Goal Solving
as Operational Semantics

Nachum Dershowitz
Department of Computer Science
University of Illinois

Urbana, IL. 61801, USA

nachum@cs.uiuc.edu
Abstract

To combine a functional or equational programming style with logic pro-
gramming, one can use an underlying logic of Horn clauses with equality
(as an interpreted predicate symbol) and (typed) terms. From this point
of view, the most satisfying operational semantics would search for solu-
tions to equations or predicates. “Narrowing” and many of its variants are
complete mechanisms for generating solutions. Such a melded language is
more expressive than either paradigm alone: functional dependencies are ex-
plicit; “multi-valued” functions can be better expressed as predicates; nested
functions can be evaluated without recourse to search (backtracking); (non-
constructor) terms can serve as arguments to predicates; functions can be
inverted; nonterminating functions can be programmed in a terminating
fashion; goals can be simplified in a “don’t care” manner; “functional” nega-
tion can prune searches. Moreover, the availability of backtracking and exis-
tential (“logic”) variables provides an alternative to infinite data structures
(“streams”).

1 Introduction

Functional programming and logic programming are two relatively new styles
of programming, each with its own set of advantages. Today, they are both
well-established paradigms, each with its own set of devotees.

Since the mid-eighties, a fair amount of effort has been invested in com-
bining the best of both worlds. Though many good ideas have been forth-
coming, acceptance of this work has been hampered by slow implementa-
tions, on top of the natural tendency to make do with what one already has
available.

In what follows, we reiterate the beauty of using equational Horn clauses
for programs and show how conditional equations and goal-solving obviate
the need for lazy evaluation.

For example, given the program

primes — sift(from(2))
from(n) — n:from(n+1)
sift(x :z) — asift(filter(z, Ay(z|y)))
filter(p,y:2) — y:filter(p,2) = —p(y)
filter(p,y:z) — filter(p,z) = p(y)
rly — zxy=ux

with appropriate type declarations and standard definitions of multiplication
and negation, solving the goal p; : py : p3 : 2 =" primes should yield the first
three primes.

2 Functional and Equational Programming

In functional programming languages, one expresses programs as function
definitions and computes by supplying an expression to be evaluated. Func-
tion applications are “expanded” according to the definitions until all defined
function symbols are eliminated and a “constructor” term is obtained. In
pure Lisp, a conditional construct is used for defining functions. A program
for interleaving two lists could be written as follows:

inter(z,y) — if = nil then y else car(x) : inter(y, cdr(x))

In ML, and most modern functional languages, patterns are used to delineate
the various cases in a definition; thus one can write instead something like:

inter(nil,y) — y
inter(z :x,y) — z:inter(y,x)

Miranda [39] allows repeated variables in patterns to indicate that a clause
of the definition applies only when two arguments are identical. Functional
languages are typically higher-order and allow for functions to be passed as
arguments to other functions, but patterns cannot be used to distinguish
one functional argument from another. Most functional languages impose a
type discipline. Much recent work has gone into the efflicient implementation
of functional languages.

The operational semantics of such a language are “logically complete” if
whenever the definitions imply that a given variable-free (“ground”) term s is
equal to a constructor term ¢, the output ¢ will be returned when s is given as
input. The mutual exclusiveness of the different cases in function definitions
guarantees that s is equal to at most one constructor term ¢. It is well known
that a “lazy” (“outermost fair”, “call by name”) evaluation strategy—as
employed in SAsSL [38] or Miranda [39]—is required for completeness, and
that an “eager” (innermost, “call by value”) strategy—asin Lisp or ML—can
lead to an infinite computation, without ever finding ¢. Thus, an interpreter
programmed in a lazy language will terminate whenever the computation it

is mimicking terminates. Computation with infinite structures (“streams”)
is often touted as another advantage of lazy evaluation [11, 20]: only that
part of the structure that is needed for a particular computation need be
evaluated.

Equational programming (“rewriting”) extends the notion of functional
programming by allowing one to use a set of directed equations rather
than just function definitions. Rewrite rules are used to replace “equals-
by-equals” in a specified direction. Rules are repeatedly applied to any term
containing a subterm that matches a left-hand side; when a rule matches,
the matched subterm is replaced by the corresponding instance of the right-
hand side. Functions need not be total. The output one seeks is the normal
forms (unrewritable expressions) of (i.e. equal to) given input terms, but
normal forms need not be constructor terms.

