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Abstract. Starting from existing spreadsheet software, like Lotus 1-2-
3R©, ExcelR©, or Spreadsheet 2000R©, we propose a sequence of enhance-
ments to fully integrate constraint-based reasoning, culminating in a sys-
tem for reactive, graphical, mathematical constructions. This is driven
by our view of constraints as the essence of (spreadsheet) computation,
rather than as an add-on tool for expert users. We call this extended
computational metaphor, spreadspaces.

We believe that research towards more general and realistic constraint solving
frameworks has to go on in parallel with the effort to make fewer and fewer requests
to the user. In other words, users should be asked only for as much as they want to
give the system. This amount of information (decided by users but with a minimum

set by the system below which most precision is lost) is then used by the system to
construct the whole constraint problem.

—Ugo Montanari and Francesca Rossi [18]

1 Overview

Our ultimate goal in this work is the design of a graphical environment for
spreadsheet-like computations, including solving and optimization, wherein the
graphical interface serves as an input medium, in addition to its traditional
output rôle. Changing a displayed value, be it graphical or textual, results im-
mediately in the appropriate changes to values it depends on. This integrated
system, with its transparent graphical mode of interaction, will dramatically ex-
tend the capabilities of existing commercial products, providing sophisticated
mathematical intelligence for the computationally näıve.

Spreadspaces do not have the look or feel of spreadsheets [20], or even of
graphical spreadsheets, but rather that of a graphical user interface. At the
design level, the system serves as a graphical design environment with defin-
able and extensible graphical objects. Thus, educators, for example, can design
? This author’s research was performed while on leave.
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spreadspaces within which schoolchildren can solve problems and investigate
variants.

Target users are everyday users of personal computers. Examples of
spreadspace applications include:

– Exploring mathematical relations (see the baguette example below).
– Simulating physical devices (such as a pendulum).
– High school problem solving.
– Contingent (“what-if”) financial calculations (for example, home loan plan-

ning, tax computations).
– Logical and mathematical puzzles (for example, map coloring, crypto-

arithmetic).

Today’s spreadsheets provide ad-hoc constraint solving [8, 16, 7], mainly via
linear programming, and incorporate sophisticated graphical output. But these
features are patched on top of the basic spreadsheet, making the interface difficult
and limiting its general use.

The following sections lead us from minor cosmetic enhancements of current
spreadsheets, through sophisticated tools for the incorporation of mathematical
intelligence, to user-friendly graphical spreadspaces.

2 Cosmetic Constraints

The goal was to give the user a conceptual model which was unsurprising – it was
called the principle of least surprise. We were illusionists synthesizing an experience.

Our model was the spreadsheet – a simple paper grid that would be laid out on a table.
The paper grid provided an organizing metaphor for a working with series of numbers.

While the spreadsheet is organized we also had the back-of-envelope model which
treated any surface as a scratch pad for working out ideas.

—Bob Frankston (coinventor of Visicalc)

We begin with some simple “cosmetic” improvements to modern-day spread-
sheets. The central notion is that of constraints, which are boolean (true/false)
formulæ, involving comparisons and conditionals, that are required to evaluate to
true. Constraints extend ordinary formulæ by allowing the user to specify more
general relations between variables. Guaranteeing the truth of a constraint forces
the variables it involves to take on appropriate values. Values that make a con-
straint true are called a solution. Typical constraints involve inequalities (such
as Years < 80), type information (Years: Integer), and logical combinations
((Years=62 and Gender=Female) or (Years=65 and Gender=Male)). To sat-
isfy a constraint, the variables (like Years) appearing in it are set by the system
to appropriate values by computation and solving mechanisms.

To incorporate constraints into the spreadsheet paradigm, we do the follow-
ing:

1. Add a new kind of cell for constraints. One should be able to switch the type
of a cell from boolean to constraint and back again easily. This facilitates
debugging a set of constraints.
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2. Only cells with an empty value are considered to be variables. Special flags
can be used to indicate preference for maximal or minimal possible solutions.
Cells that contain user-supplied values, like X3 having the value 4, would
be interpreted as an implicit constraint, viz. X3 = 4. This is in contrast
with current systems which allow the solver to modify cells containing user-
supplied values.

3. As in today’s spreadsheets, symbolic names (like Current Price) can be
given to cells instead of their Cartesian name (e.g. G13), and these could be
used in expressing constraints.

4. It would be nice to allow cells to contain interval values (like 0..100) to
express ranges of possible inputs or outputs.

As a simple example, consider the problem of graphing the price of a (nice,
fresh and crusty) baguette under variable inflation rates.

