J. Symbolic Computation (1993) 11, 1-000

Deductive and Inductive Synthesis
of Equational Programs'

NACHUM DERSHOWITZ AND UDAY S. REDDY
Department of Computer Science, University of Illinois at Urbana-Champaign, U.S5.A.

(Received 5 June 1993)

An equational approach to the synthesis of functional and logic program is taken. In this
context, the synthesis task involves finding executable equations such that the given spec-
ification holds in their standard model. Hence, to synthesize such programs, induction is
necessary. We formulate procedures for inductive proof, as well as for program synthesis,
using the framework of “ordered rewriting”. We also propose heuristics for generalizing
from a sequence of equational consequences. These heuristics handle cases where the
deductive process alone is inadequate for coming up with a program.

1. Introduction

In seminal work, Burstall and Darlington (1977) showed how functional programs,
expressed as equations, can be transformed to more efficient ones using equational rea-
soning. Given a specification of a new function to be synthesized, they use the original
program equations forward (“unfolding”) and backward (“folding”) in a controlled fash-
ion and obtain a recursive program for the new function. The method has come to be
called the “fold-unfold” method and forms an important component in reasoning about
functional programs. (See (Bird and Wadler, 1988).) Significant effort has been devoted
to building automated systems based on the methodology (see, for example, (Darlington,
1981; Feather, 1982)), which has been adapted to reasoning about logic programs (Hog-
ger, 1976; Tamaki and Sato, 1984; Deville, 1990). Partial evaluation systems, increasingly
successful in recent times (Bjorner et al, 1988; ACM, 1991), are also based on the
fold-unfold method.

In building reliable general-purpose program synthesis systems, however, several issues
arise:

How does one determine if the transformed programs are correct? (While the
soundness is immediate from the technique, termination and completeness remain
concerns.)

t First author’s research supported in part by the U. S. National Science Foundation under Grants
CCR-90-07195 and CCR-90-24271 and by a Meyerhoff Visiting Professorship at the Weizmann Institute
of Science. The second author’s research was supported in part by U. S. National Science Foundation
grant CCR-87-00988, NASA grant NAG-1-613 and a grant from Motorola Corporation.

0747-7171/90/000000 + 00 $03.00/0 © 1993 Academic Press Limited

2 N. Dershowitz and U. S. Reddy

How does one control the application of equations? (Naive application of equa-
tions leads to large search spaces. The controlled application used by Burstall and
Darlington is sometimes restrictive.)

How does the method generalize to forms of programs (and logics) other than
equational ones (such as conditional equations, Horn clauses or first-order clauses)?

What role does (mathematical) induction play in the synthesis process?

How does the method relate to other methodologies of deductive synthesis, like

(Manna and Waldinger, 1980; Bibel and Hornig, 1984; Smith, 1985)7

In attempting to answer some of these questions, we are led to the framework of term
rewriting, the best known technique of controlled equational reasoning. Term rewriting
was first used in automated reasoning by Knuth and Bendix (1970) for solving word
problems in equational theories. Two fundamental operations underlie the technique:
rewriting and superposition. Rewriting uses a terminating system of oriented equations,
called (rewrite) rules, to rewrite a term to a “normal form”. Superposition uses existing
rewrite rules to deduce a new equation. The combination of the two techniques achieves
extremely high performance in equational reasoning. In recent work, term rewriting tech-
niques have been extended to deal with unoriented equations (Hsiang and Rusinowitch,
1987; Bachmair et al., 1989; Martin and Nipkow, 1990; Peterson, 1990; Bachmair and
Dershowitz, to appear), conditional equations (Bergstra and Klop, 1986; Kaplan, 1987;
Kounalis and Rusinowitch, 1987; Ganzinger, 1991), and first-order reasoning (Hsiang and
Dershowitz, 1983; Hsiang and Rusinowitch, 1991; Zhang and Kapur, 1988; Bronsard and
Reddy, 1991; Nieuwenhuis and Orejas, 1991). See (Huet and Oppen, 1980; Dershowitz,
1989; Dershowitz and Jouannaud, 1990; Klop, 1992) for accessible surveys of this rapidly
developing area.