The difference between functional and equational programming can be
seen in a program for conjunctive normal form. In the equational approach,
one merely writes equations for eliminating double negations, for DeMor-
gan’s Laws and for distributivity of “or” over “and”, and uses them to rewrite
expressions into normal form. In this case, the symbols for “not,” “and,” and
“or” are not defined functions, and the rules (like ~(z A y) — (=2) V (-y))
have nested occurrences of them on the left. In the functional approach,
one would consider those connectives to be constructors, and define a
function enf with cases like enf(=(z A y)) — enf(=z V ~y), as well as
enf(z Ny) — enf(z) A enf(y) and enf(z V y) — dist(enf(z), enf(y)), where
dist is an auxiliary function that “multiplies out” its two arguments.

Though equations are an important means for specifying properties of
functions operating on data, conditional equations (that is, equational Horn
clauses) provide an even more versatile programming paradigm. A (condi-
tional) rule is an equational implication in which the equation in the con-
clusion is oriented and conditions are either atoms or equations. A rule
l—r —e¢p,...,c, 08 applied to a term t[lo] containing an instance [o of the
left-hand side [of the rule if ¢;o can be rewritten to true (if the condition
is an equation, then both sides must rewrite to the identical term), for each
condition ¢;, in which case t[lo] is replaced by ¢[ro]. (If there are no con-
ditions ¢;, the rule is “unconditional.”) We call sets of such rules (standard
conditional) rewrite systems. Conditional rewriting is well-behaved if recur-
sively evaluating conditions always terminates. An input term is repeatedly
rewritten according to the rules; when (and if) no rule applies, the resultant
normal form, is considered the “value” of the initial term. The following
(along with unconditional rules for subtraction and inequality) constitutes
a (nondeterministic) program for greatest common divisor:

ged(0,2) — 2
ged(z,s(y)) — ged(z —s(y),s(y)) —z>y
ged(s(z),y) — ged(y—s(z),s(z)) —y>u

For completeness, one needs to find the normal forms whenever they

exist. Confluence of a rewrite system is a property that ensures that no term
has more than one normal form. For a survey of the theory of conditional
(and unconditional) rewriting, see [26].

There are two approaches to completeness of equational programming,
both of which demand confluence for ground terms. In analogy with func-
tional programming, one can insist that left-hand side patterns do not over-
lap and that no variable appears more than once in a pattern. Orthogonal
systems (a) have no variables that do not also appear on the left-hand side,
(b) are “left-linear,” and (c) no left-hand side unifies with a renamed nonva-
riable subterm of a left-hand side (other than with itself). The ged program
is not orthogonal. Unconditional orthogonal systems are confluent, even for
nonterminating sets of rules, and an outermost rewriting strategy is guar-
anteed to reach a normal form if such exists, for which reason, orthogonal
systems are popular in equation-based programming languages [33]. (For ef-
ficiency reasons, one may want to impose additional restrictions on the form
of left-hand side patterns [32].) A conditional rewrite system is normal if
one side of each condition in each rule is a ground normal form (like true).
Orthogonal normal systems are also confluent (see [26, Theorem 3.0.10]).

The alternative approach requires that all computation strategies termi-
nate in a normal form. A conditional system is decreasing if there exists a
well-founded extension > of the rewrite relation for which terms are greater
than subterms and every instance of a left-hand side is greater than the
corresponding instance of each condition. Decreasing systems exactly cap-
ture the finiteness of recursive evaluation of terms. Uniqueness is ensured if
the system passes a “critical pair” test [26, Definition 3.0.14], which states
that confluence of (finite) terminating systems can be effectively tested by
checking that both sides of each of a finite set of equations have the same
normal form, but this is not a necessary condition for ground confluence [26,
Theorem 3.0.15].

Without the decreasing condition, the critical pair test is insufficient,
though it does apply when no left-hand side unifies with a proper subterm
of any left-hand side [26, Theorem 3.0.15]. Note that interpreting Horn
clauses as conditional rewrite rules (rewriting predicates to true) gives a
system satisfying this constraint, because predicate symbols are never nested
in the “head” of a clause. Furthermore, all critical pairs pass the test,
since all right-hand sides are the same. This also applies to pattern-directed
functional languages in which defined functions are not nested on left-hand
sides.

