
Natural Termination
�

Nachum DERSHOWITZ and Charles HOOT

Department of Computer Science, University of Illinois at Urbana-Champaign,

1304 West Spring�eld Ave., Urbana, IL 61801{2987, U.S.A.

nachum,hoot@cs.uiuc.edu

Communicated by
Received
Revised

Abstract. Two techniques are examined for showing termination of rewrite systems
when simpli�cation ordering are insu�cient. The �rst approach generalizes the
various path orderings and the conditions under which they work. Examples of
its use are given and a brief description of an implementation is presented. The
second approach uses restricted derivations, called \forward closures", for proving
termination of orthogonal and overlaying systems. Both approaches allow the use
of \natural" interpretations under which rules rewrite terms to terms of the same
value.

1. Introduction

Rewrite systems are sets of directed equations used to compute by repeat-
edly replacing terms in a given formula with equal terms, as long as possible.
The theory of rewriting is an outgrowth of the study of the lambda cal-
culus and combinatory logic, and has important applications in abstract
data type speci�cations, functional programming, symbolic computation,
and automated deduction. For surveys of the theory of rewriting, see Der-
showitz and Jouannaud [9], Klop [17] and Plaisted [33].

If no in�nite sequences of rewrites are possible, a rewrite system is said
to have the termination property. In practice, one usually guarantees ter-
mination by devising a well-founded (strict partial) ordering � such that
s � t whenever s rewrites to t (written, s ! t). As suggested by Manna
and Ness [24], it is often convenient to express reduction orderings as a
homomorphism from terms to an algebra equipped with a well-founded or-
dering. The use, in particular, of polynomial interpretations which map
terms into the natural numbers was developed by Lankford [19]. For a
survey of termination methods, see Dershowitz [7].

�This research was supported in part by the U. S. National Science Foundation under
Grants CCR-90-07195 and CCR-90-24271. The �rst author was also supported by a
Lady Davis fellowship at the Hebrew University of Jerusalem and a Meyerho� fellowship
at the Weizmann Institute of Science. This is a revised and expanded version of Topics
in Termination [8].

1

The rule

x � (y + z) ! (x� y) + (x� z) (1)

is terminating. This can be shown by interpreting � as multiplication, +
as �xy:x+ y + 1, and constants as 2. Since x � 2 implies x(y + z + 1) >
xy + xz + 1, the rule is terminating. It can also be proved terminating by
considering the multiset of \natural" interpretations of all products in a
term, letting + and � stand for addition and multiplication, and assigning
some �xed value to constants; see Dershowitz and Manna [10] for similar
examples. Syntactic \path" orderings (see Dershowitz [7]) work in this
case, too. Lipton and Snyder [22] gave a particular method for proving
termination with interpretations (order-isomorphic to !) for which rules
are \value-preserving", as this example is for the natural interpretation.
Virtually all orderings used in practice are simpli�cation orderings [6],

satisfying the replacement property, that s � t implies that any term con-
taining s as a subterm is at least as large (under �) as the same term with
s replaced by t, and the subterm property, that any term containing s is at
least as large as s. Simpli�cation orderings are surveyed by Steinbach [34];
their well-foundedness is a consequence of Kruskal's Tree Theorem. (See
Dershowitz [6].) A non-simple rewrite system (such as ffx! fgfx) is one
for which no simpli�cation ordering will show termination.
Knuth and Bendix [18] designed a particular class of well-orderings which

assigns a weight to a term that is the sum of the weights of its constituent
function symbols. Terms of equal weight and headed by the same symbol
have their subterms compared lexicographically. If they are headed by
di�erent symbols, a \precedence" ordering determines which term is larger.
Another class of simpli�cation orderings, the path orderings introduced in
Dershowitz [6], is based on the idea that a term u should be bigger than
any term that is built from smaller terms, all held together by a structure
of function symbols that are smaller in some precedence ordering than the
root symbol of u. The notion of path ordering was extended by Kamin
and L�evy [16] to compare subterms lexicographically and to allow for a
semantic component; see Dershowitz [7].

We use quasi-orderings (reexive-transitive binary relations), rather than
partial orderings, to prove termination of rewrite systems. If �� is a
quasi-ordering and �� is its inverse, then its strict part � (�� � ��) is a
partial order. Its associated equivalence relation � is de�ned as �� \ �� .
A quasi-ordering is well-founded if it has no in�nite strictly descending
sequences of elements. A precedence is a well-founded quasi-ordering of
function symbols. An ordering can be called syntactic if it is based on
a precedence and is invariant under shifts of symbols. In other words,
we require that consistently replacing function symbols in two terms with
others of the same arity and with the same relative ordering has no e�ect

2

on the ordering of the two. The recursive path orderings [6, 16, 21] are
syntactic; the Knuth-Bendix and polynomial orderings are not.

Simpli�cation orderings cannot be used to prove termination of \self-
embedding" systems, that is, when a term t can be derived in one or more
steps from a term t0, and t0 can be obtained by repeatedly replacing sub-
terms of t with subterms of those subterms. For example, consider the
following contrived system for computing factorial in unary arithmetic (ex-
panding on one in Kamin and L�evy [16]):

p(s(x)) ! x
fact(0) ! s(0)

fact(s(x)) ! s(x)� fact(p(s(x)))
0� y ! 0

s(x)� y ! (x� y) + y
x + 0 ! x

x+ s(y) ! s(x+ y) :

(2)

It would be nice were we able to use a natural interpretation, but that
does not prove termination, since the rules preserve the value of the inter-
pretation, rather than cause a decrease. Nor can we use multisets of the
values of the argument of fact, since some rules can multiply occurrences
of that symbol. Though path orderings have been successfully applied to
many termination proofs, they su�er from the same limitation as do all
simpli�cation orderings: they are not useful when a rule embeds as does
fact(s(x))! s(x)� fact(p(s(x))).

What is needed is a way of combining the semantics given by a natural
interpretation with a non-simpli�cation ordering that takes the structure
of terms into account. To that end, in Section 2, we present the general
path ordering and prove that it is a quasi-order. In Section 3 we use the
general path ordering to generalize all the above-mentioned orderings and
the conditions under which they work so that they can also handle some
non-simple systems. Examples, special cases, and a brief description of an
implementation of the general ordering are included in Section 4.

We also look at methods of proving termination of orthogonal (left-linear
non-overlapping) systems, such as (2), and related issues in Sections 5 and 6.
These may be compared with ordinary structural induction proofs used for
recursively-de�ned functions; see Burstall [3] and Manna [23]. In particular,
we employ the notion of restricting the set of forward closures (Dershowitz
[5]) to those conforming with some particular rewrite strategy, and give
conditions under which the restricted set su�ces.

3

2. The General Path Ordering

The general path ordering combines mappings from terms to well-founded
sets.

De�nition 1 (Termination Function). A termination function � takes a
term as argument and is of one of the following types:

a. a homomorphism from terms to an algebra (set of values) A, where
�(f(s1; : : : ; sn)) = f�(�(s1); : : : ; �(sn)), and f� is a function from An

to A for n-ary function symbol f ;

b. an extraction function from terms to multisets of selected immedi-
ate subterms, that is �(f(s1; : : : ; sn)) = fsj1 ; : : : ; sjmg, such that
j1; : : : ; jm 2 f1; : : : ; ng where the choice of the subterms depends
on the function symbol f .

De�nition 2 (Component Order). Let T be a set of variable-free terms
(over some alphabet). A component order � = h�;�i consists of a termi-
nation function � : T ! A, from terms to an algebra A along with an
associated well-founded quasi-order � over A.

The following de�nitions are useful (' denotes the equivalence part of
�):

� A homomorphism � is value-preserving with respect to the ordering
� and rewrite system R if �(l�) ' �(r�) for all rules l! r in R and
ground substitutions �.

� A homomorphism � is monotonic with respect to the ordering � if for
all function symbols f , f�(: : :x : : :) � f�(: : :y : : :) whenever x > y.

� A homomorphism � is strictly monotonic with respect to the ordering
� if for all function symbols f , f�(: : :x : : :) > f�(: : :y : : :) whenever
x > y.

� A homomorphism � has the strict subterm property with respect to
the ordering � if for all function symbols f , f�(: : :x : : :) > x.

� An equivalence relation ' is a congruence with respect to a homo-
morphism � if for all function symbols f , x ' y implies f�(: : :x : : :) '
f�(: : : y : : :).

