
Topics in Termination*

Nachum Dershowitz and Charles Hoot

Department of Computer Science, University of Illinois, Urbana, IL 61801, U.S.A.
nachum, hoot @cs. uiuc. edu

Abstract . We generalize the various path orderings and the conditions un-
der which they work, and describe an implementation of this general ordering.
We look at methods for proving termination of orthogonal systems and give
a new solution to a problem of Zantema's.

1 I n t r o d u c t i o n

If no infinite sequences of rewrites are possible, a rewrite system is said to have tile
termiuation property. In practice, one usually guarantees termination by devising
a well-founded (strict partial) ordering ~, such that s :,- t whenever s rewrites
to t. As suggested in [Manna and Ness, 1970], it is often convenient to separate
reduction orderings into a homomorphism from terms to an algebra with a well-
founded ordering. Tile use, in particular, of polynomial interpretations which map
terms into the natural nmnbers, was developed by Lankford [1979]. For a survey of
termination methods, see [Dershowitz, 1987].

Virtually all orderings used in practice are simplification orderings [Dershowitz,
1982], satisfying the replacement property, that s ~- t implies that any term contain-
ing s is not less (under ~) than the same term with that occurrence of s replaced
by t, and the snbterm property, that any term containing s is greater or equal to
s. Simplification orderings cannot be used to prove termination of "self-embedding"
systems, that is, when a term t can be derived in one or more steps from a term t ~,
and t t can be obtained by repeatedly replacing subterms of t with subterms of those
subterms.

Knuth and Bendix [1970] designed a particular class of well-orderings which as-
signs a weight to a term which is the sum of the weights of its constituent function
symbols. Terms of equal weight and headed by the same symbol have their subterms
compared lexicographieally. Another class of simplification orderiugs, tile path or-
derings [Dershowitz, 1982], is based on the idea that a term u should be bigger than
any term that is built from smaller terms, all held together by a structure of function
symbols that are smaller in some precedence ordering than the root symbol of u.
The notion of path ordering was extended by Kamin and Ldvy [1980] to compare
subterms lexicographically and to allow for a semantic component; see [Dershowitz,
1987]. Ilere, we generalize these orderings and the conditions under which they work.
In the appendix, we describe an implementation of the general ordering.

* This research was supported in part by the U. S. National Science Foundation under
Grants CCR-90-07195 and CCR-90-24271. The first author was also supported by
Lady Davis fellowship at the Hebrew University of Jerusalem.

199

We also look at methods of proving termination of orlhogonal (left-linear non-
overlapping) systems and related issues. These may be compared with ordinary
structural induction proofs used for recursively-defined functions;see [Burstall, 1969;
Manna, 1974]. In particular, we give a solution to a problem posed by Zantema
[personal communication].

2 P a t h o r d e r i n g s

We use quasi-orderings (reflexive-transitive binary relations) to prove termination
of rewrite systems. A quasi-ordering is well-founded if it has no infinite strictly
descending sequences of elements. A precedence is a well-founded quasi-ordering of
function symbols. An ordering might be called syntactic if it is based on a precedence
and is invariant under shifts of symbols. In other words, we require that consistently
replacing function symbols in two terms with others of the same arity and with the
same relative ordering has no effect on the ordering of the two. The recursive path
orderings [Dershowitz, 1982; Kamin and L~vy, 1980; Lescanne, 1990] are syntactic;
the Knuth-Bendix and polynomial orderings are not.

The rule
x x (y + z) --* (x x y) + (x x z) (1)

is terminating. This can be shown by considering the multiset of "natural" inter-
pretations of all products in a term, letting + and • stand for addition and multi-
plication, and assigning some fixed value to constants; see [Dershowitz and Manna,
1979] for similar examples. Syntactic "path" orderings (see [Dershowitz, 1987]) work
in this case, too. Lipton and Snyder [1977] gave a method for proving termination
with interpretations (order-isomorphic to w) for which rules are "value-preserving",
as this example is for the natural interpretation.

Consider the following contrived system for computing factorial in unary arith-
metic (expanding on one in [Kamin and L~vy, 1980]):

p(~(.)) --,

faa(O) ~ s(o)
yaa(s(=)) ~ ,(=) •

0 x y ---* O
s (~) • -~ (~ •

x + O ~ x
�9 + ~(y) -~ s(= + y) .

(2)

It would be nice were we able to use a natural interpretation, but that does not prove
termination, since the rules preserve the value of the interpretation, rather than cause
a decrease. Nor can we use multisets of the values of the argument of fact, since some
rules can multiply occurrences of that symbol. Though path orderings [Dershowitz,
1987] have been successfully applied to many termination proofs, they suffer from
the same limitation as do all simplification orderings: they are not useful when a
rule embeds as d o e s / a a (s (=)) --, s (x) x fact (p(, (x))) .

