ions a 

and p, a in E, such that x T+-+ d (X O)p, for all variables x in u - + v  or l - -+r.  Consequently,  

there exists an A -critical pair c --~d , such that v T+-+ A c p and u T[p / r  v]++ A d p. I f  v is not  a 
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variable, then no equation in v r++ A c p applies at the top. 

The lemmata  are the basis for the overlap patterns 

S +--R ~ ---~L t ::~ S ~-+E' t 

s +-'A U -+L t =:~ S --+R~ t 

s +-L u -'+A t ~ S +--Rr t 

$ * 

S +-A U - + N . A  t ~ S ++A V -+R t W +-+A t 

where all left-hand sides denote overlaps with the second step applying below the first step. In 

addition, in the last pat tern,  the positions of u -+~.A t and of all steps in s *+A v are strietty 

below the position of u --+a s .  The equali ty steps in s +-+A v and w +-~A t reflect the fact tha t  

an overlap between N ' A  and A UR need not  contain an instance of an A -critical pair, but  

only an equation equivalent to such an instance. 

By ~ a  we denote the ordering induced by the above el imination pat terns (including the 

equality and simplification patterns). This ordering depends on the set of equations A .  For  

certain sets A it is well-founded; hence a proof  ordering. 

Let P be a proof (t o, " " - , tn)  in A UE UR and let Pi be the position of the i - t h  proof 

step (t i_i, t  i ) .  The  complexity M ( P )  of P is the mult iset  { e ( t 0 , t l , P ) , . . .  , e ( tn_ l , t  ~ , P ) } ,  

where e (t i_l, t i  ,P ) is 

({t~_~,t~ },-,-,-,-) 
({t¢_i}, t i_l/pi  ,maz ,t ,t, ) 

( { t i_ l} , t i_ l /p  i ,e (ti_!,ti ,P ),t ,ti ) 
e (t¢ , t i_l ,P -i) 

if ti_l+-~E t i 
if tiq+-~ A t i by an equation l = r  

if t i_l--+R t i by a rule l -+r  

if t i _i+--.R t i 

and e (ti_i,t  i , P )  is the multlset  {t i_ k +i/Pl-k  +i, - - . ,  t i q / P i - i } ,  with k being the largest 

index for which (t i_k , . - - ,  t~_l) is a proof of the form t i k ~ A  t i - i  or t i_k *--R tl-k + i ~ A  t i_ r  

The multiset  e (t i_i , t  ¢ , P )  encodes information about  the " env i ronmen t "  of a rewrite step. 

The symbol max denotes a new constant.  

The ordering ;>c is the lexicographic combinat ion of the extension to multisets of the 

reduction ordering > ,  the proper subterm ordering modulo A ,  the  extension to muttisets of 

the proper subterm ordering modulo A ,  the subsumption ordering, and the reduction ordering 

> .  (Elements equivalent  wi th  respect, to A are regarded as being identical when compared in 

the reduction ordering > or the subterm ordering modulo A . The constant  max is assumed 

to be maximal.) This ordering is well-founded if and only if the proper subterm ordering 

modulo A is well-founded. We define > a  by: P > x P  ' if and only if M ( P  )>>c M ( P '  ). 

L e m m a  4. I f  the proper subterm ordering modulo A is well-founded, then ~ x  is a proof ord- 

ering. 

Sketch of proof. We prove that  any instance of a r ight-hand side of an el imination pa t te rn  for 

completion is simpler with respect to > A  than  the the corresponding instance of the left-hand 

side. In may cases, e.g. for equali ty patterns,  the  first component  in the eompIexity measure 

e (s ,t ,P ) suffices to prove this assertion. For  overlap patterns,  only the first three component  

are relevant.  The second, fourth, and fifth component  of c (s , t , P )  are used for the 

simplification patterns,  mainly. For  details see Bachmair  (1987). * 
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Simplification of overlaps by ~ ,  corresponds to the application of inference rule (2). The 

following definition is motivated by this connection between inference system and proof order- 

ing. 

Def in i t ion  1. A derivation (E0,R 0), (E1,R 1 ) , ' ' "  in A is fair if (a) E°'~@, (b) all critical 

pairs of L ~o on R ~o and all A -critical pairs of N ~ on R ~ are contained in Uk Ek, and (c) all 

critical pairs between L o~ and A and all A -critical pairs of N ~  on A are contained in Uk Rk. 