Whereas the first approach suffers from strong syntactic restriction of
orthogonality; the second has the disadvantage of requiring termination,
leaving interpreters, streams, and other nonterminating programs behind.
For other methods of establishing conditional confluence, see [15, 26].

3 Functional-Logic Programming

Various proposals have been set forth for combining features of functional
programming and logic (relational) programming; surveys include [1, 15, 35].
Functional notation and an evaluation mechanism are borrowed from func-
tional programming; assignment by unification and goal-solving are bor-
rowed from logic programming. One can, for instance, begin with a func-
tional language like Lisp and add backtracking and unification. In fact, some
early languages for Artificial Intelligence, like PLANNER [18] and Qlisp [40],
had these facilities (and more). One can, alternatively, add set constructs
to functional languages [22, 27, 33, and others]. Or one can go in the op-
posite direction, starting with Prolog and adding function definitions. Such
languages normalize terms before attempting unification, but do not use the
definitions to instantiate free variables during goal reduction.

Adding equality to a Horn-clause logic language is trivial, since the ax-
ioms of equality (reflexivity, symmetry, transitivity, and functional reflex-
ivity) are Horn. Depth-first search would be useless in this case, but any
complete Horn strategy would do. This is in the spirit of Green’s [13] orig-
inal work on extracting answers from resolution proofs. Unfortunately, the
axioms for equality lead to hopelessly inefficient computations. To combine
a functional or equational programming style with logic programming, one
can use an underlying logic of Horn clauses with equality (as an interpreted
predicate symbol) and (typed) terms. From this point of view, the most
satisfying operational semantics would search for solutions to equations or
predicates. Paramodulation (unifying one side of an equation with a nonva-
riable subterm of a clause and replacing with the other side) is a complete
method of handling equality in resolution-based theorem provers, but with-
out a sense of direction to the equations, such an approach does not capture
the notion of evaluation present in functional languages. Several language
proposals in the early eighties provided interfaces between resolution-based
goal reduction and function evaluation, but were inherently incomplete; oth-
ers were complete but were more like theorem-provers than programming
languages.

A “logical” programming language ought to have a simple declarative
semantics, and a sound and complete operational semantics. That is, each
statement should have a local declarative meaning and each procedural step
should follow logically from their collective meaning. Therefore, languages
that combine features of functional and logic programming in a unified way,
and for which any logically satisfiable goal is solvable, are more appealing,
than combinations of the disparate operational mechanisms.

One can use the “in-then-else” construct of functional languages to
capture the implications of Horn clauses and use goal solving for “logic
variables.” alternatively, conditional systems provide a natural bridge be-
tween functional programming, based on equational semantics, and logic-
programming, based on Horn clauses. See [35].

Narrowing [36, 37] is a “linear” restriction of paramodulation akin to
the SLD-strategy in Horn-clause logic [2]. Whereas paramodulation uses
both sides of an equation in the same way, narrowing is more directed—
unifying with left-hand sides only—thereby taking the direction of rewriting
into account. In the conditional case, a rule [— r :— ¢ may be applied
to a goal t[s] if a nonvariable subterm s unifies with the left-hand side [
via most general unifier o. (Variables in [and ¢ are standardized apart.)
The resultant subgoals are [r]o, co. Solving the condition co may result in
additional variable bindings.

Narrowing can be simulated in Prolog by decomposing terms, as first
done in [3]. A logic-programming language with narrowing-like operational
semantics was first suggested in [4], but only unconditional rules were used
(conditionals were encoded as equivalences); equational Horn clauses were
first used in Eqlog [12], RITE [8, 23], and SLoa [10], and have more recently
been implemented in Babel [31]. For additional references and comparisons
with other suggestions, see the discussion in [8].

To force conditions to be evaluated (or solved) before the branches of a
conditional construct, some authors impose a leftmost strategy (e.g. [34]);
for conditional systems, one can let narrowing go through only after estab-
lishing that the conditions hold (e.g. [8, 10, 12]).

Narrowing and many of its variants are complete mechanisms for gener-
ating solutions, in that a solution at least as general as any that satisfies the
query can always be found (solutions that are provably equal are considered
to be the same). More specifically, with ground confluence, any irreducible
solution to a goal can be found by narrowing [21, 25]. (An “irreducible”
solution assigns normal forms to each variable.) Limiting one to irreducible
solutions is justifiable in a functional setting, since the “values” one is look-
ing for are always constructor terms. The orthogonal approach to equational
programming leads to a lazy, outermost narrowing strategy [34], as in the
Babel language [31], which is complete in that case.