What is needed is a way of combining tile semantics given by a natural inter-
pretation with a non-simplification ordering that takes the structure of terms into
accoun t .

200

Def in i t ion 1 (T e r m i n a t i o n Func t ion) . A termination funclion r takes a term as
argument and is of one of the following types:

a. a function that returns the outermost function symbol of a term to be compared
using a precedence;

b. a homomorphism froln terms to some well-founded set of values (that is,
r (f (s l , . . . , so)) = f~(r (S l) , . . . , r(sn)), for each function symbol f) ;

c. a monotonic homornorphism fi'om terms to some well-founded set with the strict
subterm property (f r (. . . x . . .)) > x) (a homomorphism is monolonic with re-
spect to the given ordering _> if f , (. . . x . . .) > f ~ (. . . y . . .) whenever x > y; it
has the strict subterm properly if f r (. . , x . . .) > x);

d. a strictly monotonic homomorphlsm from terms to some well-founded set which
has the strict subterm property (it is strictly monotonic if f , (. . . x . . .) >
f ~ (. . . y . . .)) whenever x > y);

e. a function that extracts the immediate subterm at a specified position (which
position can depend on the outermost function symbol of the term);

f. a function that extracts the immediate subterm of a specified rank (the kth
largest in the path ordering defined recursively below); or

g. a constant function.

Simple examples of homomorphisms from terms to the natural numbers are size
(number of function symbols, including constants), depth (maximum nesting of func-
tion symbols), and weight (sum of weights of function symbols). Size and weight are
strictly monotonic; depth is monotonic. (The subterm property is guaranteed for
strictly monotonic homomorphisms into well-ordered sets [Dershowitz, 1982].)

Def in i t ion 2 (G e n e r a l Pa t l l Order ing) . Let r0 , . . . , r,~ be termination functions.
The induced path ordering ~.- is as follows:

s : f (s l ~ . . . , S m) ~_ g (t l , . . . , i n) : l

if either of the following cases (1 or 2) hold:

(1) si __ t for some si, i = 1 , . . . ,m ; or
(2) s : , - t l , . . . , t , , and (r l (s) , . . . , rk(s)) is lexicographically greater than or equal to

(r~(t) , . . . , r~(t)), where function symbols are compared according to their prece-
dence, homonaorphic images are compared in the corresponding well-founded
ordering, and subterms are compared recursively in ~-.

As usual, s ~- t if s ~- t, but s 2~ t.

L e m m a 3. The path ordering satisfies lhe strict subterm property f (. . . , s t , . . .) ~ si,
for all i.

Proof. By (1) f (. . . . s i , . . .) ~_ si, but si ~ f (. . . , s i , . . .) , since the first part of (2)
cannot hold for the ith subterm on tile right. [3

Thus, the ordering is strict when Case (1) applies, or, for Case (2), if tile lexico-
graphic comparison is strictly greater.

201

L e m m a 4 . For the path ordering, s ~- t implies s ~- tl~ for each proper subterm t[i
o f t and implies u[s] ~- t for each immediately enclosing context u[.] ors.

L e m m a 5. The path ordering is a quasi-ordering.

Proof. Reflexivity is an easy induction. For transitivity, we show tha t s ~- t ~- u
implies s _ u and that s __. t ~ u or s ~ t __ u implies s ~ u, simultaneously,
by induction on the size of the three terms and a ease analysis. This requires the
preceding lemma. El

T h e o r e m 6. Let TO,.. . , r i - t (i > O) be monotonic homomorphisms, all but possibly
the last strict, and let ri, . . . , rk be any other kinds of termination functions. A rewrite
system terminates if hr F- r~r in the corresponding path ordering ~- for all rules l ~ r
and ground substitutions a, and also r(hr) = r (r~) for each of the non-monotonic
homomorphisms among the ri.

The proof of this theorem is akin to [Kamin and L~vy, 1980] and uses a minimal
counter-example argument.

Proof. First we show that

s ~ t and s ~ t imply f (. . . , s , . . .) ___ f (. . . , t , . . .) ,

for all terms s, t, . . a n d function symbols f . Then, l~ ~- ra will imply a decrease
with each rewrite.

Other than for the monotonic homomorphisms, we have r i (f (. . . , s , . . .)) >
ri (f (. . . , t , . . .)) : For r , a precedence, value-preserving homomorphism, specified sub-
term, or constant, s ~ t clearly implies r (f (. . . , s , . . .)) >__ r (f (. . . , t , . . .)) in the
relevant ordering. For a r that extracts the kth largest subterm u of f (. . . , s , . . .) : if
u ~- s or t ~- u, then replacing s by t has no impact on rank k aud r (f (. . . , s , . . .)) =
u = r (f (. . . , t , . . .)) ; i f s ~- u ~- t, then r (f (. . . , s )) ___ r (f (. . . , t , . . .)) .

