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Abstract. From a practical perspective, it is important for programs to have
modular correctness properties. Some (largely syntactic) su�cient conditions
are given here for the union of terminating rewrite systems to be terminat-
ing, particularly in the hierarchical case, when one of the systems makes no
reference to functions de�ned by the other.

1 Introduction

A rewrite rule is an equation between �rst-order terms used to replace equals-by-
equals in one direction only. A rewrite system, that is a set of rewrite rules, is a
form of applicative program that computes by reducing (that is, repeatedly rewrit-
ing) a variable-free term to its normal form (an unrewritable term), where the
order in which rules are applied and the choice of subterm to which to apply a
rule is arbitrary. Rewrite systems have other important applications in program-
ming language semantics and automated deduction. For recent surveys of rewriting,
see [Dershowitz and Jouannaud, 1990; Avenhaus and Madlener, 1990; Klop, 1992;
Plaisted, 1993].

When no in�nite sequences of rewrites are possible, a rewrite system is said to
have the (strong, or uniform) termination property. In practice, one usually guar-
antees termination by devising a well-founded partial ordering for which a rewritten
term is always smaller than the original. For a survey of methods of proving ter-
mination, see [Dershowitz, 1987]; for examples of these methods, see [Dershowitz,
1995].

Rewrite systems provide a simple, intuitive, nondeterministic functional lan-
guage. As such, it would be quite valuable to be able to combine systems possessing
desirable properties. In particular, we look for su�cient conditions under which the
union of two terminating systems would be terminating. The conditions given here
are based on syntactic restrictions of the systems in question. The �rst to consider
modularity issues in rewriting was Bidoit [1981] with his \gracious" conditions.

A rule l ! r is used to rewrite a term s containing an instance l� of its left-hand
side l at some position p to s[r�]p, the same term, except that the subterm at p has
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been replaced by the corresponding instance r� of the rule's right-hand side r. We
will have recourse to the notation sjp for the subterm at position p in term s.

Various modularity properties (such as termination and uniqueness of normal
forms) have been intensely studied since the appearance of [Toyama, 1987b], par-
ticularly for combinations of systems that have no function symbols (or constants)
in common.1 Toyama [1987a] gave the following example, showing that even in this
simplest case the combination of two terminating systems is not necessarily termi-
nating:

f(0; 1; x)! f(x; x; x)
g(x; y) ! x

g(x; y) ! y
(A)

In the next section, we review what is known about termination in this disjoint case,
and present the major syntactic restrictions of interest in this regard. (For other
modular properties, see [Middeldorp, 1990].) Then, in Section 3, the case where
\constructor" symbols are shared by the two systems is considered.

Section 4 considers the \hierarchical" case where one system is allowed to refer
to symbols appearing in the other, but not vice-versa. For example, we want to be
able to use terminating systems for addition and multiplication in conjunction with
a terminating program for factorial:

fact(x)! f(x; s(0))
f(s(x); y) ! f(x; s(x) � y)

f(0; x)! x :

x � 0! 0
x � s(y) ! (x � y) + x

x+ 0! x

x+ s(y) ! s(x+ y)

(1)

The individual systems can be shown to terminate by showing that the terms in any
derivation decrease in some well-founded measure (such as the natural numbers). For
the right systems, one can, for example, let [[0]] = 2, [[s(x)]] = [[x]]+1, [[x �y]] = [[x]]2[[y]],
and [[x + y]] = [[x]][[y]]. For the \higher" system, let [[0]] = 1, [[s(x)]] = [[x]] + 1,
[[x � y]] = [[x]][[y]], [[f(x; y)]] = [[y]]([[x]] + 1)!, and [[fact(x)]] = ([[x]] + 2)!. With either
system, whenever s ! t, we have [[s]] > [[t]]. The question is how to ensure that the
union of the two systems terminates, without having to �nd an independent proof
for the combination. The measures used above for the individual systems cannot be
combined. (Termination of the combined system could be proved instead using the
methods in [Dershowitz, 1982].) This eminently practical case has received virtually
no attention.2

Section 5 mentions some results for the fully general case, when both systems
can refer to all symbols, and is followed by a brief discussion of some remaining
questions.