Alternative narrowing derivations must be explored if completeness is
to be assured, since deterministically choosing one possible narrowing over
others will not guarantee that solutions will be found. Restrictions and
variations of narrowing that do preserve completeness are summarized in
[15]. For example, the idea encompassed by the restriction of narrowing
to so-called “basic” positions is that when one is looking for irreducible
solutions, one can ignore paths that narrow within what was a variable of
the original goal. There are more general semantic unification methods as
well as refinements of narrowing (see [15]). Top-down methods (e.g. [9, 19])
are particularly appealing. We take the liberty henceforth of referring to all
equation-solving methods that make use of confluence by the generic term
“narrowing.”

Additional superfluous narrowing paths can be avoided by making a dis-
tinction between constructor symbols and defined ones (assuming that terms
built entirely from constructors are irreducible) [10, for example]. Two terms

headed by different constructors can never be equal; when headed by the
same constructor, they are equal if, and only if, their respective arguments
are equal. See [15] for more details and references to more refined methods
of detecting unsatisfiable goals.

4 Equational-Logic Programming

It would make sense to allow all equational Horn clauses that have compu-
tational meaning in a program. We should not design a language restricting
expressibility of what seems natural just to limit the amount of backtracking
that might be necessary (full narrowing as opposed to outermost). Indeed,
we see a danger in announcing the narrowing strategy to the programmer,
who might be tempted to stray from the strictures of logic, under some
assumption of the operational behavior.

With (ground confluent and) terminating rules, there is no need for an
lazy evaluation strategy to ensure that a value for a term will be reached.
Just as an innermost evaluation is appropriate, a narrowing derivation that
mimics it suffices [9]. This narrowing derivation, however, might itself not
be innermost. SroG [10] always chooses the leftmost-innermost narrowing
path, and, hence, is complete only in certain situations.

The terminating approach to equational programming suggests a “nor-
malizing” narrowing strategy [7, 8, 16, 19]. This has the advantage of com-
pleteness without strong syntactic restrictions, but termination and ground
confluence are undecidable properties; thus, completeness is dependent on
the programmer’s writing a “correct” program. One need not be afraid to
predicate completeness on undecidable properties of programs. Ground con-
fluence is a consistency requirement, meaning that different ways of evaluat-
ing the same ground term cannot result in distinct values. The correctness of
a program is undecidable in any case, so it is the programmer who shoulders
the responsibility. Saying that a program may not output an answer if it is
nonterminating or nonconfluent is no different from saying to a programmer
using an ordinary language that a nonterminating program may produce no
output.

Simplification, that is rewriting via terminating rules, is a very powerful
feature, particularly when defined function symbols are allowed to be arbi-
trarily nested in left-hand sides. We suggest user-defined, unbacktrackable,
eager (“don’t care”) simplification prior to each backtrackable lazy (“don’t
know”) narrowing step. Fager simplification without backtracking has the
potential of eliminating many otherwise nondeterministic choice points (by
eliminating narrowable variables from goals) and leading to dramatically
improved performance of functional-logic programs [8, 10]; see [15]. It is,
of course, important not to incur heavy costs in searching for applicable
rewrites. It is possible to minimize the overhead involved in various ways,
including taking advantage of the fact that rewrites have only local impact
and rewrites that fail only because of a mismatch with a free variable signify

a potential narrowing [23]. Assuming ground confluence and termination,
any strategy can be used for simplification. Narrowing, always preceded by
simplification, is complete for ground confluent terminating systems (with-
out “extra” variables appearing in the condition or right-hand side of a rule,
but not on the left-hand side). Exactly how much simplification is per-
formed before each narrowing step is a matter of taste, since completeness is
not affected by this decision. Narrowing only fully simplified goals has been
advocated by [4, 8, 10, 16, 19] and others.

With a combined language, the need for some “added features” is ame-
liorated. For example, multi-valued functions can be better modeled by
predicates than with nondeterministic rewriting, as in [24]. Goal-solving
can then find the different values satisfying the relation. Functional depen-
dency is in the syntax. Negation can be handled by incorporating negative
information in the form of rewrite rules, which are then used to simplify
subgoals to false [8, 10, 15]. This approach allows some unsatisfiable goals
to be pruned.