A fair derivation may not be possible from an arbitrary pair (E i ,R  i) ,  since equations 

could be generated that can not be oriented, simplified, or deleted. Thus, a completion pro- 

cedure may fail for certain inputs E ,  R and > .  We say that a completion procedure is fair if 

it generates only fair derivations unless it fails. 

TREOREM 1. Let  A be a set of equations with a finite complete unification algorithm for 

which the proper subterm ordering modulo A is well-founded. Let E be a set of equations, 

R ~ L  U N  be a rewrite system., and > be a reduction ordering that is compatible with A and 

contains R . I /  C is a /a i r  completion procedure and does not fail for inputs E ,  R and > ,  

then E ~ and (R °°) A is canonical modulo A . 

Sketch of proof. Let (Eo,R o), (E1,R 1 ) , ' ' "  be a fair derivation in A. We prove that when- 

ever a p r o o f P  of s = t  in A U E  i U R  i is not arewrite proof moduloA in(R~C)A, then there 

is a proof Q of of s~--t in A U E j U R j ,  for some j > _ i ,  such that P ~ A Q .  We can then 

infer, by induction on ~A,  that (R ~)A is Church-Rosser modulo A .  Termination follows 
from the fact that the reduction ordering > is compatible with A and contains R co 

Let P be a proof in A UE i UR i . If P contains an equality step u "+E~ v,  then, by part (a) 

of the fairness requirement, eventually one of the inference rules (1), (3), or (4) has to be 

applied, resulting in a proof Q in A UEj  U R j ,  for some j > i ,  such that P ~ A Q  - Similarly, 

if P uses a non-persisting rewrite step, application of (5), (6), or (7) will yield a simpler proof 

Q.  Finally, suppose that P uses only persisting rules or equations in A ,  i.e. is a proof in 

A UR ~, but  is not a rewrite proof. Then P must contain a peak v *--A uR~ U --+R~W . If this 

peak is a variable overlap, or not an overlap at all, then it can be eliminated by rearranging its 

proof steps, as described in the above elimination patterns. On the otherhand,  parts (b) and 

(c) of the fairness hypothesis guarantee that all critical pairs necessary for elimination of over- 

laps are computed. In either case, there is a proof Q in A UEj  U R j ,  for some j >_i, such that 

P :=~AQ- * 

A system R A is called reduced if, for every rule l -+r  in R ,  l is irreducible in 
(R -{1 -+r })A and r is irreducible in R A. Completion procedures based on the inference sys- 

tem A do not allow construction of reduced systems, in general, since inference rule (7) does 
not permit reductions by N - A .  Thus a final (canonical) system R ~ may contain two rules 

l -+r and u -+v,  for which t +-~A u a, for some substitution or. But a reduced canonical system 

can be easily obtained (see also Jouannaud and Kirchner 1986): 

PROPOSITION 1. Let  R be a (finite) rewrite system and A be a set of equations, such that 

R A is canonical modulo A . Let R t be the system obtained from R by deleting one by one 

any rule l --+r for which there is a rule u --+v in N ,  distinct from l --+r , such that l +'~A u ~, f o r  

some substitution a. Then (R t )A is canonical modulo A . 
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The restriction of inference rule (7) to simplification by R is a major limitation of rewrit- 

ing modulo a congruence. This limitation can be relaxed (at the cost of imposing other restric- 
tions). 

Let v a+-- A u c/--~N. A U Grip / r  o ~] be an A -critical overlap of i --+r on u -÷v at position p .  

Jouannaud and Kirchner (1986) use inference rule (2) not for adding the A-critical pair 

v a -~u  a[r a], but for generating either an equation w =:u air a], if there exists a term w such 

that v a---~R~ w, or an extended rule u [ p / I  }--+u [ p / r  ], if v a is irreducible in R A. 

This use of inference rule (2) can be viewed as combining several inference step, namely 
generation of a rule v a--+u air a] with simplification of its left-hand side. If possible, a term w 

is chosen that can be obtained by reducing a proper subterm of v a in R / A  , or by reducing 

v a a t t h e t o p i n R .  If v a can only be reduced in N-A at the top, u s i n g a r u l e I J - + r l  i n N ,  
say, then l ~ --+r t has to be protected from simplification at the left-hand side. In other words, 

left-hand sides of protected rules can not be further simplified. The introduction of an 

extended rule renders the term v a reducible. More precisely, we have v a-+N. A u cr[r a by 

applying the extended rule u f1 ]-÷u [r ] at the top. (Extended rules are added to the set N. )  

Consequently, extended rules have to be protected. (Without protection, the rule u [l]-+u [r ] 

could be reduced to a trivial equation u [r ]--u [r ] by l--+r .) 

