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1 Background

Rewrite rules are oriented equations used to replace equals-by-equals in the speci�ed direction.
Input terms are repeatedly rewritten according to the rules. When and if no rule applies, the
resultant normal form is considered the value of the initial term. If no in�nite sequences of
rewrites is possible, a rewrite system is said to have the termination property. Con
uence of
a rewrite system is a property that ensures that no term has more than one normal form. A
convergent rewrite system is one with both the con
uence and termination properties.

Let T be a set of (�rst-order) terms, with variables taken from a set X , and G be its subset
of ground (variable-free) terms. If t is a term in T , by tj� we signify the subterm of t rooted
at position � and by t[s]� (or simply t[s]) we denote t with its subterm tj� replaced by a term
s. We use the following notations for equational deduction: s ' t stands for the usual sense of
equality in logical systems; s$e t (or just s$ t) denotes one step of replacement of equals for
equals (using equation e); s !R t (or just s ! t) stands for one replacement according to the
orientation of a rewrite rule (in R); s !� t, for any number (including zero) of rewrites; s $ t

also stands for one rewrite step in either direction. Two terms s and t are said to be joinable if
there is a term v such that s!� v  � t, or s # t for short. For convergent R, an identity s ' t

holds in the theory de�ned by R (each rule viewed as an equation) if and only if the normal
forms of s and t are identical. Thus, validity of equations is decidable for �nite convergent R,
since the joinability (#) relation is decidable. A ground convergent rewrite system is one that
terminates and de�nes unique normal forms for all ground terms. Ground convergent systems
can be used to decide validity by skolemizing s and t and reducing to normal form. For a survey
of the theory of rewriting, see [Dershowitz and Jouannaud, 1990].

A conditional equation is a universally-quanti�ed (de�nite) Horn clause in which the only
predicate symbol is equality. We write such a clause in the form e1 ^ � � � ^ en ) s ' t (n � 0),
meaning that equality s ' t holds whenever all the antecedent equations ei, hold. The term s

will be called the left-hand side; t is the right-hand side; and the ei are the conditions. If n = 0,
then the (positive unit) clause will be called an unconditional equation. Conditional equations
are important for specifying abstract data types and expressing logic programs with equations.

A conditional (rewrite) rule is an equational implication in which the equation in the conse-
quent (s ' t) is oriented. To give operational semantics to such a system, the conditions under
which a rewrite may be performed need to made precise. The most popular convention (see
[Dershowitz and Okada, 1990]) for conditional rewriting is that the terms in each condition be
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joinable. Thus, a rule u1 ' v1 ^ � � � ^ un ' vn ) l! r, is applied to a term t containing an in-
stance l� of the left-hand side, if ui� # vi� for each condition ui ' vi, in which case t[l�]! t[r�].
We call sets of such rules (standard) conditional rewrite systems; they provide an applicative
programming language with especially clean syntax and semantics, and can be extended to logic
programming paradigms. The ground normal forms of ground convergent conditional systems
form an initial algebra for the underlying system of conditional equations. In fact, a �rst-order
theory admits initial term models if and only if it is a universal Horn theory (see [Makowsky,
1985]). In this sense, (ground convergent) conditional rewriting implements the initial-algebra
semantics for operations constrained by conditional equations.

One of the basic results in (unconditional) rewriting is the Critical Pair Lemma [Knuth and
Bendix, 1970], which states that con
uence of (�nite) terminating systems can be e�ectively
tested by checking joinability of a �nite set of equations, called \critical pairs", formed by
overlapping left-hand sides. In the conditional case, we propose the following de�nition: Let � be
some partial ordering on ground terms with the \replacement" property, s � t implies u[s] � u[t]
for all contexts u[�]. We write s � t for nonground terms if s� � t� for all ground substitutions �
and s 6� t if s� 6� t� for some �. If p) l ' r and q ) u ' v are conditional equations, then the
conditional equation p�^ q�) u�[r�]� ' v� is an (ordered) conditional critical pair if l uni�es
via most general uni�er (mgu) � with a nonvariable subterm uj� of u, u� 6� v�; u�[r�]�, and also
u� 6� p�; q� (meaning that u� is not smaller than any side of an instantiated condition in p� or
q�). It was shown in [Dershowitz et al., 1987] that there exists a terminating conditional rewrite
system all critical pairs of which are joinable, but which is not con
uent. On the other hand,
when the conditional system is such that recursively evaluating the conditions also terminates,
the critical pair condition su�ces. More precisely, we say that a conditional system is decreasing
if there exists a well-founded extension � of ! (in other words, rewriting always reduces terms
in the ordering) with two additional requirements: � has the \subterm" property (each term is
greater under � than its proper subterms) and conditions for rule application are smaller than
the term that gets rewritten (for each rule c ) l ! r and substitution �, u[l�] � c�). For
such decreasing systems, all the basic notions are decidable, i.e., the rewrite relation, joinability
relation, and normal form attribute are all recursive. Decreasing systems generalize the concept
of \hierarchy" in [R�emy and Zhang, 1984], and are slightly more general than the \simplifying"
and \reductive" systems considered in [Kaplan, 1987] and [Jouannaud and Waldmann, 1986],
respectively. In fact, it can be shown [Dershowitz and Okada, 1990] that decreasing systems
exactly capture the �niteness of recursive evaluation of terms. Thus, they are ideal for most
computational purposes.