1 Some authors reserve the designation \modular" for this disjoint case; we prefer, however,
to use the term generically, specifying \disjoint," \shared constructors," or \hierarchical,"
as the case may be.

2 A draft of this paper [Dershowitz, 1992] was distributed in December 1992.



2 Disjoint termination

Let A and B be disjoint sets of function symbols (including constants) and X be a
set of variables. Let a red rewrite system contain terms built from A and X only (red
terms), while a blue system has terms from B and X only (blue terms).3 Supposing
the red and blue systems are both terminating for all terms, that is, there are no
in�nite sequences of red rewrites, nor of blue rewrites, for terms constructed from A

and B, then termination is said to be modular when the union is also terminating.
The notion of modularity of properties for the disjoint vocabulary case was �rst
studied by Toyama [1987b].

It is worth repeating the following bit of folk wisdom:

Proposition1. If a system is terminating for all terms constructed from symbols
appearing in it (plus one new constant if the rules display none), then it also termi-
nates for terms constructed from any richer set of symbols.

Thus, to show that a red (blue) system terminates for \all" terms, it su�ces to show
termination for red (blue) terms.

Proof. Suppose a red system terminates for all red terms. One way to prove that
it also terminates for mixed terms, containing \foreign" (blue) symbols, is to de-
compose mixed terms into pure red subterms, with some red constant replac-
ing subterms of the components headed by blue symbols. The nesting depth of
these pure-red components in a term cannot increase by rewriting. Terms are
compared by looking lexicographically at a tuple of multisets, the most signif-
icant element of the tuple containing the uppermost red components, and so
on. Multisets are compared in the multiset ordering [Dershowitz and Manna,
1979] and components in the red rewrite relation. For example, if f , a, b, c,
and d are red, then g(f(g(f(a; g(b))); f(a; f(g(d); g(d))))) would have components
hff(c; f(a; f(c; c)))g; ff(a; c); d; dg; fbgi. ut

Various su�cient conditions for modularity of termination (and related properties
in subsequent sections) make use of the following decidable notions, all but the last
of which are syntactic:4

{ A non-erasing system has no rule with a variable on the left not also appearing
on its right.

{ A non-collapsing system has no rule with a variable as its right-hand side.
{ A right-linear system has no rule with more than one occurrence of a variable
on its right-hand side.

{ A non-duplicating system5 has no rule with more occurrences of a variable on
its right-hand side than on its left. Of course, right-linear systems are non-
duplicating, since we normally disallow rules that introduce a variable on the
right not already on the left.

3 With apologies to some previous authors, the color scheme has been changed here for
added mnemonic value.

4 These restrictions are ordered from the more severe to the less, taking a programmer's
point of view.

5 Called \conservative" in [Fernandez and Jouannaud, 1995].



{ A left-linear system has no rule with more than one occurrence of a variable on
its left-hand side.

{ A non-overlapping system has no left-hand side that uni�es with a non-variable
subterm of another left-hand side or with a proper non-variable subterm of itself,
after renaming variables in the terms so that they are disjoint. (This means there
are no non-trivial \critical pairs" in the terminology of Knuth and Bendix [1970].)
Clearly, rules with di�erent colors at the top of their left sides cannot overlap.

{ A constructor-based system is one in which no left-hand side has a symbol below
the top that appears at the top of any left-hand side.

{ An overlaying system is one in which no left-hand side uni�es with a non-variable
proper subterm of any left-hand side (including itself), after \standardizing
apart" (renaming variables in the terms so that they are disjoint). Of course,
non-overlapping and constructor-based systems are also overlaying.

{ A locally conuent system is one for which any two terms that can be obtained
each by one step of rewriting from the same term can both be rewritten in
zero or more steps to the identical term. (Local conuence is decidable for �nite
terminating systems [Knuth and Bendix, 1970].) In particular, non-overlapping
systems are locally conuent [Huet, 1980].

The following results are known:

Theorem2 [Rusinowitch, 1987]. The union of non-collapsing red and blue ter-
minating systems is terminating.

Theorem3 [Rusinowitch, 1987]. The union of non-duplicating red and blue ter-
minating systems is terminating.