Let s ~- t because the rl for some subterm sip of s are lexicographieally
greater than for L If the first point of difference between the ri is a strict ho-
momorphism, then this (with the subterm property) implies a strict decrease
r i (f (. . . , s , . . .)) ~- n (f (. . . , t , . . .)) and, therefore, f (. . . , s , . . .) ~- f (. . . , t , . . .) , if
i t ' s at the non-strict homomorplfism, then r i (f (. . . , s , . . .)) ~ r i (f (. . . , t)) and
f (. . . , s , . . .) __. f (. . . , t , . . .) .

To prove well-foundedness of ~-, consider a minimal infinite descending sequence
tt N t2 N . . . , minimal in the sense tha t from all proper subterms of each term in
the example there are only finite descending sequences. (By the subterm property, if
tj ~- t j+l then t i is also greater than the subterms of t j .) Case (i) of the defilfition
of ~ could not be the justification for any pair tj ~- t j+l , since then we would have
t j -1 ~- tj [i >'- tj+2, for some proper subterm tj [i of the j t h term in the example, and
the example would not be minimal. Since Case (2) uses a lexicographic combinat ion
of well-founded orderings (including ~- on proper 8ubterms), it, too, is well-founded,
and the descending sequence could not be infinite. 13

For System (2), let r0 interpret everything naturally: fac t as factorial, s as suc-
cessor, p as predecessor, x as multiplication, + as addition, and 0 as zero. Let all

202

constants be interpreted as natural numbers, making all terms non-negative. Let the
precedence rl be fact >.- x)-- + ~ s. Each rule causes a strict decrease with respect
to ~-.

One nmst also make sure that all terms and subtenns in any derivation are
interpretable as natural numbers; otherwise a rule like fac t (x) --+ fact(p(x)) would
give pretense of being terminating.

The following orderings are special cases of the general path ordering. For all but
one, the conditions of the theorem hold:

Knulh-Bendix ordering [Knuth and Bendix, 1970]. 7"o gives the sum of (non-negative
integer) "weights" of the function symbols appearing in a term; rl gives a (total)
precedence; r2 , . . . , v,~+l give a permutation of the subtenns.

Polynomial palh ordering [Lankford, 1979]. r0 is a strictly monotonic homomorphism
(each fT is a polynomial with positive coefficients); rl gives a precedence; r~.,..., r ,+l
give a permutation of the subterms.

Mullisel path ordering[Dershowitz, 1982]. r0 is a total precedence; q , . . . , r , give
the subterms in non-increasing order. (The multiset path ordering is also defined for
partial precedences; that would require comparing the ri as a naultiset, rather than
lexicographically .)

Lezicographic path ordering [Kamin and Ldvy, 1980]. r0 is a precedence; r l , . . . , r,,
give a permutation of the subterms.

Semanlic path ordering [Kamin and Ldvy, 1980; Plaisted, 1979]. 7"0 is tile iden-
tity function (a non-monotonic homomorphism), with terms compared in some
well-founded ordering; rl gives a precedence; r2 , . . . , r,~+t give a pernmtation of
the subterms. (For this ordering, one must separalely insure that s -+ t implies
to(s) >__ ro(O.)

Recursivc path ordering [Lcscanne, 1990]. r0 is a total precedence; rt rn give a
permutation of the subterms or give the subterms in non-increasing order, depending
on the function symbol.

Extended Knulh-Bendix ordering [Dershowitz, 1982; Steinbach and Zehnter, 1990].
r0 is a monotonic interprctation; ri gives a precedence; r2 , . . . , r ,+t give the subterms
in order, permuted, or sorted, depending on the function symbol.

For a system like
-+

f(O) -+ 0
d(O) 0

- - ,

(3)

203

a precedence (f > h > d > 8) ought to be considered first, before looking at
subterms, as with a lexicographic path ordering. In a system like

f (o) --, o (4)
- .

with nested defined symbols on the right, an interpretation (f r (x) = O, s~(x) =
x + 1, pr(x) = x - 1) could be considered first, followed by a precedence (f > s, p),
as with an extended Knuth-Bendix ordering. (With f(O) --* s(O), instead of O, the
system would be nonterminating.)

In the appendix, we describe how an implementation of this ordering performs
on a sorting example.

3 O r t h o g o n a l s y s t e m s

Consider a recursive definition like

f (x) = i f x > 0 t h e n f (f (x - 1)) + l e l s e 0 .