� The multiset Ri(S) of terms of rank i (i � 0) with respect to the
ordering � on terms in a multiset of terms S, is inductively de�ned
as

Ri(S) = fu : u is maximal with respect to � in Li(S)

4

where
Li(S) = S �

[
0<j<i

Rj(S):

De�nition 3. Some important classes of component orders are:

a. h�;�i is a precedence when � is a homomorphism which returns the
outermost function symbol of a term and � is a precedence ordering;

b. h�;�i is value-preserving when � is a value-preserving homomorphism
with respect to � and � is a well-founded quasi-order;

c. h�;�i is monotonic when � is a monotonic homomorphism with the
strict subterm property (with respect to �) and � is a well-founded
quasi-order;

d. h�;�i is strictly monotonic when � is a strictly monotonic homomor-
phism with the strict subterm property (with respect to �) and � is
a well-founded quasi-order;

e. h�;�i is multiset extracting when � is an extraction function which
depending on the outermost function symbol returns a multiset of
immediate subterms IS(t) = ft1; t2; : : :g of a term t, of the following
types:

1. a multiset (including the empty multiset) containing the imme-
diate subterms at speci�ed positions K (PK(t) = fti : i 2 Kg),

2. a multiset containing the immediate subterms of rank k,
Rk(IS(t)), or

3. a multiset containing the immediate subterms of rank k or less
(R�k(IS(t)) =

Sk
i=1Rj(IS(t)))

and � is the multiset ordering �� M induced by a well-founded or-
dering �� on terms. (See Dershowitz and Manna [10] for more on
multiset orderings.)

Simple examples of homomorphisms from terms to the natural numbers
are size (number of function symbols, including constants), depth (maxi-
mum nesting of function symbols), and weight (sum of weights of function
symbols). Size and weight are strictly monotonic; depth is monotonic.
A simple example of a precedence uses the ordering + > s > 0 with
+� = �x:\+", s� = �x:\s", and 0� = �x:\0". (The subterm property
is guaranteed for strictly monotonic homomorphisms into well-ordered sets
[6].) An example of a multiset component ordering is � = R1; it extracts
the maximal immediate subterms in �. Another example is � = Pf1g which
gives the leftmost subterm.

5

De�nition 4 (General Path Ordering). Let �0 = h�0;�0i, : : :, �k = h�k ;
�ki be component orders, where for multiset extraction �x component or-
ders, �x is the general path ordering �� itself. The induced general path
ordering �� is de�ned as follows:

s = f(s1; : : : ; sm) � g(t1; : : : ; tn) = t

if either of the two following cases hold:

(1) si �� t for some si, i = 1; : : : ; m, or

(2) s � t1; : : : ; tn and �(s) >lex �(t), where �(s) = h�0(s); : : : ; �k(s)i,
and >lex is the lexicographic combination of the component orderings
>x,

while
s = f(s1; : : : ; sm) � g(t1; : : : ; tn) = t

in the general path ordering if

(3) s � t1; : : : ; tn, t � s1; : : : ; sm and �0(s) '0 �0(t); : : : ; �k(s) 'k �k(t):

Note that �� is the union of � and �, which are mutually recursive.
Lemmas 6, 7, 8 and 9 (below) guarantee that � is the strict part of �� ,
while � is the equivalence part.

Lemma 1 (Symmetry). If s � t then t � s.

Proof. This is trivial, since 'x is reexive for the component quasi-orders
�x. When 'x is the multiset extension of �, induction on the combined
size of the terms s and t is required.

We use the notation tjp to refer to the subterm of t at position p and
the notation u[s] (or u[s]p) to indicate that u contains s as a subterm (at
position p).

Lemma 2. For the general path ordering, s �� t implies s � tjp for each
proper subterm tjp of t.

Proof. Assume that the lemma holds for any pair of terms smaller in
combined size than hs; ti.
Suppose s � t by Case (1) of the ordering. Then for some i, si �� t. By

the induction hypothesis, however, si � tjp. We may then apply Case (1)
resulting in s � tjp.
Suppose s �� t by Case (2) or (3). Thus we know s � t1; : : : ; tn. Suppose

that tjp is a subterm of some ti. Then, we can apply induction on the pair
hs; tii:

6

The following two lemmata must be shown by simultaneous induction
over the height of a term.

Lemma 3 (Subterm). The general path ordering satis�es the strict sub-
term property f(: : : ; si; : : :) � si, for all i.

Proof. By inductive application of reexivity (Lemma 4) to the subterm
si we have si � si, and Case (1) applies.

Lemma 4 (Reexivity). The general path ordering �� is reexive.

Proof. Assume that �� is reexive for all terms with height less than k.
Consider a term f(t1; : : : ; tn) of height k. By the strict subterm property
(Lemma 3) for terms of height k, f(t1; : : : ; tn) is strictly greater than each of
its subterms. Therefore the �rst and second conditions for equivalence are
satis�ed. Since each of the �'s is a function, �f (t1; : : : ; tn) 'x �f (t1; : : : ; tn)
as long as each of the component orderings is reexive. The only non-
trivial case is the multiset ordering on immediate subterms. But by the
induction hypothesis, for every subterm ti, we have ti �� ti and therefore
the multiset ordering on immediate subterms is reexive (ftj1 ; : : : ; tjmg �M
ftj1 ; : : : ; tjmg for any j1; : : : ; jm 2 f1; : : : ; ng). Consequently, the third
condition is satis�ed and f(t1; : : : ; tn) � f(t1; : : : ; tn).

Lemma 5. For the general path ordering, s �� t implies u[s] � t for each
non-empty enclosing context u[�] of s.

Proof. Consider the subterm ujp which contains s as an immediate
subterm. By Case (1), ujp � t. Repeated application of the preceding
argument leads to u[s] � t.

Lemma 6 (Transitivity). For terms s, t, and u and general path ordering
��:

(i) s � t � u implies s � u;

(ii) s � t � u implies s � u;

(iii) s � t � u implies s � u;

(iv) s � t � u implies s � u.

Proof. The proof proceeds by induction over the triple of terms hs; t; ui
with respect to the sum of the heights of the three terms.

7

(i) Suppose that s � t by Case (1) of the ordering, then si �� t for some
i. Now if t � u, we can apply induction on the triple hsi; t; ui to get
si � u. By Case (1) of the ordering we have s � u.

Suppose that s � t by Case (2) of the ordering, then s � t1; : : : ; tn and
�(s) �lex �(t). Now if t � u by Case (1) of the ordering, then tj � u
for some j. But we may apply induction to the triple hs; tj ; ui to
show s � u. If t � u by Case (2) of the ordering, then t � u1; : : : ; um
and �(t) �lex �(u). We may apply induction to each of the triples
hs; t; uki to show that s � uk for each k. If each of the component
orders is transitive then �(s) �lex �(u). When �x is a well-founded
quasi-order there is no problem; when �x is a multiset ordering on
immediate subterms, the induction hypothesis is needed.

(ii) We know that s � t1; : : : ; tm and �(s) 'lex �(t).

Suppose that t � u by Case (1) of the ordering, then ti �� u for some
i. By induction on the triple hs; ti; ui, we have s � u.

Suppose that t � u by Case (2) of the ordering, then t � u1; : : : ; tm
and �(t) �lex �(u). But for each triple hs; t; uki we have s � uk .
To show s � u, we only need to demonstrate the second condition of
Case (2). But this holds for the quasi-orders and multiset orders by
induction.

(iii) Essentially the same argument as for (i).

(iv) We know that t � s1; : : : ; sl, �(s) 'lex �(t), t � u1; : : : ; un, and
�(t) 'lex �(u). For each triple hs; t; uii we can apply (ii) to get
s � ui. For each triple hu; t; sji we can apply (ii) to get u � sj . The
lexicographic part holds for the quasi-orderings and, by induction, for
the multiset orderings. Therefore all three conditions of Case (3) hold
and s � u.

Lemma 7 (Irreexivity). For any s, s 6� s.

Proof. Apply induction on the height of terms. Assume on the contrary
that s � s for some s.
Suppose that s � s by Case (1) of the ordering, then si �� s for some i.

But by transitivity and the strict subterm property we have si � si. But
by induction si 6� si, and we have a contradiction.
We cannot have s � s by Case (2) of the ordering, since �(t) 'lex �(u),

(using induction for the multiset components).
Therefore neither case is applicable and s 6� s.

8

Lemma 8. If s � t then t 6� s.

Proof. Were t � s, then by transitivity s � s contradicting the previous
lemma (Lemma 7).

The converse follows from:

Lemma 9. If s � t, then t 6�� s.