It is well known that any conditional equational theory is expressible as a set of universally
quanti�ed Horn clauses (in which the equality symbol is uninterpreted), since the axioms of
equality are themselves Horn. Thus, positive-unit resolution, or any other variation of resolution
that is complete for Horn clauses, could be used to prove theorems in equational Horn theories,
but the cost of treating equality axioms like any other clause is prohibitively high. For this
reason, special inference mechanisms for equality, notably paramodulation [Robinson and Wos,
1969], have been devised. In recent years, term orderings have been proposed as an appropriate
tool with which to restrict paramodulation. On the 
ip side, any Horn theory can be expressed
as an unconditional equational theory. Some of the implications of this correspondence are
explored in Section 2.

In [Knuth and Bendix, 1970], it was suggested that a noncon
uent unconditional system be
\completed" by adding new rules (according to some user-supplied partial ordering) whenever
a critical pair fails the joinability test. When this process succeeds, a �nite set of equations is
obtained from which all theorems follow by rewriting. Completion, as de�ned in [Knuth and
Bendix, 1970] and studied in [Huet, 1981], fails when a critical pair, after its two sides have



been reduced to normal form, is neither trivial nor orientable by the ordering supplied to the
procedure for this purpose. Completion was �rst extended to conditional equations by Kaplan
[1987]. Equations are turned into rules only if they satisfy a decreasingness condition. The
problem is that the critical pair of two decreasing rules can easily be nondecreasing. Ganzinger
[1987] suggested narrowing the conditions of nondecreasing rules. Like standard completion,
both these methods may fail on account of inability to form new rules. In Section 3, we extend
these methods|analogous to unfailing ordered completion (as described in [Bachmair et al.,
1989])|to provide an ordering-based theorem-proving method.

As in [Hsiang and Rusinowitch, 1986; Kounalis and Rusinowitch, 1987; Zhang and Ka-
pur, 1988; Rusinowitch, 1989; Bachmair and Ganzinger, 1990; Nieuwenhuis and Orejas, 1990;
Dershowitz, 1991], our goal in developing theorem proving procedures is to minimize the amount
of paramodulation, while maximizing the amount of simpli�cation, without threatening com-
pleteness thereby. Orderings are used to choose which literals participate in a paramodula-
tion step, and which side of an equality literal to use. Our method also allows for (almost
unrestricted) simpli�cation (demodulation) by directed decreasing equations. It requires less
paramodulation and o�ers more simpli�cation than [Kounalis and Rusinowitch, 1987], for exam-
ple. For our completeness proofs, we adapt the proof-ordering method of [Bachmair et al., 1986;
Bachmair and Dershowitz, to appear] to conditional proofs (using an ordering that is much
simpler than the one in [Ganzinger, 1987]).

A reduced rewrite system is one such that each right-hand side is in normal form, as are
proper generalizations and proper subterms of all left-hand sides. (For convergent systems, this
is equivalent to the de�nition in [Huet, 1981] which requires that left-hand sides not be rewritable
by other rules.) Reduced convergent systems are called canonical in [Dershowitz and Jouannaud,
1990]. If two canonical systems have the same equational theory and are contained in the same
well-founded ordering, then they must be literally similar (i.e. the same except for variable
renamings). This important result was �rst mentioned in [Butler and Lankford, 1980]. It means
that all implementations of (standard) completion must yield the same system, given the same
inputs E and �, provided they use the encompassment relation [Dershowitz and Jouannaud,
1990] for simpli�cation of rules. In our view, simpli�cation in completion is intimately related to
reduction: by striving to �nd the unique reduced convergent systems, necessary simpli�cations
are illumed. To guide the choice of simpli�cation strategies for conditional completion, we
develop, in Section 4, a notion of reduced conditional system, and look for an appropriate
uniqueness result. Only in circumstances that ensure that a convergent system will be found
whenever there is one, do we consider it reasonable to refer to a conditional inference mechanism
as \completion", rather than \theorem proving".