Theorem4 [Middeldorp, 1989]. The union of a non-collapsing non-duplicating
red terminating system with a blue terminating system is terminating.

Theorem5 [Toyama et al., 1989]. The union of left-linear locally-conuent red
and blue terminating systems is terminating.

Theorem6 [Middeldorp and Toyama, 1991]. The union of constructor-based
locally-conuent red and blue terminating systems is terminating.

Let us call overlaying locally-conuent systems overlay-conuent. The conditions
of the previous theorem have been weakened to include this class of systems:

Theorem7 [Gramlich, 1995]. The union of overlay-conuent red and blue ter-
minating systems is terminating.

All the above results apply to the union of the following non-erasing, non-
collapsing, non-duplicating, left-linear, non-overlapping systems:

x+ s(y) ! s(x+ y) p(x)� p(y) ! x� y ; (2)

where + is red and � is blue.
Generalizations of Theorems 2, 3, 4, and 7 will be proved in the sequel.
A more semantic approach was developed in [Gramlich, 1994; Ohlebusch, 1993]

(based on the syntactic ideas in [Kurihara and Ohuchi, 1990]):



Theorem8 [Ohlebusch, 1993]. The union of red and blue systems that are each
terminating when joined with the system fh(x; y) ! x; h(x; y) ! yg, for new func-
tion symbol h not appearing in either system, is terminating. (This is an undecidable
property.)

Theorem9 [Ohlebusch, 1993]. The union of a non-duplicating red system that
is terminating when joined with fh(x; y)! x; h(x; y)! yg, for new function symbol
h not appearing in either system, with a terminating blue system is terminating.

3 Shared termination

Requiring that two systems have no symbols in common is much too restrictive in
practice. In this section, we investigate the case where constructors are shared by the
two systems (as also considered in [Middeldorp and Toyama, 1991; Gramlich, 1994;
Ohlebusch, 1993]).

For our purposes, a constructor is any function symbol (in the given vocabulary)
that never appears as the outermost symbol of a left-hand side (of either system),
while a de�ned symbol is one that does. Let C be a set of yellow constructors, disjoint
from A and B. Terms built from A [C [X are orange; those over B [ C [X are
green. An orange (green) term is deemed bright when its top symbol is red (blue).

An orange system has only orange terms; a green system, only green. Note that
an orange (green) system must have a red (blue) symbol on the top of the left-hand
side (since constructors never appear on the top left), and that red and blue symbols
may be nested on either side of a rule. We will call an orange (green) system bright
if the top symbol on the right is always red (blue). A bright system cannot have just
a variable for right-hand side (that is, it is non-collapsing), nor can its right-hand
side be headed by a constructor.6 De�ned (red or blue) symbols may be nested on
either side of a rule, unless otherwise stated.

We count the number of alternations of red and blue symbols (ignoring yellow
ones) along the path from the root leading to each symbol f in a term (in its
tree representation) and assign a level to f accordingly. Yellow symbols in a term
are assigned to the level of the nearest blue or red symbol preceding it along the
path from the root. Orange and green rewrites can never increase the number of
homogeneously colored layers in the terms of a derivation.

Were a shared system non-terminating, there would be a minimum number of
layers for non-termination. An in�nite derivation with that number of layers would
have to have an in�nite number of rewrites in the top layer (or else fewer layers
would su�ce for non-termination), as well as an in�nite number below (or else the
top system alone would be non-terminating).

The next theorem extends Theorem 2 (due to Rusinowitch [1987]) to systems
with shared constructors.

Theorem10 [Gramlich, 1994]. The union of bright-orange and bright-green ter-
minating systems is terminating.

6 In the terminology of [Gramlich, 1994], it is not \constructor-lifting."



Thus,

x+ s(y) ! s(x) + y s(x) � s(y) ! x� y (3)

is terminating (red +, blue �, yellow s), since each rule by itself is.