The contributions of this paper are threefold: First, we enrich the basic equational
reasoning techniques used by Burstall and Darlington with additional structure to obtain
rewrite-based reasoning. Second, we propose (mathematical) induction techniques to
define and ensure the correctness of synthesized programs. Third, we demonstrate how
inductive generalization techniques supplement the basic deductive techniques to achieve
an automated program synthesis system. This paper consolidates and extends our previ-
ous work reported in (Dershowitz, 1982; Dershowitz, 1985b; Reddy, 1989; Reddy, 1990b;
Dershowitz and Pinchover, 1990). In the cited work, we treated rewrite systems; here,
we generalize those techniques to a mix of oriented and unoriented equations, using
the notion of “ordered rewriting”. This makes the method complete for the class of
deductively verifiable programs. The application of ordered rewriting to program synthe-
sis or inductive proofs has also been considered in (Bachmair, 1988; Gramlich, 1989;
Bellegarde, 1991); recent work of Goldammer (1992) is also based on similar ideas.
Franhofer and Furbach (1986) compare rewriting techniques with the plain equational
methods of Burstall and Darlington. In early work, Kapur and Srivas (1985) present
many ideas closely related to those here.

We begin with an overview of program synthesis. It is followed, in Section 3, by a
description of the basic properties of equational programs. Sections 4 and 5, respectively,
deal with deductive and inductive reasoning. Details of the formal methods for synthesis
are given in Section 6. Section 7 describes the heuristic techniques used in conjunction
with the formal ones. We conclude with a brief discussion.

Synthesis of Equational Programs 3

2. Overview

Suppose we wish to synthesize a program for some function f and are given a specifi-
cation S for f, together with an axiomatization E of the problem domain. There are two
ways to think about the program synthesis process: We can try to generate all interesting
logical consequences of S and E in the hope of eventually obtaining some set of equations
which serves as a program for f. Or, we can try to reduce the specification S to simpler
equations, using E, in the hope of eventually obtaining equations simple enough to serve
as a program for f. The former, forward reasoning, approach seems to underlie Burstall
and Darlington (1977), whereas the latter, backward reasoning, approach is the basis of
Manna and Waldinger (1980). Interestingly—in the context of equational reasoning—the
two approaches produce very similar results and one can view the same set of deductions
from both the forward and backward reasoning points of view.

For example, consider the following axiomatization of append and reverse functions
for lists:

append(z,nil) = = (2.1)
append(nil,y) = y (2.2)
append(w - u,y) = w- append(u,y) (2.3)

append (append (x,y),z) = append(x, append(y, z)) (2.4)
reverse(nil) = mnil (2.5)

reverse(w - u) = append(reverse(u), w - nil) (2.6)

Suppose we want a program for the function revap which reverses its first argument and
appends it to the second argument. It is specified by the equation:

revap(z,y) = append(reverse(x),y) (2.7)

To synthesize a program from this specification, we first note that the subterm reverse(xz)
can be simplified using the defining equations (2.5,2.6) of reverse if x is instantiated to nil
and w - u, respectively. It 1s then fairly straightforward to derive the following equations:

revap(nil, y) = append(reverse(nil), y) from (2.7)
= append(nil, y) by (2.5)
=y by (2.2)

revap(w - u,y) = append(reverse(w - u),y) from (2.7)
= append(append (reverse(u),w - nil),y) by (2.6)
= append(reverse(u), append(w - nil,y)) by (2.4)
= append(reverse(u), w - append(nil,y)) by (2.3)
= append(reverse(u), w - y) by (2.2)

= revap(u, w - y) by (2.7)

All the steps use axioms to replace “equals by equals”, except for the last step which uses
the original specification (2.7) for a smaller instance. (Such use of the original specification
is termed “folding” in (Burstall and Darlington, 1977).) The two equations derived above
form a program for revap:

revap(nil,y) = y (2.8)
revap(w - u,y) = revap(u,w-y) ’

which is similar to what one would write in a pattern-directed functional programming
language like ML (Paulson, 1991).

4 N. Dershowitz and U. S. Reddy

The above calculations can be viewed as a forward reasoning process. The two derived
equations are evidently logical consequences of the specification (2.7). However, it is not
entirely clear that the two equations form a correct (terminating and complete) program
for revap. If we design a synthesis procedure based on the forward reasoning approach,
we would have to use some other mechanism to ensure the correctness of the derived
program. Moreover, we would also need some heuristic guidance to navigate through the
space of all logical consequences so that “interesting” consequences are found.

We can also view the above calculations as a backward reasoning process in which
the specification (2.7) acts as the theorem being proved, the program (2.8) consists of
the axioms necessary to prove the theorem, and the synthesis process itself provides
a backward proof of the theorem. Note that all the equational replacement steps are
equivalence-preserving. Thus, they can be viewed as either forward or backward steps.
The initial instantiation step is justified by noting that, to prove (2.7) as an inductive
theorem, 1t s adequate to prove the two instances. The final folding step is justified as
the use of (2.7) as the inductive hypothesis applied to the smaller instance = u, when
proving that the hypothesis holds for the larger instance z = w - u.