By a straightforward use of structural induction, one can prove that the least fixpoint
(over the natural numbers) is the always-defined identity function. This definitioh
translates into the rewrite system:

--,

f(0) o (5)

It would be nice to be able to mimic the proof for the recursive function definition
in the rewriting context, but several issues arise:

1. One cannot use a syntactic simplification ordering like the simple path ordering
[Plaisted, 1978], since the first rule is embedding. In fact, we must combine
termination with the semantics (f (x) = x) , as one must for the functional proof.

2. In the functional case, one can show that call-by-value terminates, which im-
plies that all fixpoint computation rules also terminate. We will see under what
conditions the same holds for rewriting.

3. For rewriting in general, one must consider the possibility that the x in the
definition of f (x) us itself a term containing occurrences of the defined function
f (or of mutually recursive defined functions), something usually ignored in the
functional case.

Consider the system:

f(s(x)) --* s(f(p(s(x))))
f(0) --~ 0 (6)

The general path ordering works with a natural interpretation of the argument of f
and a precedence f > s, p.

Alternatively, one can employ the following result:

204

P r o p o s i t i o n 7 [O 'Donnel l , 1977]. A non-erasing orthogonal system is terminal-
ing if and only if every term has a normal form.

Therefore, the offending rule may be immediately followed by an application of
the last rule, effectively replacing the former with f (s(z)) -+ s(f(x)) . Now termina-
tion can he shown with a standard recursive path ordering, demonstrating that the
orginal system is normalizing, and, hence, terminating.

This method does not apply to a system like

x x 0 --* 0
• (z• (7) x + 0 ~ x
+s(:/) -~ s (x + y) ,

with its erasing rule (the first one).
Still, we can employ the following:

P r o p o s i t i o n 8 [Gramlieh~ 1992]. A locally confluent overlaying system is tcrmi-
haling if and only if innermost rewriting always leads lo a normal forth.

An overlaying system is one whose only critical pairs are obtained from an overlap at
the topmost position. In particular, orthogonal systems are locally confluent and have
no (non-trivial) critical pairs; the proposition for this case was shown in [O'Donnell,
1977].

We turn now to the question of when termination of ground constructor instances
of left-hand sides suffices for establishing termination in all cases.

Def in i t ion9 [Dershowitz , 1981]. The set of forward closures for a given rewrite
system is inductively defined as follows:

- Every rule l --~ r is a forward closure.
- If c --* d and d -+ d I are forward closures such that d = u[s] for nonvariable

s and s/t = d/t for most general unifier ~t, then Cl~ ---* u#[dltt] is also a forward
closure.

The idea is to restrict application of rules to that part of a term created by previous
rewrites. In the same way, we can define innermost and outermost forward closures--
restricting the position at which unification is performed so that the derivations
captured by closure are of the desired type.

P r o p o s i t i o n 10 [Geupel~ 1989]. A non-overlapping rewrite system is ~erminating
if, and only if, no right-hand side of a forward closure initiates an in[inite derivation.

In general, though, a term-rewritiug system need not terminate even if all its forward
closures do [Dershowitz, 1981].

Consider the following system for synd)olic differentiation with respect to t (prov-
ing ternaiuation of the first five of these rules waz one of tile problems on a qualifying
exam given at Carnegie-Mellon Universil.y in 1967):

205

Dt t
Dt a

Dt (x + y)
D, (x . y)

nt (z -- y)
D,

D,
Dt (In x)

Dt (xY)
where a is any constant

1
0
Dt x + Dt y

---* y . D t x + x . D t y
---+ Dt z - Dt y (8)
-'+ -Dr x
---* Dt x / y - x . Dt y/y2
- , D,
---+ y . z ~ - l . D t x + z " . (l n x) . D t y ,

symbol other than t. It is orthogonal (hence, non-
overlapping), so the above method applies. Since D's are not nested on the right,
forward closures cannot have nested D's. Since the arguments to D on the left are
always longer than those on tile right, all forward closures must lead to terminating
derivations; hence, regardless of the rewriting strategy and initial term, rewriting
terminates.

For a system like
f(s(x)) .-.-+ ,(s(f(p(8(x)))))

f(O) --, 0 (9)
p(s(,))

we can also restrict our attention to forward closures. Since f's won't nest, termi-
nation can be shown by comparing the argument on tile left, s(x), with the one on
the right, p(s (x)) . This time we need to use a semantic comparison, making the left
argument always larger.

T h e o r e m 11. A locally-confluent overlaying rewrite system is terminating if, and
only if, no right.hand side of an innermost forward closure initiates an iuflnite
derivation.

In particular, orthogonal systems satisfy the prerequisites for application of this
termination test; one need only prove termination of such innermost derivations.