The form taken by answers is another issue. Suppose we are given rules
for converting a propositional formula e into conjunctive normal form. As
a goal, we cannot just write e =" z, since e itself is a solution for z, but is
not in the desired form. We could program an explicit predicate, say nf(z),
that checked if z is in the desired form, and add it to the goal, or we could
impart a “weak” meaning to the equals sign in the goal, namely that they
are equal constructor terms [8, 15]. Rules for this constructor equality can
be generated automatically. A similar approach is to use “directed” goals of
the form e —7 z, similar to the equations in “normal” conditions, meaning
that we are looking for a z that is the normal form of e [9].

5 Stream Programming

The desirability of incorporating infinite structures in a functional-logic lan-
guage has been widely asserted [2, 30]. Unfortunately, we are presented
with a tradeoff between the benefits of lazy evaluation of orthogonal, non-
terminating rules and those of eager simplification with terminating, non-
orthogonal rules.

Starting from the lazy approach, one can allow some additional simplifi-
cation rules. These rules must be terminating (so that they may be applied
eagerly without worry), and should be true in the initial model of the defin-
ing equations (so that they preserve uniqueness of normal forms). These
requirements are, however, insufficient to guarantee completeness. For ex-
ample, one cannot just add the terminating and true rule 0 — «a to the
orthogonal program a — 0, since 0 is no longer a normal form. Similarly,
lazy narrowing with ¢ — b,b — 0 combined with eager rewriting using b — «a
will not compute the normal form 0 of a. One could add a “shortcut rule”
like inter(y, nil) — y to the interleave program, since for all ground terms y,
the program rewrites inter(y, nil) (in many steps) to y. Situations in which

simplification by terminating rules can be combined with lazy narrowing
with nonterminating rules are described in [14].

Starting from a terminating system, one can employ a lazy trick to sim-
ulate streams [8, Section 4.5] (cf. tricks for forcing strict evaluation), but the
semantics of tricks may not be all that clear.

There is a relatively unexplored alternative: The justification for infinite
data structures in a functional setting is that there is no a priori way of
knowing how much of the structure one will need in any given computa-
tion. But in a logic setting—with existentially quantified goals—one need
not know in advance how far to go. Instead, one can define a function that
computes a fraction of the structure, up to some bound supplied as an argu-
ment. Instead of a lazy from(n) — n : from(s(n)), one uses the terminating
from gy (n) — n: fromy(s(n)). To use the structure, one simply solves for
a sufficiently large bound. The same idea can be used for interpreters.

Note that the effect of narrowing with the indexed rule is the same as
lazy rewriting with the original. The extra parameter stays always just a
variable. Furthermore, narrowing creates no extra choice points, since there
is only one rule for the stream.

When streams are used on the right-hand side of other rules, as in
g(z,y) — nth(z, from(y)), extra variables become necessary. These can
be eliminated using the method of [17], for example, giving g,u(z,y) —
nth(x, from(y)). Incorporating bounds can be beneficial when one can use
them to cut down on computations that will not in the end contribute (as
with the Sieve of Eratosthenes), but in general bounds seem like an unnec-
essary hassle.

A third option is to isolate cases in which streams can be combined with
terminating systems and for which eager simplification plus lazy narrowing
of the stream rules works. It can’t always work: fair outermost narrowing
might not solve g(a,c(a)) =" 0, given the rule g(z,z) — 0 and stream
a— c(a).

So, under what conditions can one combine arbitrary unbacktrackable
simplification with lazy narrowing, without explicitly programming the
bound? We describe the case of a terminating unconditional rewrite sys-
tem R and a stream-like rule 5. Suppose R is ground confluent and contains
no occurrences of the symbol f. Let S contain one (confluent) rule of the
form f(x1...2,) — e, where e contains all of the arguments z;. Stream
definitions, like ones — 1 : ones or from(n) — n : from(s(n)), take that
form.

We claim that any normalization strategy that is outermost-fair towards
R US is complete when R is left-linear. (Were R orthogonal, this would
come as no surprise.) Normalized narrowing will not loop for stream-like
examples, since simplification will rewrite a term to the selected element of
the stream as soon as that becomes possible.