Proof. Were t �� s, then by transitivity s � s, contradicting Lemma 7.

Theorem 1. The general path ordering is a quasi-ordering.

Proof. By the previous lemmata we know that �� is reexive and transi-
tive.

3. Termination Proofs

The general path ordering can be used to prove termination if certain gen-
eral conditions are met. The �rst lemma we present guarantees a strict
decrease in the multiset ordering induced by a quasi-ordering. We then
show general conditions under which the general path ordering is well-
founded. Finally, we give speci�c conditions for the component orderings
which satisfy these general conditions.

Lemma 10. If �� is a quasi-order with the strict subterm property,

s! t and s �� t imply f(: : : ; s; : : :) �� f(: : : ; t; : : :) ;

for all terms s, t, : : : and function symbols f , and l� � r� for all rules l ! r
and substitutions �, then for any rewrite step u ! v UM �M VM where
�M is the multiset ordering induced by �� , UM = ftjt is a subterm of ug,
and VM = ftjt is a subterm of vg.

Proof. To begin, note that given a position p, the multiset of subterms
can be split into three parts: the subterms at or below p, the subterms
above p, and the subterms disjoint from p.
If u! v then there is some subterm ujp of u such that ujp = l�. Therefore

u = u[l�]p ! u[r�]p = v:

By assumption l� � r�. In addition, repeated application of the strict
subterm property with transitivity gives r� � r�jp for all proper subterms
of r�. Thus the subterm l� in UM is replaced in VM by the strictly smaller
r� and its subterms.

9

The only other subterms which are a�ected by the rewrite are those
rooted at symbols on the path from l� to the top of u. We can show that
w[l�]p �� w[r�]p for all contexts w by induction on the depth of position
p in w. If w is the empty context, we are given that l� � r�. Otherwise,
let w = f(� � �s[l�]q � � �). By induction s[l�]q � s[r�]q, and by the given
implication w[l�]p = f(� � �s[l�]q � � �) �� f(� � �s[r�]q � � �) = w[r�]p:

Theorem 2. Let �� be a general path ordering. A rewrite system R
terminates if

� l� � r� for all rules l! r in R and substitutions � and,

� s! t and s �� t implies f(: : : ; s; : : :) �� f(: : : ; t; : : :).

Proof. The proof of this theorem is akin to Kamin and L�evy [16] and
uses a minimal counter-example argument.
To prove the well-foundedness of �, suppose the contrary and consider

a minimal in�nite descending sequence t1 � t2 � � � �, minimal in the sense
that from all proper subterms of each term in the sequence there are only
�nite descending sequences. (By the subterm property, we can replace
any term in a descending sequence by any proper subterm that initiates
an in�nite descending sequence. Thus we can always construct a minimal
descending sequence from an arbitrary descending sequence.) Case (1) of
the de�nition of � cannot be the justi�cation for any pair tj � tj+1, since
then tj�1 � tj jp � tj+2, for some proper subterm tj jp of the jth term in
the example, and the example would not be minimal. Therefore every pair
must use Case (2) and consequently �(tj) >lex �(tj+1). But a lexicographic
combination of well-founded orderings (including � on multisets of proper
subterms which by assumption are well-founded), is well-founded, and the
descending sequence cannot be in�nite.
Since the general path ordering is a quasi-order with the strict subterm

property, by Lemma 10 we know that each rewrite results in a strict decrease
in �M. Since � is well-founded, �M is as well and termination follows.

Theorem 3. Let �0; : : : ; �i�1 (i � 0) be monotonic, all but possibly the
last strict, and let �i; : : : ; �k be precedence, value-preserving, or multiset
extraction component orders. A rewrite system terminates if l� � r� in
the corresponding general path ordering �� for all rules l ! r and ground
substitutions �, provided

(i) if �x = Rk there is some y < x such that �y = Rk�1 or �y = R�k�1;
and

(ii) 'x is a congruence for each homomorphism �x.

10

Note that whenever �x is a partial-order, congruence is guaranteed.
Before giving a proof, consider the following examples illustrating the

need for restrictions on the components: (We omit parentheses for the
unary function symbols 0, 1, f , g.)
Consider the non-terminating two rule rewrite system

0011x ! 111000x
0x ! 11x :

(3)

A general path ordering with �rst component, the precedence 0 > 1, and
the second, the strictly monotonic homomorphism which counts the number
of symbols in a term, shows a decrease for both rules. But this violates the
condition requiring monotonic homomorphisms to precede the other types
of component orderings.
Consider the non-terminating two rule rewrite system

ffx ! fgfx
gx ! x :

(4)

A general path ordering with �rst component, a monotonic homomorphism
�ff which counts the number of pairs of f 's, and second, the precedence f >
g, shows a decrease for both rules. But this violates the condition requiring
that homomorphisms be congruences, since �ff (f(g(a))) 6= �ff (f(f(a)))
even though �ff(g(a)) = �ff (f(a)).
Consider the non-terminating two rule rewrite system

h(a; b) ! h(a; a)
a ! b :

(5)

A general path ordering with �rst component, the precedence f > a > b,
and second, the multiset extraction of rank two, shows a decrease for both
rules, since fbg > ;. But this violates the condition requiring that the rank
extracting component be preceded by a rank extracting component which
extracts terms of rank one.

Proof. By Theorem 2, it su�ces to show

s! t and s �� t imply u = f(: : : s : : :) �� f(: : : t : : :) = v ;

for all terms s, t, : : : and function symbols f .
If s � t, then �(s) 'lex �(t). We demonstrate that u � v. For each of

the subterms vi 6= t, we have ui = vi. For the subterm t, we have s � t, and
consequently u = f(: : : s : : :) � vi for each i by Case (1) of the ordering.
Similarly, we have v = f(: : : t : : :) � uj for each j. We just need to show

11

that �x(u) 'x �x(v) for each component order. For precedence and value-
preserving component orders this is trivial. For monotonic component or-
ders, the extra condition guarantees that 'x is a congruence and hence
�x(f(: : :s : : :)) = f�x (: : :�x(s) : : :) 'x f�x(: : :�x(t) : : :) = �x(f(: : : t : : :)).
For �i that return multisets, we need to consider each of the extraction

functions separately:

1. Extract subterms at positions K. If s 6= uk for any k 2 K, then each
uk = vk and PK(u) = PK(v). Otherwise, the multisets are identical
except that s is replaced by t and therefore PK(u) �M PK(v).

2. Extract subterms of rank k. Since s is equivalent to t, they have the
same rank. Therefore Rk(IS(u)) �M Rk(IS(v)) for all k.

3. Extract terms of rank k or less. As in the previous case,
R�k(IS(u)) �M R�k(IS(v)).

Now we focus on the strict case, s � t. As before we can show u � vi
for each i. So we just need to show that �(u) >lex �(v). Note that for
the recursive de�nition to give s � t, there must be some subterm sjp of s
such that sjp �� t by Case (2) of the ordering and hence �(sjp) >lex �(t).
Consider a monotonic homomorphism �x. There are two cases:

Case A (sjp = s): Suppose that �y with y � x is the �rst monotonic ho-
momorphism which shows an increase. For each of the preceding homomor-
phisms �z(s) 'z �z(t) and therefore �z(f(: : : ; s; : : :)) 'z �z(f(: : : ; t; : : :))
by congruence for z � y, while for the yth homomorphism �y(s) >y

�y(t). If the homomorphism is strict, this implies �y(f(: : : ; s; : : :)) >y

�y(f(: : : ; t; : : :)) and the lexicographic comparison is strictly greater. If the
homomorphism is not strict, then �y(f(: : : ; s; : : :)) �y �y(f(: : : ; t; : : :)) and
the status of the lexicographical comparison may depend on the succeeding
component orderings.

Case B (sjp 6= s): Consider �0. By repeated application of the strict
subterm property of the monotonic homomorphism components, we have
�0(s) >0 �0(sjp) �0 �0(t). If �0 is strict, this implies �0(f(: : : ; s; : : :)) >0

�0(f(: : : ; t; : : :)) and the lexicographic comparison is strictly greater. If �0
is not strict, then �0(f(: : : ; s; : : :)) �0 �0(f(: : : ; t; : : :)) and the status of
the lexicographical comparison may depend on the succeeding component
orderings.
In either case, any component orderings following a non-strict homomor-

phism need not show an increase for s or sjp, respectively, compared with t.
As a consequence, none of the succeeding component orderings may safely
rely on the lexicographic status of s or its subterms. In addition, since the
monotonic homomorphisms depend on the lexicographical status of sub-
terms, it is not safe to have other types of component orders preceding.
This is the reason for the restrictions:

12

� there may only be one non-strict monotonic homomorphism and each
of the strict monotonic homomorphisms must precede it, and

� no other type of component ordering may precede a monotonic ho-
momorphism.