The proof is similar to [Geupel, 1989]:

Proof. Consider a minimal example of nontermination tl ~ t~ ~ .-., minimal in
the sense that at each point, any rewrite lower down in the term than the redex in
the example would have to lead to a normal form. Replace the largest terminat-
ing subterms of each ti with their unique normal form (which they have by local
confluence). The fact, that all overlaps occur at tile top ensures that none of these
replacements prevents application of a rule above the replaced terms. Hence, the
result is an infinite derivation with the desired characteristics. [3

This method applies to Systems 2 and 5: Since we need only consider inner-
most derivations, we can assume that the problematic p(s(x)) on the right rewrites
immediately to x (and that the x is in normM form).

Suppose an orthogonal system is constructor-based, that is, all proper subterms
of left-hand sides have only free constructors and variables. All its forward closures
begin with constructor-based instances of left-hand sides. Thus, termination proofs

206

need not consider initiM terms containing nested defined function symbols (even
when the symbol is not completely defined). That makes proving termination of such
systems no more difficult than proving termination of ordinary recursive functions:
the instances of rule variables can be presumed to bc in normal form and the context
can be ignored.

For System 5, say, we can compare the multiset of right-hand side arguments
of the (mutuMly-)recursive function symbols {f(p(s(z))), p(s(x))} with that of left-
hand side, {s(a:)}. Semantics are necessary for this comparison. If we let p(s(z)) ---, x
and f(x) --~ x, we have {s(z)} greater (in the multiset ordering) than {x,x}. But
one must ensure that the semantics are eonsistcnt with the rules (which is analogous
to showing that f(x) = x is a fixpoint of thc definition). This can be done using
standard rewriting technique ("proof by consistency").

It is instructive to compare the above examples with the following nonterminating
rewrite system:

f(s(x)) --. s(s(f(f(p(s(x))))))
f(0) ~ 0 (10)

p(s(x)) ~ x .

It is the rewriting analogue of the recursively-defined function

f(x) = i f z > 0 then f (f (~ - I)) + 2 else O,

which does not terminate for 2. Indeed, f(x) = x would be inconsistent with the
rules.

The above results can be used to prove termination oF systems that can be
decomposed into two terminating systems that do not share defined symbols.

P r o p o s i t i o n l 2 [Dershowitz, 1993]. Let R contain defined symbols and free con-
structors, and S contain defined symbols from a disjoint set of defined symbols and
from the same set of constructors. If R and S are each non-overlapping and termi-
nating, then so is their union.

4 S t r i n g r e w r i t i n g

Propos i t ion 13 [Dershowitz, 1981]. A right-linear rewrite system is terminaling
if, and only if, no right-hand side of a forward closure initiates an infinite derivation.

Ill particular, forward closures sulfice for string-rewriting systems. String systems
are also non-erasing.

Zantema's Problem (circulated via electronic mail) is to prove termination of the
following one-rule string-rewriting system:

1100 -~ 000111. (11)

It provides a nice example of termination proofs based on an analysis of restricted
derivations.

Suppose it is nonterminating. Consider a minimal infinite derivation

t l - -+ t 2 - -+ - - - ,

207

minimal in the sense that no substring of tl is nonterminating and there is no infinite
derivation from tl taking place at higher positions (further left). More specifically,
tl ~ t~ takes place at the top (leftmost symbol) and among all infinite derivations
beginning tl ~ t2 ~ . . . --* tl, none starts higher than does ti ~ ti+l ~

Divide each string ti into three parts (from left to right): dead, active, and passive.
The dead part never develops a redex; the passive part is a residual substring of
the initial string which has not yet been touched; the active part contains letters
introduced by right-hand sides. The dead part is in normal form and for (11) always
ends in 000.

To start off, tl is all passive, except for its first letter. This minimal derivation
must be leftmost (outermost). Suppose this were not the case. Either the outer redex
is eventually rewritten, or it never is. In the former case, the derivation

tl ~ "'" ~ ullOOv ~ ullOOv' ~ . . . ~ ullOOv" ~ uOOOlllv" ~ . . . ,

where v --* v t --* . . . --* v ~, can be rearranged to

tl ~ ' " ~ ullOOv ~ uOOOl l lv~ uOOOlllv I ~ . . . ~ uOOOlllv H---*.-. ,

and, therefore, is not minimal. In the latter case, rewriting the outer redex doesn't
preclude nontermination, and the smaller alternative is also nonterminating.