Proof. We use a well-founded ordering for which a rewrite within the top layer de-
creases the term in the ordering and a rewrite below the top layer does not increase
it, precluding more than �nitely many top rewrites. Since the systems are \brightly
colored," layers never collapse, that is, the top layer never grows on account of
a step below the top. Thus, to compare two terms, we simply compare their top
layers|with one arbitrary term replacing all lower-level subterms|in the terminat-
ing rewrite relation of the top system. ut

Similarly, the following theorem extends Theorem 3 [Rusinowitch, 1987] for
shared constructors:7

Theorem11. The union of orange and green non-duplicating terminating systems
is terminating.

Proof. Rewriting does not increase the number of levels (except to add constructors
at the top, which we can safely ignore). Consider the multiset of subterms below the
top layer (the \aliens") in an in�nite derivation in the combined system having no
more levels than necessary for non-termination. If the top level is red (say), these
subterms are headed by the highest blue symbol. Terms are compared in the union
of the combined rewrite relation (which may be presumed terminating for terms of
fewer layers) and the proper subterm relation. (This combined rewrite and subterm
relation is terminating since the two commute, that is, any rewritten subterm is
the subterm of the whole term rewritten.) Since the systems are non-duplicating, a
top rewrite can only remove elements from the multiset (or leave them all intact).
Furthermore, each of the ostensibly in�nitely many rewrites below the top decreases
the multiset in the rewrite relation. If a rewrite in the second, blue layer creates
more than one (disjoint) blue subterm (connected by constructors), they are each
smaller in the composition of the rewrite and subterm relation. Similarly, when a
segment of the second layer collapses (which it can do in the non-bright case), some
elements of the multiset may be replaced by some of their subterms. ut

The following extends Theorem 4:

Theorem12. The union of a non-duplicating bright-orange terminating system
with a green terminating system is terminating.

Proof. Consider any derivation with a �xed number of layers. If the top layer is red,
then the argument is just as in the previous proof. If the second layer is red, then
we can use the same ordering as for Theorem 10. ut

7 A similar proof was given independently in [Ohlebusch, 1993]. In [Fernandez and Jouan-
naud, 1995], the result is extended to allow sharing of symbols other than constructors,
provided the same proof method still applies.



The following non-terminating example [Dershowitz, 1981], with red f , blue 2,
and yellow 0 and 1, shows the necessity of brightness (as in Theorem 10) or non-
duplication (as in Theorem 11):

f(0; 1; x)! f(x; x; x)
2! 0
2! 1

(B)

Proposition13 [Gramlich, 1995]. An overlay-conuent system is terminating
for a given term if, and only if, it is by innermost rewriting.

This is analogous to the well-known fact that termination of call-by-value implies
termination of call-by-name [Cadiou, 1972]. It includes, as a common special case,
non-overlapping systems, proved in [Geupel, 1989].

Since, as it is easy to ascertain, innermost termination is preserved by unions of
orange and green systems (cf. [Kurihara and Kaji, 1990; Gramlich, 1995]), it follows
that8

Theorem14. The union of overlay-conuent orange and green terminating systems
is terminating.

In particular, non-overlapping systems can be combined. This extends Theorem
7 to systems with shared constructors, like:

x+ 0! x

0 + x! x

s(x) + y ! s(x + y)
x+ s(y) ! s(x + y)

s(x) " 0! s(0)
x " s(y) ! (x " y) � x :

(4)

It also extends the result in [Middeldorp and Toyama, 1991] for constructor-sharing
constructor-based systems.9

The overlaying requirement is necessary, as seen in this locally conuent example
[Drosten, 1989]:

f(0; 1; x)! f(x; x; x)
f(x; y; z) ! 2

0! 2
1! 2

g(x; y; y) ! x

g(x; x; y)! y
(C)

Local-conuence is likewise essential (cf. Example (B)).

8 This result also appears in [Gramlich, 1995].
9 Middeldorp and Toyama [1991] also consider the case where certain rules are shared by
both systems, also easily handled by our method.



4 Hierarchical termination

Suppose one has de�ned some blue functions, recursively, using green rules. Typ-
ically, these rules would reduce any green term to a yellow (constructor) normal
form. Then, one goes ahead and de�nes red functions, also recursively, but using
blue functions in an auxiliary manner. We are thinking of a system like the right
half of System (1), where � is red, + is blue, 0 and s are yellow. We'll call such sys-
tems, with bright-orange left-hand sides and arbitrary right-hand sides, purple. This
common situation also arises in applicative programs; semantics (that is, knowing
the values computed by the functions) are usually needed for termination proofs.