Suppose s has normal form ¢. Let 5’ be S with an extra argument added
to each occurrence of f. The f on the left becomes fy(,) and those on the

right become f, (where n is a new variable). We first show that R U S’
is terminating. Let f denote the $’-normal form of a term ¢. Since S’ is
terminating and confluent, the normal form always exists and is unique.
Suppose the transformed combination is not terminating and there is an
infinite sequence t; — t9 — t3 — --- of rewrite steps. Consider the terms
f1, 8y, .o iy tigy, ... If £; Tewrites via S to tj4q, then by confluence of 5’
we have #; = ti:|—1- Since there are no f’s in R, it can be shown that if R
rewrites t; to 1,41, then i goes to ti:I—l in zero or more R steps. Since S’
does not destroy any argument z; of f, we must actually have at least one
R step. Thus, were the combined system not terminating, there would exist
an infinite sequence with R alone.

Since the combined system is terminating, by Knuth’s Critical Pair
Lemma [26, Lemma 1.4.11], it is also confluent. Thus any derivation from
s leads to the same normal form, call it #. Since S applies to any subterm
headed by an f, the term ¢, which is in 5 normal form, cannot contain any
f’s. There must exist a number N such that if we replace each subterm
F(uy, ... upy) in s with f(uy, ..., uy,,sV0), then any derivation in R U S’
from this new term s’ leads to t. We know that a normalizing outermost
strategy for R U S’ will narrow s’ to ¢ (or to something more general). The
only catch is that what is fair for S may be unfair for S (which has enabled
positions that 5" might no longer have). But at some point R must be able
to eliminate all f’s to get t. Being left-linear, R cannot see any outstand-
ing f’s far below where it applies. This implies that we can use outermost
narrowing with simplification by R.

6 Other Aspects

Space limitations prevent us from doing more than listing other desiderata
for a equational-logic language of the future.

o If conditional rules are to generalize Horn-clause programming, extra
variables should be permitted in conditions. The (declarative) meaning
of such a statement is that the consequent holds for any value of the
extra variable that satisfies the conditions in which it appears. A
program can sometimes be transformed to circumvent this problem
[17] by introducing the extra variable into the “head.” Alternatively,
we can revise the definition of decreasing rewriting in the extra-variable
case, and say to insist that solution to the new variables be in normal
form. Additional useful completeness results are needed ([28] is one

such).

e Computing by forward reasoning from the program [4, 8] is a possibility
that is particularly attractive in a database setting. Better yet, the
recent work of [28] allows for both bottom-up and top-down computing.

The language must be typed. An example of a language that also in-
corporates higher-order functions is A-Prolog [29]. Whether one wants
to solve for functional variables needs to be resolved.

The language should have mechanisms for information hiding and in-
heritance; an “order-sorted” logic underlies Eqlog [12], for example.

Other than for infinite data structures and coding interpreters, it is
hard to imagine good uses of nonterminating systems. An exception
may be “fairly” terminating systems like a ged program with a rule
ged(z,y) — ged(y, z). Complete methods are wanting.

Ventures into the realm of non-Horn reasoning are always tempting.
Besides negation, limited disjunction may be possible [8, 27].

Constraint programming is an important development and may be
a more comfortable setting in which to incorporate reasoning with
directed equalities.

In an equational language, it may not be clear how individual equations
should be oriented. Existing methods for establishing termination and
confluence are geared to the significantly simpler case of unconditional
rules. An alternative would be to use forms of ordered Horn-clause
resolution like [5, 28]. They could allow for a measure of direction in
the form of an ordering (the “control” part) supplied to the prover by
the programmer along with unoriented equational Horn clauses (the
“logic” part).

Rather than provide an explicit ordering, a futuristic alternative may
be to have the user supply a definition of the “shape” of the desired nor-
mal forms, and let the system choose an ordering that shows progress
towards the desired forms with each step of rewriting. For example,
given various propositional identities and a definition of conjunctive
normal form, the system should push negations down to the literal
level and disjunctions down to clauses.

The efficient implementation of combined languages is, of course, of
paramount importance. Some of the recent work is discussed in [15].

Rewriting and narrowing lend themselves, in a natural fashion, to
“and-” and “or-” parallelism, respectively. One (simulated) parallel
implementation of this combination is reported on in [6].

References

[1]

Marco Bellia and Giorgio Levi. The relation between logic and func-
tional languages: A survey. J. of Logic Programming, 3(3):217-236,
October 1986.