2 Horn theories

We begin our discussion with Horn clauses not containing (interpreted) equality symbols. Any
Horn clause p1 ^ � � � ^ pn ) q is logically equivalent to (the equivalence) p1 ^ � � � ^ pn ^ q �
p1 ^ � � � ^ pn. Since the left-hand side is longer than the right, we view this as a terminating
unconditional rewrite rule p1 ^ � � � ^ pn ^ q ! p1 ^ � � � ^ pn, with the order of conjuncts left
intact. Let H be a set of Horn clauses and ! be the corresponding rewrite relation. The
completeness of selected positive-unit (SPU) resolution means, in this framework, that, for an
arbitrary conjunction P of atoms,H ` P by �rst-order reasoning if and only if P !� (T^� � �^T )
can be derived from rules generated in the following manner:



From p ^ s ^ q ! p ^ s and p0 ! T , where atoms p and p0 are uni�able with most
general uni�er �, q is any atom, and s is any conjunction of atoms, infer s�^q� ! s�.
When s is empty, this is q�! T .

For example, from the two Horn clauses

p(a) ! T

p(x)^ p(f(x)) ! p(x)

all p(f i(a))! T are generated, one after the other.
The above inference rule is su�cient for completeness, but our goal is to allow as much

simpli�cation as possible. In particular, given a rule p ^ q ! q, or even p ^ r ! r, we are
tempted to simplify a clause like p ^ q ^ r � p ^ r to q ^ r � p ^ r. The problem is that the
latter has sides of equal length, and cannot, in general, be oriented into a rule (e.g. if p is x < y

and q is y < x). Hence, adding simpli�cation would lead to incompleteness of this inference
mechanism.

To recover completeness, we need inferences that apply to more general equivalences between
conjunctions. The idea is to apply the ordered completion method for unconditional equations
in [Hsiang and Rusinowitch, 1987; Bachmair et al., 1989; Dershowitz and Jouannaud, 1990] to
these equivalences. There is no need to use Boolean identities (hence no need for associative-
commutative uni�cation), since reasoning equationally with these equivalences su�ces; the only
Boolean rule needed is T ^ x ! x. This results in a better method than the one in [Bachmair
et al., 1989] for Horn clauses, since more simpli�cation is possible. Additional optional simpli�-
cation strategies may be incorporated in this theorem proving strategy, just as long as they are
sound and do not make more complex proofs necessary (cf. Section 3).

A total ordering > on ground terms G is called a complete simpli�cation ordering if it
has (a) the replacement property, s > t implies u[s] > u[t] for all contexts u[�], and (b) the
subterm property, t � tj� for all subterms tj� of t. Such a ground-term ordering must be a well-
ordering [Dershowitz, 1982]. A completable simpli�cation ordering on all terms T (cf. [Hsiang
and Rusinowitch, 1987]) is a well-founded partial ordering � that (c) can be extended to a
complete simpli�cation ordering > on ground terms, such that (d) s � t implies that s� > t�

for all ground substitutions �. Furthermore, we will assume that (e) the (truth) constants T and
F are minimal in �. Of course, the empty ordering is completable, as are the polynomial and
path orderings commonly used in rewrite-based theorem provers (see [Dershowitz, 1987]). By
results in [Bachmair et al., 1989], providing ordered completion with a completable simpli�cation
ordering is guaranteed to succeed in �nding a canonical system for the given theory, if one exists
that is compatible with the given ordering.

Ordered completion|with simpli�cation|is likewise guaranteed to derive a contradiction
from Horn clauses H and the Skolemized negation of an atomic formula p such that H ` p.
The point is that the only Boolean equation used (implicitly) in the above SPU-mimicking
inference rule is T ^ x ' x, from which it follows that the equational representation of H (plus
this Boolean equation) provides an equational proof of p ' T . The completeness of ordered
completion for equational reasoning [Bachmair et al., 1989] means that the contradiction F ' T

will be generated from these equations plus p̂ ' F , where p̂ is p with its variables replaced by
Skolem constants.