The above procedure can be conveniently described by an inference rule for 

Simpli fy ing the left-hand side of a rewrite rule 

(E ,R U{s -+t }) if s -*N.A u by a protected rule I --+r (8) 
(E u{u = t  },R ) 

Let P be the inference system consisting of inference rules (1)-(8), but with application of 

(6), (7), and (8) confined to unprotected rules. The modifications in the simplification rules are 

reflected by changes in the corresponding elimination patterns. The resulting ordering ~ r  is 
well-founded; hence a proof ordering. This can be proved by using a similar complexity meas- 

ure as for =CA in which a distinction is made between rewrite steps by a protected or an unpro- 

tected, respectively, In particular, any proof step s -+N.A t that uses a protected rules has to 

be considered as a single proof step (not as an abbreviation for a proof s ~-+A u --~N t ). Thus, 

the equality steps in s +÷A u do not directly contribute to the complexity of a proof. Theorem 

1 is also valid for completion procedures based on P (Bachmair 1987). The procedure 

described by Jouannaud and Kirchner (1986) can be formulated within P. Jouannaud and 

Kirchner (1986) prove the correctness of their procedure under the assumptions that 
congruence classes generated by A are finite and that the proper subsumption ordering modulo 

A is well-founded. The first assumption implies that the subterm ordering modulo A is well- 

founded. Thus, our results show that the second assumption is not needed at all. 

Formulating completion as an inference system has the additional advantage of providing 

more flexibility for implementing specific versions of completion. The inference system A is a 
special case of P, in which protected rules are never generated. This indicates protected rules 

are not necessary for construction of a canonical system. They may be useful, though (see the 

discussion in Jouannaud and Kirchner 1986). 

5. C o m p l e t i o n  for  the  In f in i t e  C o n g r u e n c e  Class Case 

Extended rules were introduced by Peterson and Stickel (1981) in the context of associative- 
commutative rewriting. Jouannaud and Kirchner (1986) generalized the concept to rewriting 
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modulo a congruence, in general. In this section, we describe a completion method that  sys- 

tematically uses extended rules and can be applied to any set of equations A with a finite com- 

plete unification algorithm. In particular,  the method can be used for equational theories tha t  

generate infinite congruence classes, e.g. theories with identity, f (x ,e ) z x ,  or equipotency, 

f (f (x))=x. 
Let R ~ L  UN be a rewrite system, where L contains only left-linear rules. A rule l --+r 

in N and equation u = v  in A determine an extended rule u [l ]--+u [r ], if l is A -unifiable 

with some proper (non-variable) subterm u / p  of u . 

Extended rules have to be protected from simplification on the left-hand side. This may 

preclude construction of fully reduced systems. But  extended rules do have advantages. Con- 

sider an A-cri t ical  overlap v a+-+ A u ff++A U o ' [ la]  of l--+r on u = v  at position p .  The term 

v a reduces to u air  a} by application of u [l ]--+u [r ]. In other words, in the presence of an 

extended rule, the A-cri t ical  pair v a---~u a[r a] simplifies to a trivial equation u a[r a]=u a[r of; 

hence need not be computed in the first place. This argument  applies to any A -critical pair of 
l - + r  On u - - v  at position p .  Therefore, it suffices to compute a single extended rule, instead 

of a possibly large set of A-cri t lcal  pairs. Usually, extended rule can be computed more 

efficiently than A -critical pairs, since they require only a test for A -unifiability. 
Let A be a symmetric set of equations and > be a reduction ordering compatible with A .  

The inference system E consists of inference rules (1)-(6), plus the following rule for 

Simplifying the left-hand side of a rewrite rule 

(E ,RU{s- -+t} )  i f s - + R / A U  by a rule l--+r with s D l  (9) 
(E U{u : t  },R) 

Here ~ may be any well-founded ordering on terms, e.g. terms may be compared by their size. 