Consider now a value-preserving homomorphism and a rewrite s = c[l�]
! c[r�] = t. We are given that �(l�) 'x �(r�). Combined with congruence
of the ordering this results in �(f(: : : ; s; : : :)) 'x �(f(: : : ; t; : : :)).
When the termination function is a precedence, its value does not depend

on subterms and trivially �(f(: : : ; s; : : :)) 'x �(f(: : : ; t; : : :)).
Now consider component orderings that compare multisets of subterms:

1. Extract subterms at positions in K. If s 6= uk for all k 2 K, then each
uk = vk and PK(u) = PK(v). Otherwise the multisets are identical
except that s is replaced by t and therefore PK(u) �M PK(v).

2. Extract subterms of rank k. Suppose that s 2 Ri(IS(u)). Then there
is no change in multisets of rank less than i. For the multiset of rank
i, the only possible new members are t and terms from Ri+1 that were
dominated by s. Thus we have Ri(IS(u)) �M Ri(IS(v)). If k > i,
there may be an increase, but we are guaranteed that either Ri or
some R�j containing rank i is before �x lexicographically, and either
of these will show an increase.

3. Extract subterms of rank less than or equal k. Suppose s 2 Ri(u).
By an argument similar to that above, R�k(IS(u)) = R�k(IS(v))
for k < i and R�k(IS(u)) �M R�k(IS(v)) for k = i. One just
needs to consider the case k > i. Think of the process of going
from R�k(IS(u)) to R�k(IS(v)) as adding t to the set of immediate
subterms then removing s. When t is added other terms may move
to higher rank, but not lower rank. So the only possible new term
in R�k(IS(u) [ftg) is t. When s is removed, terms may be added
from rank k + 1 (note that terms may only move one rank position
when a single term is added or deleted). Consider a term w of rank
j + k + 1 which is a member of R�k(IS(v)), but was not a member
of R�k(IS(u) [ftg). It must have been added because a term xk
of rank k moved to rank k � 1 and xk � w. Inductively, we can
construct a chain of terms such that xi � xi+1 � � � � � xk � w. But
there was only the single term s which was removed at level i and
therefore s = xi � w. In combination with s � t, it must be that
R�k(IS(u)) �� R�k(IS(v)).

13

Whereas we have only used lexicographic and multiset mappings in the
general path ordering, in [16], Kamin and L�evy consider the more gen-
eral case of orderings based on a mapping > from well-founded quasi-
orderings to well-founded quasi-orderings. They allow a component order
�t = ht1; : : : ; tni and � = >�, where > recursively makes �nitely many
comparisons of subterms. In particular, one can use weighted multisets, as
in Martin [25].

Theorem 4 (Incrementality). If a general path ordering �� with a com-
ponent ordering �i = h�;�i proves termination of a set of rules R, then the
general path ordering ��

0 which is the same as �� except for �0i = h�;�0i,
where �0 is an extension of the ordering �, also proves termination of R.

Proof. For any termination proof that uses the ith component ordering,
the same proof can be constructed, since the mapping is identical and
orderings � and �0 are the same for any pair of values �(t1) and �(t2) used
to show termination.

Incrementality is important when an ordering is sought to orient a set of
equations. Thus, as a special case, with a precedence one can delay deciding
whether f > g or f < g, or f ' g until necessary to establish the ordering
of two terms, (as for the standard recursive path ordering). In general,
one can successively re�ne the well-founded ordering of a homomorphism
component.

4. Speci�c Path Orderings

The following ordering is a special case of the general path ordering to
which Theorem 2 applies:

Semantic path ordering (Kamin and L�evy [16]) �0 is the identity ho-
momorphism; �0 is a well-founded ordering; �1; : : : ; �n give a permutation
of the subterms.

For this ordering, one must separately insure that s ! t implies s �0 t.
Indeed any terminating system can be (uninterestingly) proven terminating
in this way [16], by taking �0 to be the reexive-transitive closure of !.

The following simpli�cation orderings are special cases of the general
path ordering for which the conditions of Theorem 3 hold:

Knuth-Bendix ordering (Knuth and Bendix [18]) �0 gives the sum of
(non-negative integer) \weights" of the function symbols appearing in a
term; �0 is the � ordering on the natural numbers; �1 gives a (total)
precedence; �2; : : : ; �n+1 give (a permutation of) the immediate subterms.

14

Polynomial path ordering (Lankford [19]) �0 is a strict monotonic ho-
momorphism with each f� a polynomial with positive integer coe�cients;
�0 is the � ordering on the natural numbers; �1 gives a precedence;
�2; : : : ; �n+1 give a permutation of the immediate subterms.

Multiset path ordering (the original version of the \recursive path or-
dering", Dershowitz [6]) �0 is a precedence; �1 extracts the multiset of
immediate subterms.

Extended path ordering (Dershowitz [6]) �0 extracts one of the im-
mediate subterms; �1 extracts a multiset of the remaining immediate sub-
terms.

Lexicographic path ordering (Kamin and L�evy [16]) �0 is a prece-
dence; �1; : : : ; �n give a permutation of the subterms.

Recursive path ordering (\with status", Lescanne [21]) �0 is a total
precedence; �1; : : : ; �n give a permutation of the subterms or multisets of
subterms, depending on the function symbol.

Extended Knuth-Bendix ordering (Dershowitz [6], Steinbach and
Zehnter [35]) �0 is a monotonic interpretation; �1 is a precedence;
�2; : : : ; �n+1 give the subterms in order, permuted, or multisets of immedi-
ate subterms, depending on the function symbol.
For a system like

fsx ! shdfx
f0 ! 0
d0 ! 0
dsx ! ssdx
hssx ! shx ;

(6)

a precedence (f > h > d > s > 0) ought to be considered �rst, before
looking at subterms, as with a lexicographic path ordering.

The next special case is not a simpli�cation ordering, but the conditions
of Theorem 3 hold for it as well.

Value-preserving path ordering (Plaisted [31], Kamin and L�evy [16])
� is a value-preserving homomorphism and � is a well-founded quasi-order;
�0 is a precedence; �1 is � applied to the �rst subterm and �1 is �; �2 is �
applied to the second subterm and �2 is �; and so forth.
As an example of the use of the value-preserving path ordering, consider

System 2. The precedence is fact >0 � >0 + >0 s; �1 interprets everything

15

naturally: fact as factorial, s as successor, p as predecessor, � as multipli-
cation, + as addition, and 0 as zero. The ordering �1 is the well-founded
greater-than relation on natural numbers. Let all constants be interpreted
as natural numbers, making all terms non-negative. Each rule causes a
strict decrease with respect to the general path ordering and the rewrite
system terminates. This approach works for primitive-recursive functions
in general.
Note that to use a natural interpretation, one must always make sure

that all terms and subterms in any derivation are interpretable as natural
numbers; otherwise a rule like fact(x) ! fact(p(x)) would give pretense
of being terminating.
We enlarge on the idea embodied in the value-preserving ordering in the

following way, intended to mirror the standard structural induction proof
method for recursive programs:

De�nition 5 (Natural Path Ordering). A natural path ordering is a spe-
cial case of the general path ordering with two component orderings: �0 is
a precedence and �1 is de�ned for each f (of arity n), as �1f(t1; : : : ; tn) =
f�1(�1t1; : : : ; �1tn), where �1 is a value-preserving homomorphism to some
arbitrary algebra A, and f�1 a mapping from An to a well-founded set
(W;�).