Using today’s spreadsheets, one can answer the question, “What is the lowest
inflation rate such that the price of a baguette will increase tenfold in the span of
a person’s lifetime?”, by using the following spreadsheet, where the constraints
are specified and solved via the integrated solver:

With the same example, using a constraint spreadsheet, a user will input the
following spreadsheet containing two constraints: a type constraint in C2 and an
inequality constraint in C3. The variable to be maximized is B2:
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A B C D

1 Current Price 9
2 Years :70≤B2≤80 :B2 integer
3 Inflation Rate !min
4
5 Future Price B1*(1+B3)^B2 :B5=10*B1

The system is designed to automatically solve the constraint and display the
following values:

A B C D

1 Current Price 9
2 Years 70 solved solved
3 Inflation Rate 3.34%
4
5 Future Price 90 solved

The value 3.34% is assigned to the cell B3 (better known as Inflation Rate)
since it is the smaller number that allows the constraints given in the spreadsheet
to be satisfied. Constraints are written in cells like C2 and D2 to specify that
Years should be an integer in between 70 and 80. In its solved form the constraint
spreadsheet displays the result of the computation in cells that contain formulæ
(like B5), and either solved , when the constraint is satisfied, or false, if no
solution has been found, in cells that contain constraints (like C5) .

Formally, a spreadspace is a finite set of constraints (which are finite or in-
finite relations) on values of cells. At any given moment, each cell is either
“protected” (user-supplied input or derived therefrom) or “variable”. Relations
defined in constraints are not directional: whether a constraint X3*3=2*Y3 would
cause X3 to be calculated from a known value of Y3 or vice-versa would depend
on the context. A variable can be determined, not only by fixing related rigid
values and calculating functional dependencies (as in backsolving a value for X3
from the equation Y3=3*X3 and a fixed value for Y3), but also by solving sev-
eral inequalities (like Y3=X3*X3, X3>0, and 10<Y3<20, for integer X3 and Y3),
depending on the sophistication of the available solver routines.

Thus, processing spreadsheets with constraint cells involves the following
steps:

1. Extract the set of constraints from the spreadsheet.
2. Choose which variable cell(s) to solve for.
3. Attempt to solve the constraints using constraint solvers.
4. If the set of solutions is non-empty, determine which solution should be fed

back to the appropriate cells.

Today’s systems have capabilities to “backsolve” single constraints, optimize
by linear programming, and solve some non-linear equations using Newton’s
method and the like. Only rudimentary solving capabilities for integers are avail-
able. As we outline in the next section, more powerful tools are in fact available.
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3 Constrained Spreadsheets

What was important were the features we’d left. We’d already discussed wall-sized
interactive displays with live graphics but the systems weren’t up to it. More

important, the grid provided the simplifying structure that made it a spreadsheet as a
opposed to a more general surface.

—Bob Frankston (letter to D. J. Power, 15 April 1999)

Starting from the cosmetically improved spreadsheet of the prior section,
we aim to add more sophisticated solvers. The driving engine is a cooperating
set of numerical and symbolic constraint-solving modules. They transform the
extracted set of constraints into a “solved form”.

The system should incorporate as much mathematical ability as possible.
These could include facilities for:

– interval arithmetic,
– finite domains,
– finite sets,
– propositional calculus,
– algebraic identities (associativity, commutativity, etc.),
– polynomials.

Such capabilities exist in computer algebra systems designed to solve elaborated
constraints like: Axiom, Maple, Mathematica R©, MuPAD R©, Numerica. Finite
domain solvers can be solved using ILOG R© Solver ([11]) or GNU Prolog ([21])
or specialized solvers written in general-purpose or rule based languages like
ELAN ([5, 2]). In some cases, searching for solutions might be necessary. Several
works stemming from the declarative programming community extend classical
spreadsheets with constraints, including, among others, instance [15, 10, 23, 3,
12].

To achieve the kind of capabilities we envision, a blackboard architecture,
with component solvers contributing partial solutions to the listed constraints,
is indicated.

4 Constrained Graphics

Modern spreadsheets provide tools for generating graphical representation of
spreadsheet data. The resultant graphs can be sized, placed, and annotated, as
desired. For instance, TK!solver [13, 14], Spreadsheet 2000 R© [24] and iWork R©

Numbers [4] for the Mac provide nice interfaces that are more graphical and
less tabular than standard spreadsheets. The relationship between graphics and
constraints has a very long history to which Ugo Montanari has contributed
greatly [17]. The relationship with spreadsheets has also been developed by nu-
merous authors, including, for example, [6, 9].