There are good reasons to prefer the backward reasoning view to the forward rea-
soning view. For one, it eliminates the need for navigating through all possible logical
consequences in search of the program, giving better control over the search process. For
another, it integrates inductive reasoning with the deductive process, so that the derived
programs are guaranteed to be correct. Therefore, we adopt the backward reasoning view
in the rest of the paper.

The synthesis of the revap function is just part of the more general task of finding an
efficient program for reverse. The program represented by the axioms (2.5-2.6) takes time
quadratic in the length of the list. To find an efficient program, we must eliminate its use
of append. However, unlike the above synthesis, this cannot be achieved by deduction
alone. No amount of replacing equals by equals will eliminate the use of append. To
successfully synthesize a program, we need an “insight” (a “eureka” step, as Burstall and
Darlington termed it). We must recognize that we need an auxiliary function to compute
the quantity append(reverse(u), v), where the extra variable v has been introduced to hold
the partial result of reversal. Having synthesized a program for it (the revap function),
we can use its specification (2.7) to simplify the program of reverse as follows:

reverse(nil) = nil
_ . (2.9)

reverse(w - u) = revap(u,w - nil)

and, thereby, eliminate the use of append.

Can an automatic synthesis procedure find the eureka step? Indeed, a number of
heuristics can be used to postulate auxiliary functions (similar to postulating lemmas
in inductive proofs). For the problem on hand, a simple generalization heuristic (Boyer
and Moore, 1977; Arsac and Kodratoff, 1982) suffices. We first attempt to perform a
derivation starting from the specification

reverse(w -u) = append(reverse(u),w - nil)

in the same manner as that of the revap function above. We notice that the subterm
reverse(u) can be simplified using the defining equations of reverse if w is instantiated

Synthesis of Equational Programs 5

Table 1. Equational axiomatization of propositional calculus

—u = u & false
udv = (uVuv)evwv
uAv = (uVo) &S veu
uVu = u
u Vtrue = true
uwVfalse = wu
u<su = true
u & true = u
(wev)Vw = (vVw)e (vVw)
UuSU = veu
vevew = us (ve w)
uVv = wvVu
(uvv)Vw = uV(vVw)
to nil and w’ - w'. This gives the equations:
reverse(w - nil) = append(reverse(nil), w - nil)
= append(nil, w - nil)
= w-ni
reverse(w - w' - u') = append(append(reverse(uw’), w’ - nil), w - nil)

append (reverse(u’), append(w' - nil, w - nil))
= append(reverse(u'), w - w - nil)

At this point, a successful derivation would be able to apply a folding step. Since we
are unable to do this, we attempt to find a more general specification expression which
might enable a folding step. The expression append (reverse(u), v) generalizes the original
specification expression as well as the current one. (In fact, the least generalization
append(reverse(u), w - v) works as well. This is what our algorithm would find.) This
gives the auxiliary function needed to complete the synthesis.

Many program synthesis tasks involve conditional reasoning in addition to equational
reasoning. Though term rewriting techniques have been extended to conditional equa-
tions, as well as first-order clauses, we do not get into these technical areas in this paper.
Instead, we will use an equational axiomatization of Boolean algebras. Here, “=" denotes
equality of truth values, that is, logical equivalence. All predicate symbols are treated
as function symbols and so are the logical connectives =, A, V, D, and <. Table 1 gives
an equational axiomatization of propositional calculus in this notation (compare (Hsiang
and Dershowitz, 1983)).

Consider the following axiomatization of addition, subtraction, multiplication and
equality of natural numbers in successor notation, wherein the number n is represented

as s"(0):

r+0 = = (2.10)
r+y = y+=z (2.11)
(T+y)+z = a+(y+2) (2.12)
rx0 = 0 (2.13)
rxs(y) = (exy)+= (2.14)

6 N. Dershowitz and U. S. Reddy

r~r = true (2.15)
rRY+z = r—zRYy (2.16)

Here, “a” 1s the equality comparison operator for naturals. Notice that we only specify
equations for the {rue case of as. This 1s because we want to view these equations as logic
programs where the false cases simply “fail”. See (Dershowitz, 1985a) for a discussion of
how logic programs are treated in the equational framework.

Suppose our goal is to produce a program for natural number division specified by

div(z,s(y),q,7) = @EF<yA(zs(y) xq+r) (2.17)

The predicate div(z,s(y), ¢, r), meaning that dividing by y + 1 gives quotient ¢ and
remainder 7, is specified by stating that the remainder is less than the divisor and that
the quotient and remainder are related to the divisor and dividend by the appropriate
equation.