Similarly, redexes are always in the active part. For suppose the minimal deriva-
tion did have some steps in the passive part. There would have to be a subsequent
step in the active part (or else that passive proper substring of tl would be nontcr-
lninating), which is perhaps enabled by the step in the passive part:

~ 1 ~ - S W ~ �9 �9 �9 - . . 4 U V W ---.+ U V W t .-. .4 �9 �9 �9 .- . .4 ' U V W t t . . - 4 U V t W t t ~ �9 �9 �9 ,

where u is dead, v is active, and w is passive. Since the alternate derivation

S W I I . - -) . �9 �9 �9 ~ n V W I I . . - ,e U ~ I w I I , - -) . �9 �9 *

(starting out after the rewriting of the passive part) is smaller (the v redex is higher
up than the w one), the given derivation can not be minimal.

More generally:

P r o p o s i t i o n 1 4 . A non-erasing orthogonai system terminates if and only if no
right-hand side of an outermost forward closure initiates an infinile derivation.

System (9) is of this form (all its forward closures are outermost m~yway.)
For this specific system, we need only consider three active parts: 111, 1110111,

or 1111110111, since i t takes only finitely many steps to get from one of these to
another. Call these states A, B, and C, respectively.

For there to be a redex in the active part, the passive part must begin with
00 or with 100. The leftmost derivations (with redex underlined, and dead parts
bracketed) of the six cases are shown in Fig. 1. In each case, termination follows
from the fact that the passive part decreases in size.

The santo approach works for other examples of the form 110 / ~ 0 R I t.

208

A00 = 11100 --* [1000]111 E A

BOO = 111011100 --+ [11101000]111 ~i A

COO = 111111011100 ---} [111111010001111 ~ A

A100 = 111100 -~ .11000111 --* [000]1110111 E B

B 1 0 0 = 1110111100 ---} 111011000111 ~ 11100001110111 --+

[10001111001110111 -+ [10001000]1111110111 E C

C100 = 1111110111100 --. 111111011000111 --* 11111100001110111 ---*

1111000111001110111 --, 110001110111001110111 --*

[000]11101110111001110111 -+ [000111o111o100o]111111o111 E C

F i g . 1. D e r i w t i o n s for Zantema's problem

A p p e n d i x

Our general path ordering termination code (GPOTC) is implemented in Common
Lisp on a Macintosh. (No special features of Macintosh Common Lisp were used, so
the code should be capable of running under any Common Lisp with just a few minor
changes.) ~ The implementation supports termination functions for precedence, term
extraction (given, minimum, and maximum), and homomorphisms.

Interpretations involving addition, multiplication, negation, and exponentiation
are expressible. Currently, tile burden of proving that functions are either value-
preserving or monotonic is placed on the user. As is usual for such functions, one
often ends up needing to know if a given function is positive over some range. When
the functions are rational polynomials, tiffs is decidable, but time consuming. Our
code does not attempt a full solution, but merely applies some quick and dirty
heuristics, such as testing the function a t endpoints and checking coefficients of
polynomials. In cases where the code cannot make a deternfination, it will query
the user for an authoritative answer. Tile part of tile code that does this testing
could be upgraded to provide heuristics such as those described in [Lankford, 1979;
Ben Cherifa and Lescanne, 1987; Steinbach and Zehnter, 1990]. We are also in the
process of implementing Paul Cohen's decision procedure [Cohen, 1969] for the first-
order theory of real polynomials within Mathelnatica |

Thc following brief example shows the use of GPOTC. The rewrite rules in Fig. 2
are an implementation of insertion sort over the natural numbers. The function
choose is used to determine whether X should be inserted before or after the first
element of the list which is the second argument to i n s e r t . Rule 2, for example,
would be defined for the system as follows:

Those interested in obtaining a copy of GPOTC should send electronic mail to

hoot@cs, uiuc. edu.

209

(setf ins2 (make-production :lhs '(!Sort (!Cons ?X ?Y))
:rhs '(!Insert ?X (!Sort 7Y))))

The characters "!" and "?" are macro symbols indicating symbols and variables,
respectively.

RULE I: sort(nil) --> nil
RULE 2: sort(cons(X, Y)) --> insert(X, sort(Y))
RULE 3: insert(X, nil) --> cons(X, nil)
RULE 4: insert(X, cons(V, W)) --> choose(X, cons(V, N), X, V)
RULE 5: choose(X, cons(V, W), 0, 0) --> cons(X, cons(V, N))
RULE 6: choose(X, cons(V, W), s(P), O) --> cons(X, cons(V, W))
RULE 7: choose(X, cons(V, N), 0, s(Q)) --> cons(V, insert(X, W))
RULE 8: choose(X, cons(V, W), s(P), s(Q)) --> choose(X, cons(V, N), P, Q)

Fig. 2. Rules for insertion sort.