The proof ordering techniques outlined in the preceding sections can readily be applied to 

the inference system E. Again, application of inference rules of E is reflected on the proof level 

by a proof ordering ~ E  (Bachmair 1987). The ordering [:> takes on the role of the subterm 

ordering modulo A in proving that  ~ E is well-founded. We have the following fairness condi- 
tion: 

D e f i n i t i o n  2. A derivation (Eo,Ro) , ( E l , R 1 ) , ' ' '  in E is fair if (a) E~-~0,  (b) all critical 

pairs of L ~ on R ~° and all A-cr i t ical  pairs of N °° on R °° are contained in UkEk,  and (c) 

whenever l--~r is an extended rule of N ~ and A or a critical pair between L ~o and A , then 
R ~o contains a rule 1 --+u, where r --~uR~ u .  

Par t  (c) expresses the fact that  extended rules and critical pairs between L ~ and A are pro- 
tected from simplification on the left-hand side. 

THEOREM 2. Let A and E be sets of equations, R ~ L  UN be a rewrite system, and > be a 
reduction ordering that contains R and is compatible with A . I f  C is a fair E-completion pro- 
cedure and does not fail for inputs E ,  R and >,  then E ° ~ O  and (R °°) A i8 canonical modulo 
A .  

The associative-commutative completion procedure by Peterson and Stickel (1981) can be 
formulated within the inference system E. This procedure applies to sets AC of associativity 

and commutat ivi ty  axioms and employs the rewrite relation R -AC. For simplification of left- 
hand sides an ordering [:> is used in which terms are first compared by size, then with respect 

to the proper subsumption ordering modulo A C .  The only extended rules, originating from 
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rules / (s , t ) -+u with an AC-operator f as outermost, symbol on the left-hand side, are 

f (~,f  (s,$))-+f (x,u) and f (f (s ,t),x)-+f (u ,x), where ~ is a new variable not appear- 
ing in s ,  t ,  or u .  (Since both rules are equivalent, only one is actually needed. Extensions of 

extended rules are superfluous.) A large number of canonical systems have been derived with 

this completion method (e.g. Ha!lot 1980). 

6. Cr i t i ca l  P a i r  Cr i t e r i a  

Computation of criticat pairs, as required by fairness, guarantees simplification of overlaps. 

Often overlaps can be reduced without computing the corresponding critical pair. A critical 
pair criterion characterizes critical pairs that are redundant in this sense. Various criteria have 
been designed for standard completion; see Bachmair and Dershowitz (1986) for a uniform 

treatment and further references. Similar criteria can be applied to rewriting modulo a 

congruence (e.g. K{ichtin 1986). We generalize the concept of compositeness (Kapur, Musser, 

and Narendran 1986). 

Def ini t ion 3. (a) A critical pair c ~-~d of l -+ r  on u-+v  at position p ,  with corresponding 

unifier a, is called composite, if u a is reducible by R / A  at a position strictly below p .  

(b) An A -critical pair c ~-~d of l --+r on u -+v at position p ,  with corresponding A -unifier o, 

is called composite, if one of the terms u a or u ~[p/lo] is reducible by R / A  at a position 

strictly below p.  

Composite critical pairs are redundant for (certain) completion procedures based on the 

inference system A. Consider, for example, an A -critical overlap 

P -=(~ o~-R ~ o - * N ~  ~ o i p / r  0]). 

If u a reduces to s ~ at a position strictly below critical pair position p ,  then the overlap P can 

be decomposed, into two peaks 

Q ~("  o*-R ~ ~-*R/A ~ *-R/A '~ o-*NA ~ ° [ P / r  o1). 
Now, the first proof step has smaller complexity in Q than in P ,  because its neighboring 

rewrite step applies at a lower position. A similar argument applies to the last proof step. The 

additional proof steps in Q apply at lower positions; hence are less complex. Therefore. we 

have P >AQ • In other words, any overlap corresponding to a composite A -critical pair of N 

on R can be simplified. Similar arguments apply to other critical overlaps, but not to overlaps 

involving extended rules. (A slightly different complexity measure is used for extended rules!) 
An special case of eompositeness is blocking. An A -critical pair e ~-d is called blocked if 

z a is irreducible in R / A ,  for alI ~ariables x, a being the A -unifier corresponding to c ~-d .  

Unblocked critical pairs are composite; hence redundant. Kapur, Musser and Narendran (1986) 

report that the application of blocking to the associative-commutative completion method of 
Peterson and Stiekel (1981) typically results in considerable savings of computation time. 
Associative-commutative completion is based on extended rules, however, and the correctness 

of blocked (or composite) criteria for this ease is an open problem. 
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