At least two approaches are possible. We can endeavor to show that any in�-
nite derivation in the combined system could be rearranged to provide an in�nite
monochrome derivation, which is impossible. Or we can try to extend the results
of the previous section which require that the number of layers not increase in a
derivation (which is not in general true for the hierarchical case).

An easy result using the �rst approach is:

Theorem15. The union of a left-linear purple terminating system with a right-
linear bright-green terminating system is terminating.

This theorem applies, for example, to:

x � 0 ! 0
x � s(y) ! (x � y) + x

x+ s(y) ! s(x) + y : (5)

It does not apply to (1) with its \dull" rule x+ 0! x.

The necessity of brightness and right-linearity can both be seen from Example
(B); left-linearity is needed to exclude:

f(x; x) ! f(g(a); g(b)) g(a) ! g(b) (D)

Here f is red, g is blue, and a and b are constructors. With blue symbols on both
sides of purple rules, we invite non-termination, as in:

f(b) ! f(g(a))
g(a) ! b

b ! g(c)
(E)

(g and b are blue).
A more general version of this theorem will be proved at the end of the next

section.

Right-linearity is not a very natural requirement. To get a better handle on the
hierarchical non-right-linear case, we further restrict the form of purple rules.

Theorem16. The union of a left-linear overlay-conuent purple terminating sys-
tem with an overlay-conuent bright-green terminating system is terminating.



This theorem applies to System (5) and corrects the result in [Bidoit, 1981] for
\gracious" systems by requiring that the green system be bright. Without brightness,
we could be fooled by

f(a) ! f(b) b! a (F)

where a is the only constructor.10 We've already seen the need for left-linearity in
Example (D). Example (B) shows the need for conuence (of the purple system at
least).

Proof. The union is overlaying (since the purple left sides cannot unify with non-
variable green subterms, nor green left sides with the orange subterms of purple
left sides) and locally-conuent (by the Critical Pair Lemma [Knuth and Bendix,
1970; Huet, 1980], since the union cannot introduce any new overlapping left-hand
sides). Hence, by Proposition 13, we need only show innermost termination. In any
innermost derivation, there cannot be a purple step taking place in the variable part
of a preceding green step, since that would mean that the purple step could have
been applied to a proper subterm of the green redex. So, if a derivation has a green
step immediately preceding a purple step, the two either occur at disjoint positions
(neither at a subterm of the other redex), in which case they can be interchanged,
or else the green step occurs in the variable part of the purple step (on account of
brightness), in which case the left-linear purple step can be applied �rst, followed by
some number of green steps (one for each occurrence of that variable on the right-
hand side of the purple rule). Thus, from any innermost derivation with in�nitely
many purple steps, an in�nite purple derivation could be constructed. ut

A purple system is red-increasing if the maximum number of red symbols along
a path from the root of a term to a leaf can increase in a derivation. For example,

f(x; g(y)) ! f(y; g(x))
g(x) ! x ;

(6)

where f and g are red, is red-increasing. If a purple system is not red-increasing,
then neither is its union with a green system.

Theorem 10 has the following analogue in the hierarchical case:

Theorem17. The union of a left-linear non-red-increasing bright-purple terminat-
ing system with a bright-green terminating system is terminating.

System (1), sans its three dull rules, is an example. Example (B) shows the need
for brightness of both systems; (D) demonstrates the need for left-linearity.