Pier Giorgio Bosco, Elio Giovannetti, and Corrado Moiso. Narrowing
vs. SLD-resolution. Theoretical Computer Science, 59:3-23, 1988.

P. Deransart. An operational algebraic semantics of PROLOG pro-
grams. Internal report, Institut National Recherche en Informatique et
Automatique, Le Chesnay, France, 1983.

Nachum Dershowitz. Computing with rewrite systems. Technical
Report ATR-83(8478)-1, Information Sciences Research Office, The
Aerospace Corp., El Segundo, CA, January 1983.

Nachum Dershowitz. Ordering-based strategies for Horn clauses. In
Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, pages 118-124, Sydney, Australia, August 1991.

Nachum Dershowitz and Naomi Lindenstrauss. A parallel implementa-
tion of equational programming. In Proceedings of the Fifth Jerusalem
Conference on Information Technology, pages 426-435, Jerusalem, Is-
rael, October 1990. IEEE Computer Society.

Nachum Dershowitz, Subrata Mitra, and G. Sivakumar. Equation solv-
ing in conditional AC-theories. In H. Kirchner and W. Wechler, editors,
Proceedings of the Second Conference on Algebraic and Logic Program-
ming (Nancy, France), volume 463 of Lecture Notes in Computer Sci-
ence, pages 283-297, Berlin, October 1990. Springer-Verlag.

Nachum Dershowitz and David A. Plaisted. Equational programming.
In J. E. Hayes, D. Michie, and J. Richards, editors, Machine Intelligence
11: The logic and acquisition of knowledge, chapter 2, pages 21-56.
Oxford Press, Oxford, 1988.

Nachum Dershowitz and G. Sivakumar. Solving goals in equational
languages. In S. Kaplan and J.-P. Jouannaud, editors, Proceedings of the
First International Workshop on Conditional Term Rewriting Systems
(Orsay, France), volume 308 of Lecture Notes in Computer Science,
pages 45-55, Berlin, July 1987. Springer-Verlag.

Laurent Fribourg. SroaG: A logic programming language interpreter
based on clausal superposition and rewriting. In Proceedings of the
Symposium on Logic Programming, pages 172184, Boston, MA, July
1985. IEELE.

[11]

[13]

[14]

[15]

[16]

[19]

[20]

[21]

D. P. Friedman and D. S. Wise. CONS should not evaluate its argu-
ments. In Michaelson and R. Milner, editors, Proceedings of the Third
FATCS International Colloguium on Automata, Languages and Pro-
gramming, pages 257-284, Edinburgh, Scotland, 1976. Edinburgh Uni-
versity Press.

Joseph A. Goguen and José Meseguer. EQLOG: Equality, types, and
generic modules for logic programming. In D. DeGroot and G. Lind-
strom, editors, Logic Programming: Functions, Relations, and Fqua-
tions, pages 295-363. Prentice-Hall, Englewood Cliffs, NJ, 1986.

C. Cordell Green. The Application of Theorem-Proving to Question-
Answering. Ph.d., Department of Computer Science, Stanford Univer-
sity, Stanford, CA, 1969. Reprinted by Garland, New York [1980].

Michael Hanus. Combining lazy narrowing and simplification. In Pro-
ceedings of the Fourth International Symposium on Programming Lan-
guage Implementation and Logic Programming (Madrid, Spain), volume
844 of Lecture Notes in Computer Science, pages 370-384, Berlin, 1994.
Springer-Verlag.

Michael Hanus. The integration of functions into logic programming:
From theory to practice. J. Logic Programming, 19&20:583-628, 1994.

Michael Hanus. Lazy unification with simplification. In Proc. 5th Fu-
ropean Symposium on Programming (Fdinburgh, Scotland), volume 788
of Lecture Notes in Computer Science, pages 272-286, Berlin, Germany,
1994. Springer.

Michael Hanus. On extra variables in (equational) logic programming.
In Proc. Twelfth International Conference on Logic Programming, pages
665—679. MIT Press, 1995.

Carl Hewitt. Description and theoretical analysis (using schemata) of
PLANNER: A language for proving theorems and manipulating models
in a robot. Technical report, The Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, February 1972.
AL-TR-258.

Steffen Holldobler. Foundations of Equational Logic Programming, vol-
ume 353 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany, 1989.