Rather than give the general case (which is no di�erent from ordinary ordered completion|
except that associative-commutative matching can, but need not, be used when simplifying
one rule via another), we show here how simpli�cation provides, in the propositional case, a
quadratic algorithm to convert a set of ground Horn clauses to a unique representation in the
form of a (unconditional) canonical rewrite system. Given any well-ordering of atoms, de�ne a



well-ordering > on conjunctions under which longer conjunctions are bigger, and equal-length
ones are compared lexicographically. The algorithm operates on Horn clauses expressed as
equivalences:

Repeat the following, until no longer possible: Choose the equivalence p � q (or
q � p) that has not yet been considered such that q is minimal among all sides
vis-a-vis the total ordering >. If all the atoms in p occur together on one side r of
any other equivalence r � s (or s � r), remove them from r and merge what is left
in r with the atoms in q. Delete duplicate atoms and occurrences of the constant T
(unless T is the only atom) from all equivalences. Discard equivalences with identical
sides and duplicate equivalences.

For example, the �rst clause of

p ^ q � p; p ^ q � q; p ^ q ^ r � p ^ q

rewrites the others (assuming p < q < r) to q � p and p ^ r � p. Then, the �rst becomes
p ^ p � p and is deleted, leaving the Horn clauses p) q, q ) p, and p) r.

This algorithm is based on the completion-based congruence closure method in [Lankford,
1975], shown to be doable with low polynomial time complexity in [Gallier et al., 1988]. By the
theorem in [Lankford and Ballantyne, 1983] for uniqueness of canonical associative-commutative
rewriting systems, it results in a unique set of equivalences, determined by the ordering >. The
resultant system can be used to decide satis�ability in the given propositional Horn theory,
though not as fast as in [Dowling and Gallier, 1984]. The equivalences can optionally be con-
verted back to Horn form.

3 Completion

In this section, we turn to Horn clauses with equality, that is, to conditional equational the-
ories. For e�ciency, it is unreasonable to just add axioms of equality and use Horn-clause
theorem-proving methods. Instead, we develop an unfailing completion procedure for condi-
tional equations, based on the incomplete method in [Ganzinger, 1987]. (Complete, ordering-
based theorem-proving methods for such theories include [Kounalis and Rusinowitch, 1987;
Dershowitz, 1991].) The allowable inferences are a stringent restriction of paramodulation. A
user-supplied ordering � is used to guide the inference mechanism, so that only maximal terms
are used in any inference step. When � is the empty ordering, the method reduces to \special"
paramodulation, in which the functional-re
exive axioms are not needed and paramodulation
into variables is not performed (see [Lankford, 1975]). Most important, a nonempty ordering
allows conditional equations that are simpli�able to be replaced without compromising (refuta-
tional) completeness. Hence, the power of the method, both in minimizing possible inferences
and maximizing potential simpli�cations, is brought to bear by employing orderings that are
more complete than the empty one. The method is like the one in [Bertling, 1990], but we give
a speci�c strategy for simpli�cation.

Given a set E of conditional equations, a proof in E of an equation u ' v is a sequence of
terms u = t1 $ t2 $ � � � $ tn = v (n � 1), each step tk $ tk+1 of which is justi�ed by an
appropriate conditional equation in E, position in tk , substitution for variables in the equation,
and subproofs for each of its conditions. Steps employing an unconditional equation do not have
subproofs as part of their justi�cation. Any equation s ' t that is valid for E is amenable to
such an equational proof. Note that a conditional equation e1 ^ � � �^ en ) s ' t is valid for E if



and only if s ' t is valid for E [ fe1; � � � ; eng. Hence, proving validity of conditional equations
reduces to proving validity of unconditional ones.

We write u!e v (with respect to a partial ordering �), if u$e v using an instance p) s ' t

of e, and u � v; p (by which we mean that u is bigger than v and bigger than both sides of each
condition in p). A conditional equation may have some ground instances that are decreasing in
the complete ordering (if s > t; p), and others that are not decreasing. The Critical Pair Lemma
of [Kaplan, 1987] for decreasing systems can be adapted to ground con
uence of decreasing
systems:

Let E be a set of conditional equations and � a completable simpli�cation ordering.
If all ground instances of ordered conditional critical pairs rewrite, under !E , to the
identical term, then the system is ground con
uent.