The parameters of the graphics (position, color, spacing, etc.) should be link-
able to the spreadsheet itself. Furthermore, constraint solving could be employed
to determine their value.
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Graphical objects should include dials, meters, switches, etc. The baguette
spreadsheet could be portrayed in the following manner:

Importantly, it is not hard to express graphical objects themselves as sets of
relatively simple constraints. Thus constraint-solving could be used to calculate
the graphical representations. This adds a lot more expressivity.

5 Active Graphics

Once we have graphics expressed as first-class constraints, the only difference
being that results are displayed on a screen, it is possible to allow the user to
directly manipulate the graphical objects, causing constraints to be solved and
other displays to change accordingly. At this stage, the system would no longer
bear any external resemblance to spreadsheets.

Virtually all interaction becomes graphical. Graphical output would not be an
add-on that sits atop arithmetic computations, as in today’s systems, but would
be fully integrated with the calculations and constraint solving. By representing
graphical objects and their properties (value, size, color, etc.) in this way, changes
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the user makes to the graphical objects will immediately result in new values
that drive other parts of the spreadspace.

Returning to the baguette example, the same spreadspace as above can be
used to gracefully solve all the following queries:

1. What will the price of a baguette be in 9 years if the current price is 9 pesos,
and the inflation rate is 10%?
To indicate what the input values are, the user pushes the buttons alongside
Current Price, Years and Inflation Rate. Then the user sets the current
price to 9 and the rate to 10. The answer is graphed and also displayed in
the Future Price cell as shown in the figure just above.

2. What happens if the inflation rate rises to 20% (35%)?
The user just uses the mouse to move the dial to the appropriate values.

3. What is the lowest inflation rate such that the price of a baguette will
increase tenfold in the span of a person’s lifetime?
This time, the user pushes Current Price, Future Price and
Inflation Rate, and sets the final price to 10 times as much (90).
Lastly he/she turns the inflation rate dial until a satisfactory value appears
in the Years cell: graphics become active.

4. What inflation rate causes the price to increase tenfold in only 4 years?
Starting with the previous state, the user reverses the statuses of Years and
Inflation Rate by toggling their buttons, and then sets Years to 4. The
inflation rate is displayed and the graph is updated.

This spreadspace is simply constructed by choosing the graphical elements
from menus, placing and sizing them with the mouse, changing some of the
default values to better ones. Entering the formula either textually or in a menu-
driven manner relates the various entities mathematically. Dragging cell names
or values can streamline the construction of the formula.
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To give a deeper intuition of the way it works, let us write a script for some
of the actions needed to create the baguette spreadspace:

1. I pull down the device menu and choose a dial. I place it where I want on
the screen and stretch it to the desired size.
An instance of the object dial is created and therefore the following
constraints are added to the currently empty constraint store. We assume
the dial to have its center at coordinates (a, b) and to be of radius r (all
specified indeed graphically by the action of the user who drags the dial on
the working space):
dial.value = 0 the default value presented by the dial
dial.center = (a, b)
dial.radius = r
dial.shape = ((x− a)2 + (y − b)2 = r2)
dial.min = 0
dial.max = dial.min + 100
dial.marking[dial.min : dial.max].color = black
dial.foreground = black

Finally, since by default the value of this object can be either set by
the user interactively (in which case dial.in is true, value by default) or
set by the constraint solver (in which case dial.out is true), the following
constraints are added:
dial.readWrite = (dial.in 6= dial.out)
dial.in = true
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2. I change the high value from the default 100 to 200, and all the intermediate
values change to match.
The constraint store now contains:
dial.value = 0
dial.center = (a, b)
dial.radius = r
dial.shape = ((x− a)2 + (y − b)2 = r2)
dial.min = 0
dial.max = 200
dial.marking[dial.min : dial.max].color = black
dial.foreground = black

3. I change the color of the markings in the range [100 : 200] to red, by catching
all of them, holding the mouse button down to get the list of attributes, and
then choosing the foreground color item, which gives a palette from which
I choose a dark blue. I leave the default low value of 0 and default interval
markings.
So now we have the following:
dial.value = 0
dial.center = (a, b)
dial.radius = r
dial.shape = ((x− a)2 + (y − b)2 = r2)
dial.min = 0
dial.max = 200
dial.marking[dial.min : 100[.color = black
dial.marking[100 : dial.max].color = red
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dial.foreground = darkBlue

4. Then I choose a simple rectangular display from the menu, placing it near
the dial.
This has the effect to add to the previous constraint store the following:
rectDisplay1.position = (c, d) determined by the user action
rectDisplay1.height = 5 default value
rectDisplay1.length = rectDisplay1.height ∗ 5 default value
rectDisplay1.type = real
rectDisplay1.value = 0
rectDisplay1.min = 0
rectDisplay1.max = rectDisplay1.min + 100
rectDisplay1.foreground = black

etc.