Theorem 2 applies.
As an example, consider the following rewrite system for computing the

average of two integers:

a(sx; y) ! a(x; sy)
a(x; sssy) ! sa(sx; y)

a(0; 0) ! 0
a(0; s0) ! 0
a(0; ss0) ! s0 :

(7)

A multiset path ordering will not work for the arguments of a in the �rst
rule and a lexicographical path ordering will not work for the �rst two
rules. The natural path ordering is su�cient for proving termination with
�0 as a >0 s >0 0 and �1 given by �1(a(x; y)) = 2�(x) + �(y), where � is
the value-preserving homomorphism: a� = �xy:bx+y

2
c, s� = �x:x+ 1, and

0� = �x:0.
A more complicated example using the general path ordering is the fol-

lowing rewrite system which sorts a list of natural numbers into decreasing
order via an insertion sort:

sort(nil) ! nil (5.1)

16

sort(cons(x; y)) ! insert(x; sort(y)) (5.2)

insert(x; nil) ! cons(x; nil) (5.3)

insert(x; cons(v; w)) ! choose(x; cons(v; w); x; v) (5.4)

choose(x; cons(v; w); y; 0) ! cons(x; cons(v; w)) (5.5)

choose(x; cons(v; w); 0; s(q)) ! cons(v; insert(x; w)) (5.6)

choose(x; cons(v; w); s(p); s(q)) ! choose(x; cons(v; w); p; q) : (5.7)

Four component orders are used. They are

�0 = the precedence sort > insert ' choose > cons
�1 = the extraction based on the outermost symbol f

�1 =

8<
:

Pf1g f = sort
Pf2g f = choose; insert
; otherwise

�2 = the precedence sort > insert > choose > cons
�3 = the extraction based on the outermost symbol f

�3 =

8>><
>>:

Pf1g f = sort
Pf2g f = insert
Pf3g f = choose
; otherwise .

The ordering interleaves precedences with recursive comparisons of sub-
terms and thus is unlike either the semantic path ordering [16] or semantic
labeling [36]. No semantic interpretation of the function symbols is required
to prove termination in this example.
If one were to use an ordering just based on the precedence �2, all of the

rules except for the seventh would be oriented in the appropriate direction.
Unfortunately, the fourth and seventh rules interact with each other. In
particular, there is a choose and an insert on opposite sides of each rule.
The precedence �0 is chosen to guarantee a decrease in the lexicographical
part when ordering Rule 6 by Case (2) of the general path ordering, while
leaving Rule 4 equal. The �rst condition for Case (2) requires that the left-
hand side of Rule 6 be strictly greater than each of the two subterms on
the right. The non-trivial comparison is choose(x; cons(v; w); 0; s(q)) with
insert(x; w). These terms are equal under the precedence ordering �0, but
by selecting the second subterm of both choose and insert we achieve the
needed decrease, and Rule 6 is correctly ordered.
Now consider Rule 4. Fortunately, the second subterm on both sides

of Rule 4 is identical, leaving the lexicographical order una�ected. The
precedence ordering �2 breaks that tie. Verifying the �rst condition of
Case (2) for Rule 4 is easy.

17

Rule 1 is a trivial application of Case (1). Rule 2 is nearly as trivial. The
only observation to make is that the �rst condition for Case (2) requires
sort(cons(x; y)) � sort(y), which itself requires an application of Case (2)
where the lexicographic part requires the extraction and comparison of
cons(x; y) with y. Rules 3 and 5 are also straightforward.
Rule 7 meets the �rst conditions for Case (2), but is equal for the lexi-

cographical part with respect to the �rst three component orderings. The
addition of a fourth component breaks the tie by extracting the third sub-
term for choose (the fourth subterm would also have worked).
Therefore, by the general path ordering, this system of rules terminates.

5. Orthogonal Systems

Consider a recursive de�nition like

f(x) = if x > 0 then f(f(x� 1)) + 1 else 0 :

By a straightforward use of structural induction, one can prove that the
least �xpoint (over the natural numbers) is the always-de�ned identity func-
tion. This de�nition translates into the rewrite system:

fsx ! sffpsx
f0 ! 0
psx ! x :

(6)

It would be nice to be able to mimic the proof for the recursive function
de�nition in the rewriting context, but several issues arise:

1. In the functional case, one can show that call-by-value terminates,
which implies that all �xpoint computation rules also terminate. We
will see under what conditions the same holds for rewriting.

2. For rewriting in general, one must consider the possibility that the x
to which the de�nition of f(x) is applied is itself a term containing
occurrences of the de�ned function f (or of mutually-recursive de�ned
functions), something usually ignored in the (su�ciently complete)
functional case.

3. One cannot use a syntactic simpli�cation ordering like the simple
path ordering [30], since the �rst rule is embedding. In fact, we must
combine termination with the semantics (f(x) = x), as one must for
the functional proof.

First a few de�nitions: A non-overlapping system is one where no left-
hand side of a rule uni�es with any non-variable subterm of the left-hand

18

side of another rule or with a non-variable proper subterm of itself, with
variables in the two rules renamed apart. A left-linear system has no re-
peated variables on the left-hand side of a rule. Similarly, a right-linear
system has no repeated variables on the right-hand side of a rule. An or-
thogonal system is non-overlapping and left-linear. An overlaying system
is one whose only overlaps are at the topmost position, that is, no left-hand
side uni�es with a non-variable proper subterm of any left-hand side.
As an example of an orthogonal system, consider:

fsx ! sfpsx
f0 ! 0
psx ! x :

(7)

The general path ordering works with component orders �0 and �1, where
�0 is a precedence with f >0 s; p, and �1 is a natural interpretation with
f� = �x:x, p� = �x:x� 1, s� = �x:x+ 1, and 0� = �x:0.
The following is overlaying and locally conuent:

x� 0 ! 0
x� sy ! (x� y) + x
x+ 0 ! x
0 + x ! x
x+ sy ! s(x+ y)
sx + y ! s(x+ y) ;

(8)

Proposition 1 (Gramlich [14]). A locally conuent overlaying system is
terminating if, and only if, innermost rewriting always leads to a normal
form.

A locally conuent system is one for which u! s; t implies s; t!� v, for
some v, where !� is the reexive transitive closure of the rewrite relation.
An innermost derivation is one in which the redex chosen at every rewrite

step contains no rewritable proper subterm. In particular, orthogonal sys-
tems are locally conuent and have no (non-trivial) overlays; the proposi-
tion for this case was shown by O'Donnell [29]. Geupel [13] showed that
left-linearity is unnecessary, that is, a non-overlapping system is terminat-
ing if, and only if, innermost rewriting always leads to a normal form.
We give an alternate proof to the one in [14]. (See also Middeldorp [27].)

It is similar in style to Geupel's proof [13] that forward closures su�ce for
showing termination of non-overlapping rewrite systems.

Proof. We say that a term t is terminating (and write t 2 Tf) if all
derivations from t are �nite; t is non-terminating (t 2 T1) if some derivation
from t is in�nite; and t is on the frontier (t 2 FR) if t is non-terminating,

19

but every proper subterm of t is terminating. If a term has no frontier
subterms, then it must be terminating. Conversely, if a term has a frontier
subterm, it is non-terminating.
For a locally conuent rewrite system, any terminating term t has a

unique normal form t̂ by Newman's Lemma [28]. The inner normalization
function N for a locally conuent rewrite system is de�ned as follows:

N(t) =

�
f(N(t1); : : : ; N(tn)) if t = f(t1; : : : ; tn) 2 T1
t̂ if t 2 Tf .

Clearly, t!� N(t).
If the rewrite system is non-terminating, we can construct an in�nite

derivation as follows: Let t1 = s1 be a frontier term. It initiates an in�nite
derivation of the form

t1 = s1 !
�
below top s

0
1 !at top t2 ! � � � ;

where all the steps in s1 ! : : : ! s01 are below the top position and t2
contains a frontier subterm s2 at some position p2. Continuing in this way
we get the in�nite derivation

t1 !
+ t2 !

+ t3 !
+ � � �

where ti = u2[u3[� � �ui[si]pi � � �]p3]p2, each si is a frontier subterm of ui, and

si !
�
below top s

0
i !at top ui+1[si+1]qi+1 ;

where pi+1 = pi � qi+1. (This is a constricting derivation �a la Plaisted [32],
making the proof a little simpler.)
Notice that each redex in the in�nite derivation is either terminating

(those below pi in si) or on the frontier (at pi in si). Let us consider these
cases separately.

� The redex is a terminating subterm: Since each of the terms in
si !� s0i is on an in�nite path, the position of the frontier is una�ected
and hence by local conuence N(si) = N(s0i). Since both si and s

0
i are

nonterminating, by the de�nition of N we have N(ti[si]) = N(ti[s
0
i]).

� The redex is a frontier subterm: In this case we have
s0i ! ui+1[si+1]qi+1 with some rule g(c1; : : : ; cn) ! r and substitu-
tion �. Since s0i is on the frontier, each of its subterms must be
terminating and therefore each of the terms in the image of � is ter-
minating as well. Since the rewrite system is overlaying, we know
that each of the contexts c1; : : : ; cn is in normal form, so the rewrites
below pi are all within the terminating terms introduced by �. In

20

other words, N(si) = g(c1; : : : ; cn)b�, where b� is � with each of the
terms in its image rewritten to normal form. By application of the
same rule N(si)! rb�.
Consider ui+1[si+1] = r�. Since the terms in the image of � are ter-
minating, by the de�nition of N we have N(r�) = N(rb�). (By def-
inition, we know that rb� !� N(rb�).) Since both si and ui+1[si+1] are
frontier terms (in ti and ti+1, respectively), we have
N(ti[si])!