Proof. Since the nesting of reds does not increase, were the union non-terminating,
there would be a non-terminating derivation of minimal depth, with in�nitely many
rewrites at topmost red symbols. (Were the top red symbols to all become inactive,
fewer levels would su�ce for non-termination, since the green steps above the top
red layer could not go on in perpetuity.) Transform this derivation by replacing

10 It wouldn't help|nor would it make sense|to insist that all terms reduce to constructor
terms via the purple system, since we could just add f(x)! a to this counter-example.



all subterms headed by a non-topmost red with some green constant, since bright
purple steps at the second level cannot impinge on rewritability of higher purple or
green redexes, and lower steps can certainly have no e�ect. That leaves an in�nite
derivation of terms having green above and below a single layer of red. If there are
green symbols above the red, they cannot sustain more than �nitely many green
steps, since bright purple steps do not contribute to that green layer. Thus, any
green step preceding a purple step must either be disjoint from the latter, or else it
is in the variable part of the purple rule, since the green right-hand side is headed
by a blue symbol, which can appear nowhere in the purple left side. As in Theorem
16, since the purple system is left-linear, that green step can be delayed until after
the purple step, and then performed once for each occurrence of the variable in
question on the right side. Hence, a derivation containing in�nitely many purple
steps in succession can be constructed, contradicting the presumed termination of
the purple system on its own. ut

A at system is one in which red symbols are not nested on the left or right.
That is, no path from the root symbol has more than one red symbol along it. Flat
systems, in addition to being constructor-based, cannot invoke nested recursion.

Lemma18. Flat purple systems are not red-increasing.

Even for at systems, hierarchical termination is by no means ensured (Example
(F)). In the remainder of this section, we develop su�cient conditions for termination
in the at case.

Violet (a bluish purple) systems have no blue symbols below a red on the right
side, as in the right half of System (1). When innermost termination su�ces, we can
show:11

Theorem19. The union of a locally-conuent at violet (only yellow below red)
terminating system with an overlay-conuent green terminating system is terminat-
ing.

The right half of System (1) is an example. More generally, this theorem applies to
hierarchies of primitive-recursive de�nitions. It is a corollary of the one that follows.

If we desire to allow blue symbols to also appear below the red ones, we need
to be able to ignore the e�ects of green rewriting. We will say that a terminating
purple system is oblivious (of green) if it remains terminating even when the rules
are replicated so that each bright-green subterm on a right-hand side (headed by a
blue symbol) is replaced by all possible green (and yellow) variable-free terms. (We
assume that there is at least one blue or yellow constant|or else we must add one
so that the set of green terms is not void.) That is, a purple system R is oblivious of
green terms if Rg = fl ! r[g]p : l ! r 2 R; rjp is bright green; g is greeng is also
terminating. (Actually, we need only replace maximal green subterms.)

11 This result also appeared in [Krishna Rao, 1992]. Instead of requiring atness, Krishna
Rao [1993] forbids those nestings that seem able to lead eventually to a blue symbol that
can cause an increase in the depth of red. See also [Gramlich, 1995].



For System (1), the recursive rule on the right adds f(s(x); y) ! f(x; ?), where
? is an arbitrary green term (containing any combination of �, +, s, and 0). The
extended system is still terminating.

Flat violet systems are oblivious by de�nition. Systems for which there is one
green argument position that decreases (taking subterms, say) with each \recursive
call" are also oblivious.

Obliviousness compensates for the appearance of blue symbols below reds on the
right, and allows us to generalize the previous theorem:

Theorem20. The union of an oblivious locally-conuent at purple terminating
system with an overlay-conuent green terminating system is terminating.

Note that green levels can grow deeper; hence, more than two levels of
hierarchically-de�ned functions are possible. This result applies, for example, to the
three parts of System (1), as well as to the following \tail recursive" program:

sum(x) ! f(0; x)
f(x; �) ! x

f(x; y � z) ! f(x + y; z)

x+ 0 ! x

x+ s(y) ! s(x+ y) ;
(7)

Flatness of purple right-hand sides is necessary as can be seen from the following
non-terminating union:

f(x; x) ! f(a; g(x))
a ! f(c; d)

g(x) ! x (G)

(f and a are red; g is blue). That non-increasing red depth is insu�cient can be seen
from the following variant:

f(x; x; a)! f(a; g(x); a)
a ! f(c; d; d)

g(x) ! x (H)

These two systems are oblivious, since no green replacement for g(x) can match
the red a needed for the �rst purple rule to reapply. One part of (B) is not locally
conuent, which explains its non-termination; (D) is not oblivious; the green left
half of (C) is not overlaying.