As one can see, an explicit set of constraints is built using a graphical in-
teractive interface. It represents exactly all the behavioral knowledge the user
wants to put into his or her model.

6 Examples

Here are a few simple examples highlighting some of the original features of
spreadspaces.

6.1 Color-Changing Rectangle

Context: The user is resizing a rectangle by dragging one of the corners or sides
of the rectangle with her mouse.

Constraint: The designer of the current spreadspace has written the following
constraints, where P identifies the perimeter of the rectangle.

P > 3 ⇒ rectangle.backGroundColor = red
P ≤ 3 ⇒ rectangle.backGroundColor = blue

Behavior: When the user is in-playing the size of the rectangle with her mouse,
the color of the rectangle is displayed in red when the perimeter of the rectangle
is larger than 3 in the current length unit. Otherwise, it is shown in blue.

6.2 Standard Spreadsheet

Context: The user uses a spreadsheet to understand the relationship between the
total amount of money “available”, the amount “allocated” (earmarked) and the
amount still available. With a standard spreadsheet, depending on the quantity
one wants to compute, one has to make three different computations expressed
in three different spreadsheets as illustrated in Fig. 1.
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Fig. 1. Spreadsheet examples

Constraint: The designer of that spreadspace simply writes the following con-
straint:

Already allocated + Still available = Total available

Behavior: As soon as the value of 2 of the above variables are known, the third
is fulfilled automatically.

6.3 Red First

Context: The user sees three circles and can in-play the color of them using a
menu poping up when (s)he clicks right on one of the circles. At the beginning
the circles have the same background color than the overall background (which
is assumed not to be red!).

Constraint: The designer of that spreadspace has written the following con-
straint:

(C1.backGroundColor = red)
⊕ (C2.backGroundColor = red)

⊕ (C3.backGroundColor = red)
= 1

where ⊕ denotes exclusive or.

Behavior: The only valid in-play of the user will be to enter the first one to be
red, and the other not to be red. This will therefore force the user to behaves
accordingly.

7 S2
p System Organization

The diagram in Fig. 2 exemplifies how a user of the S2
p spreadspace system

we are describing fills in values for the fields of the cell just positioned on the
spreadspace.

1. The user clicks on the Name field, types “Already allocated”, and hits the
return key.

2. The Interaction Manager
(a) identifies C1.Name as the field modified, and
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Fig. 2. Information flow from user to constraints

(b) parses the string “Already allocated”.
3. The Object Manager tries now to update the cell and – for this purpose

– initiates the solver and waits for an answer.
4. The Constraint Manager tries to add the new constraint C1.Name =

“Already allocated”.
The solver detects no contradiction, but has computed (by constraint propa-
gation, based on the name and default font) that the width of the cell should
be 80, and thus C1.Width = 80 is added as a constraint, and that value is
also passed to the Object Manager.

5. The Object Manager updates the Name and Width fields of cell C1 in the
database.

6. The Interaction Manager updates the display with the new values. No
values are shaded at this point on the display.

In this context, one can see the importance of the constraint satisfier and/or
solver. Of course, all the work on constraint solving, combination, propagation
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and clever handling of constraint stores shall be reused and possibly adapted to
handle huge numbers of heterogeneous constraints.

8 Conclusion

It is clear that people use computers to do many computations that can be
expressed as mathematical problem solving. However, many of these tasks are
difficult or inconvenient with current software.

– Spreadsheets may provide constraint-solving, but only as an afterthought;
though relatively powerful, the interface is not intuitive, and the computa-
tional meaning of constraints is obscured. Most aspects of the layout and
graphics are not integrated into the spreadsheet, even in graphical spread-
sheets, and the graphics certainly have no connection with the solver.

– Commercial constraint solvers are designed for programmers, and cannot be
used by spreadsheet users and their kin. Symbolic systems may have powerful
graphing capabilities, but solving requires mathematical and programming
sophistication, since solving usually necessitates heavy user-interaction. Ex-
isting solvers cannot cooperate, and future improvements cannot be added
modularly.

– Graphical interface design systems allow one to construct the kind of objects
in our baguette example, but all calculations must be hard-wired.

The beauty and value of spreadspaces lie in their seamless integration of
spreadsheet computations, constraint solving, and optimization, in an active and
appealing graphical environment. As such, it contributes to the large research
interest in spreadsheets, both with regard to their deductive extensions [1, 22]
and from the risk point of view [19].
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