However, a counterexample in [Dershowitz et al., 1987] shows that this critical pair condition is
insu�cient when rewriting by nondecreasing instances of equations is included.

We formulate our theorem-proving procedure as an inference system operating on a set of
conditional equations, and parameterized by a completable ordering �. The rules may be classi-
�ed into three \expansion" rules and four \contraction" rules. The contraction rules of standard
completion signi�cantly reduce its space requirements, but they make proofs of completeness
much more subtle.

The �rst expansion rule generates critical pairs from clauses that may have decreasing in-
stances:

E [

(
p) l ' r;

q ) u ' v

)

E [

8><
>:

p) l ' r;

q ) u ' v;

p� ^ q�) u�[r�]� ' v�

9>=
>;

if

8><
>:

uj� 62 X
� = mgu(uj�; l)
u� 6� p�; q�; v�; u�[r�]�

(A)

Superposition (i.e. oriented paramodulation of positive equational literals) is performed only
at nonvariable positions (uj� 62 X ). Only positive equations are used in this rule, and only
in a decreasing direction (u� 6� p�; q�). Of course, if the relation 6� is not known precisely,
one must be conservative and apply the inference whenever it cannot be guaranteed that all
ground instances of u� are larger than the corresponding instances of p�, q�, v�, and u�[r�].
Either side of an equation may be used for superposition, but only if, in the context of the
paramodulation, it is (believed to be) potentially the largest term involved (u� 6� v�; u�[r�]�).
(This can probably be strengthened a bit to require l� 6� p� instead of u� 6� p�.) Now and
henceforth, when a rule refers to a clause of the form q ) u ' v, an unconditional equation
(u ' v) is also intended.

We need, additionally, a rule that applies decreasing equations to negative literals:

E [

(
p ) l ' r;

q ^ s ' t ) u ' v

)

E [

8><
>:

p ) l ' r;

q ^ s ' t ) u ' v;

p� ^ q� ^ s�[r�]� ' t� ) u� ' v�

9>=
>;

if

8><
>:

sj� 62 X
� = mgu(sj�; l)
s� 6� p�; q�; t�; s�[r�]�

(B)

Whenever this or subsequent rules refer to a conditional equation like q ^ s ' t ) u ' v, the
intent is that s ' t is any one of the conditions and s is either side of it.



The last expansion rule in e�ect resolves a maximal negative literal with re
exivity of equals
(x ' x):

E [
n
q ^ s ' t ) u ' v

o
E [

(
q ^ s ' t ) u ' v;

q� ) u� ' v�

) if

(
� = mgu(s; t)
s� 6� q� (C)

The four contraction rules all simplify the set of conditional equations. The �rst two eliminate
trivial equations:

E [
n
q ) u ' u

o
E

(D)

E [
n
q ^ s ' s ) u ' v

o
E [

n
q ) u ' v

o (E)

The last two use decreasing clauses to simplify other clauses. One simpli�es conditions; the
other applies to the equation part. In both cases, the original clause is replaced by a version
that is equivalent but strictly smaller under �.

E [
n
p ) u ' v

o
E [

n
q ) u ' v

o if p!E q (F)

In simplifying equations, we utilize an extension of the encompassment ordering > from
terms to clauses (in which terms are larger than proper subterms and smaller than proper
instances): Terms are compared with �; equations are compared by comparing the multiset
of their two terms in the multiset extension �mul of the term ordering (see [Dershowitz and
Manna, 1979]); to compare terms with equations we make s bigger than u ' v if s � u; v;
�nally, q ) u ' v > p) l ' r if q �mul p, or q =mul p (i.e. q = p as multisets) and u > l in the
encompassment ordering, or q =mul p, u = l, and v � r.

E [
n
q ) u ' v

o
E [

n
q ) w ' v

o if

(
u!e w; e 2 E

q � u _ v � u _ (q ) u ' v) > e
(G)

Here q � u means that there is always one side of one condition in q that is bigger than u; hence,
the clause is nondecreasing.