Proof. By atness, there is a bound on the depth of red symbols in any derivation.
As was the case for Theorem 16, the union is locally conuent and overlaying, so
we need only consider innermost rewriting (Proposition 13). Purple steps at the
lowest red level may be followed by some green steps lower down. In an innermost
derivation those green steps cannot be in the variable part of the purple right-hand
side, since those are already in normal form. Thus, the purple system is oblivious
of those green steps, and the net e�ect (reordering the green steps, as necessary,
to follow immediately upon the red step that created them) is just a sequence of
\oblivious purple steps," guaranteed to terminate with the lowest red level and
everything below in normal form. Those subterms of red normal forms that have a
red symbol at the top can play no further role in the derivation, since green rules



cannot \see" them at all, nor can the applicability of constructor-based purple rules
depend on red symbols below the redex. The only impact they can have is in allowing
or disallowing a non-left-linear rule to �re. They can all, therefore, be replaced with
one non-red constant, giving a term with fewer levels of red. Thus, any derivation
with the original red normal forms can be mimicked by shallower terms. ut

This proof only requires that the purple system be oblivious of green subterms
that are below a red symbol.

By combining the commutation-based approach with the layer-based approach,
we get the following modi�cation of Theorem 11:

Theorem21. The union of an oblivious right-linear at purple terminating system
with a non-duplicating green terminating system is terminating.

System (7) falls in this category. Without atness we have non-termination, as be-
fore (G); non-duplication by green rewrites rules out systems like (B); right-linearity
of purple cannot be weakened to non-duplication, witness:

f(0; 1; x; x)! f(x; x; g(0; 1); g(0; 1))
g(x; y) ! x

g(x; y) ! y
(I)

Proof. By atness, the nesting of red does not increase, so we may consider an in�nite
derivation of minimal red depth. The multiset of subterms headed by second-layer
red symbols (call them the \aliens") decreases with each rewrite at or below the
second red layer and does not increase with a (purple or green) rewrite above|in
the union of the subterm relation and the combined rewrite relation for terms with
shallower nesting of red. Hence, from some point on, the minimal in�nite derivation
only has top red steps and green steps above the second layer. We can, therefore,
replace all the aliens by a green constant without a�ecting any of those steps. This
yields an in�nite derivation of terms with green symbols above and below a single
layer of red. (Flatness comes into play here; without it, new aliens would be produced
by purple steps.) On account of right-linearity, any purple rewrite at a topmost red
symbol followed immediately by a green rewrite within the position of a particular
variable of the purple right-hand side can be rearranged to �rst apply the green rule
as many times as necessary to rewrite the (one or more) occurrences of that variable
on the left-hand side of the purple rule, followed by the same purple step. That
can only transpire �nitely many times (since green terminates), leaving an in�nite
sequence of oblivious purple steps, plus green steps in the top, non-duplicating, green
layer. But there can be only �nitely many of either, since green is non-duplicating.

ut

5 Combined termination

We mention here a few results for the non-hierarchical case in which either termi-
nating system can refer to symbols appearing also in the other. We will refer to the
systems as black and white. In particular, we will generalize the �rst two theorems
of the previous section.



Proposition22 [Dershowitz and Hoot, 1995; Gramlich, 1995].
A non-erasing, non-overlapping system terminates if it is normalizing (that is, if
there is always some derivation leading to a normal form).

This improves the result in [O'Donnell, 1977] which requires that the system be
left-linear, and which, consequently, has the same behavior as Church's [1941] �-I
calculus.

We say that a white system preserves normal forms of a black system if the
former always rewrites black normal forms to black normal forms.

Theorem23. The union of black and white non-erasing terminating systems, the
union of which is non-overlapping, and such that the white system preserves normal
forms of the black, is terminating.

For example,

x+ s(y) ! s(x) + y

x+ 0! x

s(x)� s(y) ! x� y

s(x) " 0! 1 :
(8)

Proof. Use the preceding proposition and the fact that the union is normalizing
under the stated conditions, taking white normal forms of black normal forms. ut

The necessity of preservation is demonstrated by Example (F); the need for non-
overlapping, by (B).12

We say that terms s and t are separate if s does not unify with a renamed
non-variable subterm of t, nor vice-versa.