+ N(ti+1[si+1]).

Thus from the in�nite derivation t1 !+ t2 !+ t3 !+ � � � we can con-
struct an in�nite derivation N(t1) !

+ N(t2) !
+ N(t3) !

+ � � �. Each of
the rewrite steps corresponding to a frontier redex in the original deriva-
tion will be innermost after the application of N . The remaining steps are
all under the position of the immediately preceding frontier step and are
applied to terminating subterms. By local conuence, we may rearrange
these rewrites to be innermost as well. Thus, from any in�nite derivation
we can �nd some innermost in�nite derivation.

Notice that given any non-terminating term v, we can use the above con-
struction to obtain the derivation v[t1]!+ v[N(t1)]!+ v[N(t2)]!+ � � �
and so each term is terminating if and only if it is innermost terminating.
As an example of the use of Proposition 1, consider System 8. We need

to show that, under the assumption that variables are bound to normal
forms, each rule leads to a normal form. Consider the second rule. If x and
y are in normal form, then after applying the rule the innermost redex is the
newly produced multiplication. But we can show that this will terminate
since its second argument is smaller. Addition can be considered separately
from multiplication, and it too terminates regardless of changes in the �rst
summand. Therefore, every innermost derivation terminates, and hence
the system terminates.
We turn now to the question of when termination of ground constructor

instances of left-hand sides su�ces for establishing termination in all cases.

De�nition 6. The forward closures of a given rewrite system are a set of
derivations inductively de�ned as follows:

� Every rule l ! r is a forward closure.

� If c ! � � � ! d is a forward closure and l ! r is a rule such that
d = u[s] for nonvariable s and s� = l� for most general uni�er �,
then c� ! � � � ! d�[l�]! d�[r�] is also a forward closure.

The idea, �rst suggested by Lankford and Musser [20], is to restrict appli-
cation of rules to that part of a term created by previous rewrites. We can

21

de�ne innermost (outermost) forward closures as those closures which are
innermost (outermost) derivations. More generally, arbitrary redex choice
strategies may be captured in an appropriate forward closure.
For example, the forward closures of System 7 are

fsnx !+ snfpsx n > 0
fsn0 !+ sn0 n � 0
fsnx !+ snfx n > 0
psx ! x :

In fact, since there is only one possible redex in every forward closure, these
are the innermost and outermost forward closures as well.
For an example where the innermost and outermost forward closures are

not identical, consider the rewrite system:

fsx ! sfpsfx
f0 ! 0
psx ! x :

(9)

The forward closure

fssx ! sfpsfsx ! sffsx! sfpsfx

is outermost, but not innermost. The forward closure

fssx! sfpsfsx ! sfpssfpsfx

is innermost, but not outermost.

Proposition 2 (Dershowitz [5]). A right-linear rewrite system is termi-
nating if, and only if, there are no in�nite forward closures.

In particular, forward closures su�ce for string-rewriting systems.
Thus, for a system like

fsx ! ssfpsx
f0 ! 0
psx ! x ;

(10)

we can restrict our attention to forward closures. (This is not exactly a
string rewriting system since the second rule applies only at the end of a
string.) Since f 's won't nest, termination can be shown by comparing the
argument on the left, sx, with the one on the right, psx, using a natural
semantic comparison.

Proposition 3 (Guepel [13]). A non-overlapping rewrite system is termi-
nating if, and only if, there are no in�nite forward closures.

22

This extends the result in [5] for orthogonal systems. In general, though, a
rewrite system need not terminate even if all its forward closures do [5].
Consider the following system for symbolic di�erentiation with respect

to t:

D t ! 1
D z ! 0 z does not contain t

D (x+ y) ! D x + D y
D (x � y) ! y �D x + x �D y
D (x� y) ! D x � D y
D (�x) ! �D x
D (x=y) ! D x=y � x �D y=y2

D (ln x) ! D x=x
D (xy) ! y � xy�1 �D x + xy � (ln x) �D y :

(11)

It is orthogonal, so the above method applies. Since D's are not nested on
the right, forward closures cannot have nested D's. Since the arguments to
D on the left are always longer than those on the right, all forward closures
must lead to terminating derivations Hence, regardless of the rewriting
strategy and initial term, rewriting terminates.

Theorem 5. A rewrite system has an in�nite innermost derivation if, and
only if, it has an in�nite innermost forward closure.

Proof. Consider a term t which has an in�nite innermost derivation. It
must have a subterm tjp which has an in�nite innermost derivation such
that the top position is eventually rewritten:

tjp = s0 ! s1 ! � � � ! si !top si+1 ! � � � :

But for the top of si to be rewritten all of its immediate subterms must
be in normal form. Therefore, the derivation from si is an instance of an
innermost forward closure.

Theorem 6. A locally-conuent overlaying rewrite system is terminating
if, and only if, it has no in�nite innermost forward closure.

In particular, non-overlapping, and hence orthogonal, systems satisfy the
prerequisites for application of this termination test; one need only prove
termination of such innermost derivations.

Proof. From Proposition 1 we know that if the rewrite system is non-
terminating it will have an innermost non-terminating derivation. But
by Theorem 5 this implies the existence of an in�nite innermost forward
closure.

23

This method applies to most of the previous examples. Since we need
only consider innermost derivations, we can assume that problematic ex-
pressions like psx on the right of System 2 rewrite immediately to x (and
that the x is in normal form). Since we need only consider forward clo-
sures, we can assume x contains no function symbols other than s and 0,
without having to show that fact is su�ciently complete (which it would
not be were the rule fact(0)! s0 omitted). By \su�ciently complete", we
mean that every ground term containing the symbol fact and constructors
reduces to a term containing only constructors.
For System 6, we can compare the multiset of right-hand side arguments

ffpsx; psxg of the recursive function symbols with that of left-hand side,
fsxg. Semantics are necessary for this comparison. If we let psx = x and
fx = x (just as we would be using �0 with a natural path ordering), we
have fsxg greater (in the multiset ordering) than fx; xg. But one must
ensure that the semantics are consistent with the rules (which is analo-
gous to showing that f(x) = x is a �xpoint of the de�nition). This can
be done using standard rewriting techniques (\proof by consistency"; see
Bachmair and Dershowitz [1]). Indeed, adding fx! x to System 6 yields
a terminating conuent overlay system.
It is instructive to compare the above examples with the following non-

terminating rewrite system:

fsx ! ssffpsx
f0 ! 0
psx ! x :

(12)

It is the rewriting analogue of the recursively-de�ned function

f(x) = if x > 0 then f(f(x� 1)) + 2 else 0 ;

which does not terminate for 2. Indeed, f(x) = x would be inconsistent
with the rules (allowing one to prove s0 = ss0).

Proposition 4. If a left-linear rewrite system is constructor-based, then all
of its forward closures begin with constructor-based instances of left-hand
sides of rules.

A term is constructor-based if all of its proper subterms have only free
constructors and variables. A rewrite system is constructor-based if its
left-hand sides are constructor-based, and a forward closure is constructor-
based if its initial term is constructor-based.

Proof. Since forward closures are only extended via substitution, a trivial
induction shows that every forward closure's initial term is an instance of
the left-hand side of some rule.

24

Consider the inductive de�nition of forward closures. For the base case,
each rule is a forward closure which, trivially, is constructor-based. As-
sume that c[~x] ! � � � ! d[~x] is a constructor-based forward closure. It is
extended by applying the substitution �, found by unifying the left-hand
side of a rule, f(k1[~y]; : : : ; kn[~y]), with some subterm of d. Suppose that
the extension is not constructor based. This can only happen if the sub-
stitution, �, maps some xi 2 ~x to a term with a function symbol in it.
We unify f(c1[~x]; : : : ; cn[~x]) with f(k1[~y]; : : : ; kn[~y]). Since the rule itself is
constructor-based, the only source of a function symbol is one of the con-
texts, ci, from d. But these can only unify with variables, ~y, from the rule.
Since the rules are left-linear, each occurrence is distinct and therefore, the
only mappings in � which have function symbols are for variables in ~y, not
~x. This is a contradiction, and the extension is constructor based.