The code for creating the ordering is

(set~ Sym0rdl ' (!Sort ! Insert !Choose !Cons))
(setf Sym0rd2 '(!Sort (!Insert !Choose) !Cons))
(makeorder ordl

(list
(make.prec_tau SymOrd2)
(make_subterm_tau ((!Sort I) (!Choose 2) (!Insert 2)) ordl)
(make_prec_tau SymOrdl)
(make_subterm_tau ((!Sort I) (!Choose 3) (!Insert 2)) ordl)
))

Three termination functions are used; they are lexicographically compared from first
to last. The macro make_prec_tau creates a precedence ordering based on its argu-
ment; make_subtezan_tau ((f n) . .+) ord l extracts the nth subterm for function
symbol / and compares it using the ordering ordl . The makeorder macro creates a
function with the name of the first argument which accepts two terms (8 and t) and
may return one of three values: Ge (s _ t), Gr (s)-- t), or tin (unknown).

If one uses a precedence ordering based on Sym0rdl, all of the rules except for
Rule 7 would be oriented in the appropriate direction. Unfortunately, Rules 4 and 7
interact with each other. In particular, there is a choose and an i n s e r t on opposite
sides of each rule. The precedence order Sym0rd2 with (so r t ~- i n s e r t = choose
~- cons) is chosen to guarantee that the lexicographical ordering of the terms in
Rule 7 is from left to right, while leaving Rule 4 equal. This meaam that the left-
hand side of R,ule 7 is compared with each of the two subterms on the right. The
comparison of interest is choose(X, cons(V, W), 0, s (t~))wi th i n s e r t (X , W).
These terms are equal under the precedence ordering Sym0rd2, but by selecting the
second subterm, the subterms cons(V, W) and W are recursively compared giving
the necessary decrease. Fortunately, the second subterm on both sides of Rule 4 is

210

identical, leaving the lexicographical ordering unaffected. The precedence ordering
Synt0rdl with (so r t ~- i n s e r t ~ choose b- cons) breaks the tie, mad "all that
remains is to verify that the left-hand side of Rule 4 is greater than the subterms on
the right.

The code in Fig. 3 shows an example of a monotonic homomorphism where
F I (X) = 2X + 4, F a (X , Y) = 3Y + 6, F,, = 0 and Fb = 1. The macro make-fn
accepts a list of symbols and their associated functions. Notice that the expres-
sions are essentially the equivalent Lisp expressions with (a r t a) giving the nth
argument.

(setq example-FNtau
(aake-fn ((! f (+ (* 2 (arg 1)) 4))

(!g C+ (* 3 Cart 2)) 6))
(!a O)
(~b i))))

Fig. 3. Example code for creatiug a function r.

To apply the ordering function ord to each of the rules in the list InsSor t
(containing the six rules in Fig. 2), one issues tile command

(term-goad I n s g o r t # ' o r d l) ,

with tim result

(:6R :GR :6R :GR :GR :GR :GR :GR) .

Figure 4 displays the justification for R.ule 4. The system is able to determine that
i n s e r t (X , cons(V, W)) is greater than choose(X, cons(V, i/), X, V) by first
showing that i n s e r t (X, cons (V, W)) is strictly greater than each of the subterms
of the right-hand side. These sub-proofs (for X, cons(V, I/), and V) are all similar:
a sub-term of the left-hand side is found to be syntactically equal to the right-hand
side, and Case (1) of the path ordering applies. Showing the lexicographic part of the
ordering comes next: one of the termination functions must show a strict increase.
The first two do not result in a strict decrease (they are equal). The third, however,
compares i n s e r t with compare in the precedence given by Sym0rdl where there is
the desired strict decrease. That concludes Case (2) of Definition 2, showing that
i n s e r t (X , cons(V, W)) is strictly greater than choose(X, cons(V, W), X, V).

R e f e r e n c e s

[Ben Cherifa and Lescanne, 1987] Ahlem Bell Cherifa and Pierre Lescanne. Termination
of rewriting systems by polynomial interpretations and its implementation. Science o]
Computer Programming, 9:137-159, 1987.

[BurstaJl, 1969] B.obert M. Burstall. Proving properties of programs by structural induc-
tion. Computing J., 12(1):41-48, Febru&ry 1969.