Proposition24. A white system preserves normal forms of a left-linear black sys-
tem whenever white right-hand sides and black left-hand sides are separate. (In par-
ticular, the white system must be non-collapsing.)

Proof. White cannot create an occurrence of a black left-hand side. Since black is
left linear, white cannot create a new black redex by making making the latter's
variable parts equal. ut

We have:

Theorem25. The union of a left-linear overlay-conuent black terminating system
with an overlay-conuent white terminating system, such that white right-hand sides
are separate from black left-hand sides, is terminating.

Theorem 16 is a corollary.13 The proof is unchanged. An example is

x � (y + z) ! (x � y) + (x � z) x � x! 0 : (9)

We need the following:

12 Though the non-erasing requirement is needed for the above proposition, an example of
non-termination for non-overlapping preserving systems is lacking.

13 This idea of decomposing proofs of termination by looking at overlappings between rules,
but ignoring the di�culties engendered by non-left-linear rules, appeared in [Pettorossi,
1981].



Lemma26 [Raoult and Vuillemin, 1980]. If u rewrites to v using a right-linear
rule l ! r, and then to w using a left-linear rule s ! t, and r and s are separate,
then w can also be derived from u using at least one application of s ! t followed
by some number of applications of l ! r.

Theorem27 [Bachmair and Dershowitz, 1986]. The union of a left-linear
black terminating system with a right-linear white terminating system, such that
white right-hand sides are separate from black left-hand sides, is terminating.

Theorem 15 is a corollary.14 System (9) is again an example.

Proof. Since the white right-hand sides are separate from black left sides and both
the white right sides and black left sides do not have repeated variables, by the
preceding lemma, any white step followed by a black step can always be replaced
by at least one black step followed by some number of white steps. By induction,
any number of white steps followed by one black can be replaced by at least one
black step followed by some number of white steps. Hence, from any derivation with
in�nitely many black steps, an in�nite purely black derivation could be constructed,
contradicting the assumption of black termination. ut

6 Discussion

It appears that Theorem 20 is the most useful result we have obtained for hierarchi-
cal systems, since it does not require brightness, right-linearity, or non-duplication.
Both systems must be overlaying and locally-conuent (which implies that inner-
most rewriting will lead to non-termination if any strategy can), but that is normal
in a functional programming style. In the absence of prescience as to the seman-
tics (normal-form computations) of the green system, the purple system must be
oblivious of green rewrites taking place in arguments of red functions (or have no
blue symbols below red recursive calls, as in Theorem 19), but that is similar to
the situation with ordinary functional languages. The purple system must be at,
but|in future work|we hope to use more general notions of obliviousness (such
as obliviousness of terms built from green symbols and subterms of the purple left
side) to perhaps weaken some of our restrictions. In any case, we need to develop
additional su�cient conditions for obliviousness.

There still seems to be room for improving the various results we have given
here, though we have provided counter-examples to most (but not quite all) ways of
relaxing the conditions for termination. Some extensions are obvious: Bright-green
rules, as in Theorem 16 for example, were only needed to preclude a green rule
\creating" a purple redex; a constructor on the top right of a green rule that does
not appear below the de�ned function of a purple left-hand side poses no problem
(they are \separate" in the terminology of Section 5). Transformation methods of
[Bachmair and Dershowitz, 1986; Bellegarde and Lescanne, 1990] can perhaps be
used to handle certain collapsing cases.

14 This theorem was claimed in [Dershowitz, 1981], but an overly weak condition of sepa-
rateness was implied. (The examples in [Bachmair and Dershowitz, 1986] were also wrong
on this account.) This direction was pursued further in [Geser, 1989].



This paper has only considered modularity of termination. The preservation of
other properties, such as existence and uniqueness of normal forms, is also worth
exploring for hierarchical systems.

To conclude with one more example, consider the fact that none of the theorems
we have given apply to the union of

mapf (�)! �

mapf (x � y) ! f(x) �mapf (y)
(10)

with an arbitrary (green) system for computing f , not containingmapf . If the latter
is non-duplicating or overlay-conuent, then it's okay, but it is highly unlikely (in
this case, at least) that any terminating green system could cause problems.
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