As a counter-example illustrating the need for left-linearity, consider the
rewrite system:

f(x; x) ! f(ga; x)
gb ! c :

(13)

It is constructor-based, but the forward closure f(ga; ga)! � � � ! f(ga; ga)
is not.
A left-linear, locally conuent, constructor-based rewrite system is over-

laying, and hence, by Theorem 6, is terminating if and only if its innermost
forward closures are terminating. But by Proposition 4, all its forward
closures begin with constructor-based instances of left-hand sides. Thus,
termination proofs need not consider initial terms containing nested de�ned
function symbols (even when the symbol is not completely de�ned). That
makes proving termination of such systems no more di�cult than proving
termination of ordinary recursive functions: the instances of rule variables
can be presumed to be in normal form and the context can be ignored.

6. Non-erasing Systems

We focus now on non-erasing rewrite systems. Recall that a system is
non-erasing if any variable on the left-hand side of a rule is also on the
right-hand side.

Proposition 5 (O'Donnell [29]). A non-erasing orthogonal system is ter-
minating if, and only if, it is normalizing (every term has a normal form).

Therefore, the �rst rule of System 7 (which has a self-embedding) may
be immediately followed by an application of the last rule, e�ectively re-
placing the former with fsx ! sfx. Now termination can be shown with

25

a standard recursive path ordering with precedence f >0 s, demonstrating
that the original system is normalizing, and, hence, terminating.
We can improve upon the previous proposition.

Lemma 11. If a term has an in�nite derivation in a non-erasing non-
overlapping system, then all derivations from that term are in�nite.

Note that both non-overlapping string systems and non-erasing orthog-
onal rewrite system are special cases covered by this lemma.

Proof. We use the inner normalization function N . From the proof of
Proposition 1, we know that if t is a frontier term, then N(t) is also non-
terminating. As a consequence, for an arbitrary non-terminating term t, it
must be that N(t) is non-terminating as well.
Consider an arbitrary non-terminating term t and an arbitrary rewrite

step applied to that term at redex s. The rewrite must occur in one of the
following positions:

� The redex s = l� is a terminating term. But t[l�] ! t[r�] !� N(t)
by local conuence and since N(t) is non-terminating, t[r�] is as well.

� The redex is a frontier term. But we know that there is exactly one
rule, l ! r, applicable at that redex. From our proof of Proposition
1, we know that the rule will still be applicable to N(s). In addition,
N(s[r�]) is still non-terminating. Suppose that there was some other
rule, l0 ! r0, which was applicable, but led to a terminating term.
This rule would also be applicable to N(s). But since N(s) is an
instance of the right-hand sides of both rules they overlap, which
is a contradiction. Therefore we know that t[s[l�]] ! t[s[r�]] !
N(t[s[r�]]) and that N(t[s[r�]]) is non-terminating.

� The redex is non-terminating, but is not a frontier term. We know
that there is some subterm sjp which is the frontier. Suppose that
the rule, l ! r has the top symbol of sjp as part of its context c[�].
Consider applying N to the entire term. The subterms of the context
c[�] are terminating, so they must be preserved; the top symbol of c[�]
heads the subterm rjp and won't be rewritten, either. Since N maps
terminating terms to their unique normal forms, repeated variables
will observe the same rewrite and the applicability of the rule is un-
a�ected by N . But we know that there is some other rule, l0 ! r0,
which is applicable at the top of N(sjp). But that means there is an
instance to which both rules apply and overlap. Therefore, the rule
may only bind sjp by a variable. Since the system is non-erasing, the
frontier term sjp must also be in the result of the rewrite, t[r�], which
consequently must also be non-terminating.

26

Since there is no rule application which can lead to a term that is termi-
nating, every derivation from a non-terminating term must be in�nite.

The following non-overlapping rewrite system shows that the non-erasing
property is necessary:

gx ! a
b ! gb:

(14)

Clearly, the term b has both in�nite and terminating derivations.
To see that this result can not be extended to non-erasing, locally-

conuent overlaying systems consider:

a ! a
a ! b:

(15)

Unfortunately, the term a has both in�nite and terminating derivations.
The following generalizes Proposition 5.

Theorem 7. A non-erasing non-overlapping system is terminating if, and
only if, it is normalizing.

This is a corollary of Lemma 11. Gramlich [15] gives an independent proof
of this.

Theorem 8. A non-erasing non-overlapping system is terminating if, and
only if, no right-hand side of an arbitrary strategy basic forward closure
initiates an in�nite derivation.

A basic forward closure l� ! r� ! � � � is one for which the substitution �,
used in the �rst step of the closure, is irreducible.
is one where if t is the initial term and l ! r is the initial rule, then

t = l� with an irreducible substitution �.

Proof. Suppose the system has an in�nite derivation. Then we know from
Theorem 6 that there is a innermost forward closure leading to an in�nite
derivation. But the left-hand side of the in�nite forward closure is a term
which has an in�nite derivation, and hence all derivations from it must be
in�nite as well (by Lemma 11). Furthermore, all derivations from it are
instances of basic forward closures. Therefore, for an arbitrary strategy
there is a corresponding in�nite basic forward closure of the appropriate
type.

As an example, consider the following system:

fsx ! psffx
f0 ! 0
psx ! x :

(16)

27

Its outermost forward closures are:

fsnx !+ fn�1psffx n > i
fsnx !+ fn+1x n > i
fsn0 !+ fm0 n � 0; n � m
psx ! x :

For a forward closure which is an instance of fsnx!+ fn�1psffx; we only
need to consider the extension with the rule psx! x; since any other choice
would not lead to an outermost forward closure. Veri�cation of termination
is easy now. Terms of the form fn�1psffx derive in one step fn+1x which
is in normal form. Terms of the form fm0 derive 0 in m steps. Since no
right-hand side admits a non-terminating rewrite sequence, the system is
terminating.
System 6 can be shown terminating via similar reasoning (though the

expressions for the forward closures are more complicated).
Zantema's Problem [37] is to prove termination of the following one-rule

string-rewriting system:
1100! 000111; (17)

corresponding to the term-rewriting rule 1100x ! 000111x. (Theorem 7
applies as well, since string rewriting systems are non-erasing and this rule
is non-overlapping.)
First note that for any term of the form �00�, if �00 is a normal form

then any term derived from �00� must have the form �00. Consider the
right-hand side of the rule. It has the above form with su�x � = 111.
There are two ways to construct a new outermost forward closure from
111:

�0011100! �001000111 = �000111

and
�00111100! �0011000111:

Since there is a redex (underlined) in the right hand side of the second
forward closure, any outermost forward closure extending it must rewrite
the redex:

�00111100! �000001110111 = �0001110111:

This gives us a new possibility � = 1110111, which can be used to construct
a new outermost forward closure as:

�00111011100! �0011101000111 = �000111

and
�001110111100! �00111011000111:

28

As before we need to reduce the right hand side for any outermost forward
closure:

�001110111100 ! �0011100001110111
! �001000111001110111
! �00100010001111110111 = �0001111110111 :

The third possibility is � = 1111110111, which can be used to construct a
new outermost forward closure as:

�00111111011100! �0011111101000111 = �000111

and

�001111110111100! �00111111011000111 :

The second of these has a redex which must be rewritten:

�001111110111100 ! �0011111100001110111
! �001111000111001110111
! �00110001110111001110111
! �0000011101110111001110111
! �000001110111010001111110111
= �0001111110111 :

For termination, it must be the case that no right-hand side of an out-
ermost forward closure initiates a non-terminating derivation. Each of the
right-hand sides of the form �00111, �001110111, and �001111110111 are
already in normal form. Consider the right-hand side �00111011000111. It
has only one possible derivation, leading to the normal form �001111110111.
The right-hand side �0011111100001110111 is a little more complicated.
The next term in the sequence is �001111000111001110111, which has two
possible rewrites. But notice that each of the succeeding terms in the
outermost derivation preserve the inner rewrite. Therefore they can be
performed independently and �0001111110111 is the �nal form of all pos-
sible rewrites. None of the right-hand sides initiates an in�nite rewrite, so
the system is terminating.

Note that all derivations of a non-overlapping string-rewriting system
have the same length. Hence, we have shown (as Zantema conjectured)
that 2n is an upper-bound on the length of any derivation from a string
of size n (in worst case six steps are needed to decrease the size of the
su�x � by three). Other solutions to this problem are due to Geser [11]
and Bittar [2]. See also McNaughton [26] who considers termination of
semi-Thue systems such as this example.