As a simple example, consider the following three clauses:

0 < c(0) ' T (1)

c(y) < c(z) ' y < z (2)

c(c(0))< x ' T ) c(0) < x ' T (3)

The �rst two are decreasing; the third is not. We employ a straightforward ordering (e.g. left-
to-right lexicographic path ordering [Kamin and L�evy, 1980; Dershowitz, 1987]). Expansion
inference (A) does not apply between (1) and (2), since 0 and c(y) do not unify. By the same
token, (B) does not apply between (1) and the condition in (3). Applying (B) between (2) and
(3) yields

c(0) < x ' T ) c(0) < c(x) ' T

which contracts, using (G) and (2), to another nondecreasing clause

c(0) < x ' T ) 0 < x ' T (4)



Applying (B) to it yields a decreasing clause

0 < x ' T ) 0 < c(x) ' T (5)

The critical pair obtained by superposing (1) on 0 < c(x) gives a trivial equation (contractable
by (D)). Since (5) does not unify with the conditions of (3) and (4), we are done. Note that the
decreasing rules (1,2,5) reduce any term ci(0) < cj(0), such that i < j, to T .

A valley proof s ' t is one in which the steps take the form s # t. We de�ne a normal-form
proof of s ' t to be a valley proof in which each subproof is also in normal form and each
term in a subproof is smaller than the larger of s and t. Any non-normal-form proof has a
peak made from decreasing instances with normal-form subproofs, or has a nondecreasing step
with normal-form subproofs, or has a trivial step. We say that a sequence of inferences is fair
if expansions of all persistent conditional equations have been considered. Formally, that may
be expressed as exp(E1) � [Ei, where E0, E1, . . . is the sequence of conditional equations
generated, E1 = lim supEj is the set of conditional equations that each persist from some Ej

on, and exp(E1) is the set of conditional equations that may be inferred in one expansion step
from persisting equations. For a method based on these rules to be complete, we need to show
that with enough inferences, any ground theorem eventually has a normal-form proof. Precisely
stated:

If an inference sequence is fair, then for any proof of s ' t in the initial set E0 of
conditional equations, there is a normal-form proof of s ' t in the limit E1.

This is a consequence of the following observations: If E0 can be inferred from E, then for
any proof in E there exists a proof in E0 of equal or lesser complexity, and, furthermore, that
there are always inferences that can decrease the complexity of non-normal proofs. Complexity
may be measured by assigning to each step s$ t in a ground proof or its subproofs the weight
hfq1�; . . . ; qn�; sg; ei, where e is the conditional equation q1 ^ � � � ^ qn ) l ' r justifying the
step, � is the substitution, and s is the larger of s and t (in the complete simpli�cation ordering
> extending �). Steps are compared in the lexicographic ordering of these pairs. The �rst
components of pairs are compared in the multiset extension of the ordering on equations and
terms described above. Second components are compared using >. Proofs are compared in the
well-founded multiset extension of the lexicographic ordering on steps. We use � to denote this
proof ordering. It can be shown by standard arguments [Dershowitz and Manna, 1979] that �
is well-founded.

By induction with respect to �, the eventual existence of a normal-form proof follows: If
P is a non-normal-form proof in E, there exists a proof P 0, using equations in E and exp(E),
such that the complexity of P is strictly greater (in the proof ordering �) that that of P 0. In
particular, trivial steps can be eliminated, reducing complexity by removing elements from the
multiset of proof steps. Peaks between decreasing steps will have smaller proofs on account of
inference rule (A) and the Critical Pair Lemma. A nondecreasing step s!e t with a decreasing
step out of its largest condition p� breaks down into two cases: If the decreasing step p� ! q is
in the nonsubstitution part of p�, then an application of rule (B) supplies a new equation that
can be used in a step of smaller complexity (since p�, which was the largest element of the �rst
component of the complexity of the step s !e t, is replaced by q). If the decreasing step takes
place in the substitution part, then there is an alternative proof s !� s0 !e t

0  � t, where s
and t are rewritten by the same decreasing equation. The new e step is smaller that the old
one since its conditions are. Any new steps introduced are smaller than the eliminated cost of
p� ! q, since they apply to terms smaller than p�. Lastly, a nondecreasing step with trivial
subproofs can be replaced after generating a new equation using (C).



The contraction rules were also designed to decrease proof complexity. Thus, any fair se-
quence of inferences must allow for a simpler proof, and eventually a normal-form proof must
persist.

An alternative completion procedure may be based on the fact [Dershowitz et al., 1987] that
a system is con
uent if all its critical pairs are joinable and are formed from overlaps between
left-hand sides at their topmost position. In such a procedure, any non-root critical pair would
be eliminated by pulling out subterms. For example, the rules a ! b and h(f(a))! c overlap,
but not at the top. To get around that, the second rule can be replaced by the more powerful
x ' a ) h(f(x)) ! c, eliminating the o�ending pair. Note that interpreting Horn clauses
as conditional rules (rewriting predicates to T ) gives a system satisfying the above constraint,
because predicate symbols are never nested in the head of a clause. Furthermore, all critical
pairs are joinable, since all right-hand sides are the same. This also applies to pattern-directed
functional languages in which de�ned functions are not nested on left-hand sides.