Paul Hudak. Conception, evolution, and application of functional pro-
gramming languages. ACM Computing Surveys, 21(3):359-411, 1989.

Jean-Marie Hullot. Canonical forms and unification. In R. Kowalski,
editor, Proceedings of the Fifth International Conference on Automated

[22]

[25]

[26]

[28]

[29]

[30]

Deduction (Les Arcs, France), volume 87 of Lecture Notes in Computer
Science, pages 318-334, Berlin, July 1980. Springer- Verlag.

Bharat Jayaraman and Frank S. K. Silbermann. Equations, sets, and
reduction semantics for functional and logic programming. In Proceed-
ings of the ACM Conference on LISP and Functional Programming,
pages 320-331, Cambridge, MA, August 1986.

N. Alan Josephson and Nachum Dershowitz. An implementation of
narrowing. J. Logic Programming, 6(1&2):57-77, January/March 1989.

Stéphane Kaplan. Rewriting with a nondeterministic choice operator. In
B. Robiinet and R. Wilhelm, editors, Proceedings of the European Sym-
posium on Programming (Saarbiicken, F.R.G.), volume 213 of Lecture
Notes in Computer Science, page 351ff., Berlin, March 1986. Springer-
Verlag.

Stéphane Kaplan. Simplifying conditional term rewriting systems:
Unification, termination and confluence. J. Symbolic Computation,
4(3):295-334, December 1987.

Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 2, chapter 1, pages 1-117. Oxford University Press,
Oxford, 1992.

John W. Lloyd. Combining functional and logic programming lan-
guages. In Proceedings of the 1994 International Logic Programming
Symposium, Cambridge, MA, 1994. MIT Press.

Christopher Lynch. Oriented equational logic programming is complete.
Unpublished report, Centre de Recherche en Informatique de Nancy,
Nancy, France, 1995.

Dale Miller. A logic programming language with lambda-abstraction,
function variables, and simle unification. In P. Schroeder-Heister, edi-
tor, Proceedings of the International Workshop on Fxtensions of Logic
Programming (Ttbingen, F.R.G.), volume 475 of Lecture Notes in Com-
puter Science, pages 253-280, Berlin, December 1989. Springer-Verlag.

Juan Jose Moreno-Navarro. Expressivity of functional-logic languages
and their implementation. In M. Alpuente and R. Barbuti, edi-
tors, Joint Conference on Declarative Programming GULP-PRODE’9/.
GULP (Italian ALP Chapter), Universidad Politecnica Valencia, Ser-
vicio de publicaciones Universidad Politecnica de Valencia, September
1994.

Juan Jose Moreno-Navarro and Mario Rodriguez-Artalejo. Logic pro-
gramming with functions and predicates: The language Babel. J. Logic
Programming, 12:191-223, 1992.

[32]

[33]

[34]

[35]

Michael J. O’Donnell. Fquational Logic as a Programming Language.
MIT Press, Cambridge, MA, 1985.

Michael J. O’Donnell. Equational logic programming. In Dov Gab-
bay, editor, Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, volume 5, Logic Programming, chapter 2. Oxford University
Press, to appear.

Uday S. Reddy. Narrowing as the operational semantics of functional

languages. In Proceedings of the Symposium on Logic Programming,
pages 138-151, Boston, MA, July 1985. IEEE.

Uday S. Reddy. On the relationship between logic and functional lan-
guages. In D. DeGroot and G. Lindstrom, editors, Logic Programming:
Functions, Relations, and Equations, pages 3—-36. Prentice-Hall, Engle-
wood Cliffs, NJ, 1986.

J. R. Slagle. Automated theorem-proving for theories with simplifiers,
commutativity, and associativity. J. of the Association for Computing
Machinery, 21(4):622-642, 1974.

V. F. Turchin. Equivalent transformation of recursive functions defined
in the language Refal. In Sympos Teoria Yazykov i Metody Prostroenia
System Programirowania, pages 31-42. Alushta-Kiev, 1972. in Russian.

David A. Turner. SASL language manual. Technical report, University
of Kent, Canterbury, U.K., 1976.

David A. Turner. An overview of Miranda. ACM SIGPLAN Notices,
21(12):158-166, December 1986.

B. Michael Wilber. A Qlisp reference manual. Technical note 118,
Artificial Intelligence Center, Stanford Research Institute, Menlo Park,
CA, March 1976.