211

(term-cond (list ins4) # ' o r d l :keep-causes t)
((:GR
inser t (X, cons(V, I/)) > choose(X, cons(V, W), X, V) by case (2)
Case 2a: Check tha t the LHS > a l l subterms of the RHS:

inse r t (X, cons(V, W)) > X by case (1)
I X is syntactically equal to term X

J
inse r t (X, cons(V, W)) > cons(V, W) by case (1)
I cons(V, W) is syntactically equal to term cons(V, g)

l
insert(X, cons(V, N)) > X by case (I)
[X is syntactically equal to term X

l
inse r t (X, cons(V, N)) > V by case (1)
I c o n s (V , i/) >,, V by c a s e (1)
I I V is syntactically equal to term V

Case 2b: Check that the LHS > RHS via lexicographic comparison:
i l:insert(X, cons(V, N)) >= choose(X, cons(V, V), X, V) by basic orderin s

of a precedence tau
I I
I 2:immediate subterms insert J2 uith choose[2: cons(V, W) >- cons(V, W)
[[cons(V, N) is syntactically equal to term cons(V, W)
[I
I 3:insert(X, cons(V, W)) > choose(X, cons(V, W), X, V) by basic ordering

of a precedence tau
))

Fig. 4. Proof for a single rule.

[Cohen, 1969] Paul J. Cohen. Decision procedures for real and p-adic fields. Comm. Pure
and Applied Math, 22(2): 279-301, March 1969.

[Dershowitz, 1981] Nachum Dershowitz. Termination of linear rewriting systems. In Pro-
ceedings of the Eighth International Colloquium on Automata, Languages and Program-
ming, pages 448-458, Acre, Israel, July 1981. European Association of Theoretical Com-
puter Science. Vol. 115 of Lecture Notes in Gompnter Science, Springer-Verlag, Berlin.

[Dershowitz, 1982] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279-301, March 1982.

[Dershowitz, 1987] Nachum Dershowitz. Termination of rewriting. J. of Symbolic Com-
putation, 3(1&2):69-115, February/April 1987. Corrigendum: 4, 3 (December 1987),
409-410.

[Dershowitz, 1993] Nachum Dershowitz. tiierarchical termination. Technical Report, Leib-
nitz Center for Research in Computer Science, IIebrew University, Jerusalem, Israel.

[Dershowitz and Manna, 1979] Nachum Dershowitz ~td Zohar Manna. Proving termina-
tion with multiset orderings. Commn~ticatio,s o] the ACM, 22(8):465-476, Aug,st 1979.

[Geupel, 1989] Oliver Geupel. Overlap closures and termination of term rewriting sysLems.
Report MIP-8922, Universit$t Passau, Passau, West Germany, July 1989.

212

[Gramlich, 1992] Bernhard Gramlich. Relating innermost, weak, uniform and modular ter-
mination of term rewriting systems. Proceedings of the Conference on Logic Programming
and Automated Reasoning, pp. 285-296, St. Petersburg, Russia, July 1992. Vol. 624 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin.

[Kamin and Lbvy, 1980] Sam Kamin and Jean-Jacques Lbvy. Two generalizations of the
recursive path ordering. Unpublished note, Department of Computer Science, University
of Illinois, Urbana, IL, February 1980.

[Knuth and Bendix, 1970] Donald E. Knuth and P. B. Bendix. Simple word problems in
universal algebras. In J. Leech, editor, Computational Problems in Abstract Algebra, pp.
263-297. Pergamon Press, Oxford, U. K., 1970.

[Lankford, 1979] Dallas S. Lankford. On proving term rewriting systems are Noetherian.
Memo MTP-3, Mathematics Department, Louisiana Tech. University, Kuston, LA, Oc-
tober 1979.

[Lescanne, 1990] Pierre Lescanne. On the recursive decomposition ordering with lexico-
graphical status and other related orderings. J. Automated Reasoning, 6:39-49, 1990.

[Lipton and Snyder, 1977] R. Lipton and L. Snyder. On the halting of tree replacement
systems. In Proceedings of the Conference on Theoretical Computer Science, pp. 43-46,
Waterloo, Canada, August 1977.

[Manna, 1974] Zohar Manna. Mathematical Theory of Computation. McGraw-tIill, New
York, 1974.

[Manna and Ness, 1970] Zohar Manna and Steven Ness. On the termination of Markov
algorithms. In Proceedings of the Third Hawaii International Conference on System Sci-
ence, pp. 789-792, Honolulu, I{I, January 1970.

[O'Donnell, 1977] Michael J. O'Donnell. Computing in systems described by equations,
volume 58 of Lecture Notes in Computer Science. Springer, Berlin, West Germany, 1977.

[Plaisted, 1978] David A. Plaisted. Well-founded orderings for proving termination of sys-
tems of rewrite rules. Report R-78-932, Department of Computer Science, University of
Illinois, Urbana., IL, July 1978.

[Plaisged, 1979] David A. Plaisted. Personal communication, 1979.
[Steinbach and Zehnter, 1990] Joachim Steinbach and Michael Zelmter. Vade-mecum of

polynomial orderings. Report SR-90-03, Fachbereich Informatik, UniversitSt Kaiser-
slautern, Kaiserslantern, West Germany, 1990.