4 Uniqueness of Systems

In our view, there is a qualitative di�erence between theorem proving and completion. As
pointed out in [Huet and Oppen, 1980], completion is a compilation-like process; the goal is to
�nd a convergent system that can later be used to prove (a certain class of) theorems e�ectively.
A theorem prover is, accordingly, deemed \complete" if it can prove any provable theorem
(in the class of theorems under consideration); a completion procedure, on the other hand, is
\complete" (in the sense of [Dershowitz, 1989]) if it will �nd a convergent system whenever there
is one (for the given ordering). The unit method of [Dershowitz, 1991], for example, should not
qualify as a completion procedure for conditional rules, since it may go o� producing (perhaps
in�nitely) many unconditional rules, even when one conditional rule su�ces. For example,
given the con
uent system fh(f(x))! h(x); h(x) = h(a)) g(x)! cg, it will proceed to add
super
uous consequences g(f i(a))! c (among others).

Suppose R is a convergent (conditional) rewrite system for some theory E and the rewrite
relation !R is contained in a partial ordering �. Then, the normal form of any term t is the
element in the E-congruence class of t that is minimal vis-a-vis � [Avenhaus, 1986]. Hence, if R
and S are two such systems for the same theory E and ordering �, then R and S have the same
normal forms and the same reducibility relation. We say that a term t is reduced, with respect to
theory E and ordering �, if, of all elements in its E-congruence class, it is minimal with respect
to �. An unconditional rewrite system is said to be reduced if, for each of its rules, l ! r, the
right-hand side r is reduced and all terms s less than l in the encompassment ordering are also
reduced. The contraction inference rules for unconditional systems (see [Bachmair et al., 1986])
are themselves \con
uent", implying that the same reduced system is obtained regardless of the
order in which they are appplied to a given con
uent system.

Reduced unconditional systems are unique with respect to � in the stronger sense that if R
and S are canonical, have the same theory, and their rewrite relations are both contained in �,
then R and S are (essentially) identical (cf. [Butler and Lankford, 1980; M�etivier, 1983]). We
saw in Section 2 how this gives a unique representation for nonequational Horn clauses. But
for conditional systems, reduction is clearly insu�cient. For example, the two equivalent rules,
a ' b) f(a)! c and a ' b) f(b)! c, are each convergent and reduced in the above sense.
Applying the contraction rules of Section 3 to a set of conditional equations (a process that
will of necessity terminate) is not enough for this purpose. One needs, �rst of all, some sort of
\contextual rewriting" (�a la [Zhang and R�emy, 1985]) to reduce the left-hand side of the rule so
that it contains the smaller of the hypothesized-equal terms a and b. This suggests an additional



inference rule like:
E [

n
q ) r

o
E [

n
q ) s

o if r!e s; e 2 T h(E [ q) (H)

where T h(E[ q) is the set of equational consequences of E and q. But even this ine�ective rule
is insu�cient, as can be seen from the following alternatives: a ' b ^ a ' c ) f(b) ! c vs.
a ' b ^ a ' c) f(c)! c. If a � b; c, we still need to choose between the minimal terms b and
c.

Let p) l! r be a conditional rule e in a system R. It is deemed reduced if r and all terms
smaller than l in the encompassment ordering are reduced with respect to E^p, l itself is reduced
with respect to R [ p� feg, and there is no logically weaker condition such that l is reducible.
Let R and S be two reduced convergent conditional systems for E and �. If p ) l ! r is in
R, then l ' r has a proof in S [ p. Even if we could show that l must be a left-hand side of a
rule e0 in S which must have right-hand side r (a question we leave open), the conditions in e

and e0 may di�er, and additional completion and simpli�cation are required to preclude that.
Imagine a rule p) l! r. To get true uniqueness, one must complete the equations p (modulo
any other equations) to �nd a unique representation (that is, the �nite canonical system) for p
(if one exists at all). Also, one would want to eliminate conditions of the form x ' t; otherwise,
the conditional rule x ' a) f(x)! b could be preferred over f(a)! b.
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