29

7. Conclusion

The general path ordering we have de�ned provides a powerful general
purpose tool for demonstrating termination of rewrite systems. It can be
applied in situations in which the more familiar simpli�cation orderings can-
not, as when the rewrite system is self-embedding. It encompasses virtually
all popular methods, including polynomial (and other) interpretations, the
Knuth-Bendix ordering and its extensions, and the recursive path order-
ings and its variants. Geser [12] has suggested a weakening of the subterm
conditions, thereby strengthening the general path ordering.

Several examples, including 1, were mechanically veri�ed by our general
path ordering termination code (Gpotc). The implementation supports
termination functions for precedence, term extraction (given, minimum,
and maximum), and homomorphisms.y

Interpretations involving addition, multiplication, negation, and expo-
nentiation are expressible. Currently, the burden of proving that functions
are either value-preserving or monotonic is placed on the user. As is usual
for such functions, one often ends up needing to know if a given function
is positive over some range. When the functions are rational polynomials,
this is decidable, but time consuming. The code does not attempt a full
solution, but merely applies some quick and dirty heuristics, such as testing
the function at endpoints and checking coe�cients of polynomials. In cases
where the code cannot make a determination, it will query the user for an
authoritative answer. The part of the code that does this testing could be
upgraded to provide heuristics such as those described in Lankford [19],
Ben Cherifa and Lescanne [4], or Steinbach and Zehnter [35].

Forward closures provide a more specialized method for showing termi-
nation, applicable to locally-conuent overlaying or right-linear systems.
Special cases of interest are orthogonal and string rewrite systems which
are terminating whenever their forward closures are. In addition, when the
rewrite system is non-erasing (as for string systems) the set of forward clo-
sures can be restricted to just the innermost forward closures, easing proof
of termination. Furthermore, if the system is non-overlapping, any rewrite
strategy will su�ce to restrict the set of forward closures.

Work is currently under way on an implementation of forward closures.

Both methods can often lead to more natural proofs, using arguments
similar to those used for recursive de�nitions.

y
Gpotc is implemented in Common Lisp on a Macintosh. No special features of

Macintosh Common Lisp were used, so the code should be capable of running under any
Common Lisp with just a few minor changes. Those interested in obtaining a copy of
Gpotc should send electronic mail to hoot@cs.uiuc.edu.

30

References

[1] Leo Bachmair and Nachum Dershowitz. Equational inference, canonical
proofs, and proof orderings. J. of the Association for Computing Machin-
ery, 41(2):236{276, March 1994.

[2] Elias Tahhan Bittar. Non erasing, right linear, orthogonal term rewrite sys-
tems application to zantema's problem. Technical Report RR 2202, INRIA,
1993.

[3] Robert M. Burstall. Proving properties of programs by structural induction.
Computing J., 12(1):41{48, February 1969.

[4] Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting systems
by polynomial interpretations and its implementation. Science of Computer
Programming, 9(2):137{159, October 1987.

[5] Nachum Dershowitz. Termination of linear rewriting systems. In Proceed-
ings of the Eighth International Colloquium on Automata, Languages and
Programming (Acre, Israel), volume 115 of Lecture Notes in Computer Sci-
ence, pages 448{458, Berlin, July 1981. European Association of Theoretical
Computer Science, Springer-Verlag.

[6] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279{301, March 1982.

[7] Nachum Dershowitz. Termination of rewriting. J. Symbolic Computation,
3(1&2):69{115, February/April 1987. Corrigendum: 4, 3 (December 1987),
409{410; reprinted in Rewriting Techniques and Applications, J.-P. Jouan-
naud, ed., pp. 69|115, Academic Press, 1987.

[8] Nachum Dershowitz and Charles Hoot. Topics in termination. In C. Kirch-
ner, editor, Proceedings of the Fifth International Conference on Rewriting
Techniques and Applications (Montreal, Canada), Lecture Notes in Computer
Science, Berlin, June 1993. Springer-Verlag.

[9] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B: For-
mal Methods and Semantics, chapter 6, pages 243{320. North-Holland, Am-
sterdam, 1990.

[10] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465{476, August 1979.

[11] Alfons Geser. A solution to zantema's problem. Technical Report MIP-
9314, Universit�at Passau, Passau, Germany, December 1993.

[12] Alfons Geser. An improved general path order. Technical Report MIP-9407,
Universit�at Passau, Passau, Germany, June 1994.

[13] Oliver Geupel. Overlap closures and termination of term rewriting systems.
Report MIP-8922, Universit�at Passau, Passau, West Germany, July 1989.

[14] Bernhard Gramlich. Relating innermost, weak, uniform and modular termi-
nation of term rewriting systems. In A. Voronkov, editor, Proceedings of the
Conference on Logic Programming and Automated Reasoning (St. Petersburg,
Russia), volume 624 of Lecture Notes in Arti�cial Intelligence, pages 285{296,
Berlin, July 1992. Springer-Verlag.

[15] Bernhard Gramlich, personal communication.
[16] Sam Kamin and Jean-Jacques L�evy. Two generalizations of the recursive

path ordering. Unpublished note, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL, February 1980.

31

[17] Jan Willem Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, chapter 1, pages 1{117. Oxford University Press, Oxford, 1992.

[18] Donald E. Knuth and P. B. Bendix. Simple word problems in universal alge-
bras. In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263{297. Pergamon Press, Oxford, U. K., 1970. Reprinted in Automation of
Reasoning 2, Springer-Verlag, Berlin, pp. 342{376 (1983).

[19] Dallas S. Lankford. On proving term rewriting systems are Noetherian.
Memo MTP-3, Mathematics Department, Louisiana Tech. University, Rus-
ton, LA, May 1979. Revised October 1979.

[20] Dallas S. Lankford and David R. Musser. A �nite termination criterion.
May 1978.

[21] Pierre Lescanne. On the recursive decomposition ordering with lexicograph-
ical status and other related orderings. J. Automated Reasoning, 6:39{49,
1990.

[22] R. Lipton and L. Snyder. On the halting of tree replacement systems. In
Proceedings of the Conference on Theoretical Computer Science, pages 43{46,
Waterloo, Canada, August 1977.

[23] Zohar Manna. Mathematical Theory of Computation. McGraw-Hill, New
York, 1974.

[24] Zohar Manna and Steven Ness. On the termination of Markov algorithms.
In Proceedings of the Third Hawaii International Conference on System Sci-
ence, pages 789{792, Honolulu, HI, January 1970.

[25] Ursula Martin. A geometrical approach to multiset orderings. Information
Processing Letters, 67:37{54, May 1989.

[26] Robert McNaughton. The uniform halting problem for one-rule semi-thue
systems. Technical Report 94-18, Rensselaer, Department of Computer Sci-
ence, Rensselaer Polytechnic Institute,Troy, New York 12180-3590, August
1994.

[27] Aart Middeldorp. A simple proof to a result of bernhard gramlich. Unpub-
lished note, February 1994.

[28] M. H. A. Newman. On theories with a combinatorial de�nition of `equiva-
lence'. Annals of Mathematics, 43(2):223{243, 1942.

[29] Michael J. O'Donnell. Computing in systems described by equations, vol-
ume 58 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1977.

[30] David A. Plaisted. Well-founded orderings for proving termination of sys-
tems of rewrite rules. Report R-78-932, Department of Computer Science,
University of Illinois, Urbana, IL, July 1978.

[31] David A. Plaisted. Personal communication, 1979. Department of Com-
puter Science, University of Illinois.

[32] David A. Plaisted. Polynomial time termination and constraint satisfaction
tests. In Claude Kirchner, editor, Proceedings of the Fifth International Con-
ference on Rewriting Techniques and Applications, pages 405{420, Montreal,
Canada, June 1993. Vol. 690 of Lecture Notes in Computer Science, Springer
, Berlin.

[33] David A. Plaisted. Term rewriting systems. In D. M. Gabbay, C. J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence and
Logic Programming, volume 4, chapter 2. Oxford University Press, Oxford,
1993. To appear.

32

[34] Joachim Steinbach. Simpli�cation orderings - history of results. to be sub-
mitted.

[35] Joachim Steinbach and Michael Zehnter. Vade-mecum of polynomial order-
ings. Report SR-90-03, Fachbereich Informatik, Universit�at Kaiserslautern,
Kaiserslautern, West Germany, 1990.

[36] Hans Zantema. Termination of term rewriting by semantic labelling. Tech-
nical Report RUU-CS-92-38, Utecht University, Utrecht, the Netherlands,
December 1992.

[37] Hans Zantema, personal communication.

33