As in the revap example, we instantiate ¢ to 0 and s(z), so as to simplify the subterm
s(y) x ¢ by axioms (2.13-2.14). (The other possibility is to simplify » < y, but this choice
does not lead to a good program.) The following equations are then obtained:

div(z,s(y),0,7r) = r<yAezms(y) x0+r from (2.17)
= r<yAr=x=0+r by (2.13)
= r<yAz=x=r+0 by (2.11)
= r<yAzwmr by (2.10)
div(z,s(y), s(z),r) = r<yrzms(y) xs(z)+r from (2.17)

= r<yre=(s(y) xz+s(y)+r by (2.14)
= r<yArzms(y) xz+(s(y)+r) by (2.12)
= r<yAems(y) xz+(r+s(y)) by (2.11)
= r<yre=(s(y) xz+r)+s(y) by (2.12)

For the first case, we can instantiate r to z to make domain fact (2.15) applicable.
This gives a more compact version, namely:

div(z,s(y),0,2) = x<s(y)
For the second case, we can apply axiom (2.16) with the substitution {# — x, y —
s(y) X z+ 7, z+— s(y)}. This gives:
div(z,s(y),s(z),r) = r<yAz—s(y) ~s(y) xz+r
= div(z —s(y),s(y),z,7)

where the last step is a folding step using the specification. The two equations

div(z,s(y),0,2) = =z <s(y)
div(z,s(y), s(z),r) = div(z—s(y),s(y),zr)

can be viewed as a logic program for division.

3. Equational Programs

First, we briefly explain our notation. By an alphabet of function symbols X, we mean
a set of function symbols together with an arity associated with each symbol. The set of
variable-free terms over ¥ (respecting arities) is denoted G and they are called ground

Synthesis of Equational Programs 7

terms; the set of terms over ¥ allowing variables (from some set X) is denoted 7' and
they are called free terms, or simply terms.

An equation is a pair of terms written as r = s. Given a set of equations F and terms
tand t', F =t =1 if and only if there are terms tg, 1, ..., t, (n > 0) such that

t=ty—pti —g...—opt, =t

—27

where «—p is the “replacing equals by equals” relation of E (“=” is used to denote
syntactic identity). A sequence such as the one exhibited is called an “equational proof”.
The standard relational notations HE and <% are used to denote the transitive and
reflexive-transitive closures, respectively, of <~ 5. Thus, F =t =t iff t <% ¢'.

Equational programs work by replacing equals by equals. However, this cannot be done
in an arbitrary fashion; a program must make “progress” in evaluating terms. We specify
the notion of progress via a well-founded order > with certain extra properties stated in
Section 3.1. Let > be such an order. We say that ¢ rewrites to s ift «—~g s and ¢t > s.
This fact is denoted by writing ¢ —g s but we often omit “>” and write { —g s.
The idea is that an equation is used for rewriting only in one direction, the direction
that achieves reduction by the order . Since > 1s well-founded, every rewrite sequence
to —g t1 —p --- is finite and results in an unrewritable term, called a normal form
(which need not be unique). Equational programs are “executed” by rewriting ground
terms to normal forms. Since this form of rewriting always reduces the term it is applied
to in the well-founded order >, execution is always terminating.

An equation ¢ = s is said to have a rewrite proof if there are terms tg, 1, ..., t; and
So, 81, . ..Sm such that
t=tyg—pti—g .. mplpn =8, <—F ...<—F Sl “<ES)=S5

where «—p 1s the relational inverse of —pg. Thus, a rewrite proof 1s an equational proof
that rewrites both ¢ and s to some common normal form. Again, —>E and —73 will be
used respectively to denote the transitive and reflexive-transitive closures of —p.

If » = s is an equation in F such that r > s, no matter what terms are substituted
for the variables of the equation, we may, alternatively, write the equation as r — s.
The idea is that such an equation is always used in one direction: to rewrite instances
of r to the corresponding instances of s. The equation r — s is often called a rewrite
rule to emphasize this fact, but note that all our equations are rewrite rules in a more
general sense: they are always used for rewriting along a reducing direction although the
direction may vary from instance to instance. Conventional term rewriting theory (Knuth
and Bendix, 1970; Huet and Oppen, 1980) deals with rewrite systems, sets of equations all
oriented in a particular direction. The idea that unoriented equations can also be used for
rewriting, provided they are used along a reducing direction was developed in (Hsiang
and Rusinowitch, 1987; Bachmair et al, 1989). This form of rewriting is now called
ordered rewriting. The results of this paper generalize our previous results (Dershowitz,
1982; Dershowitz, 1985a; Dershowitz, 1985b; Reddy, 1989; Reddy, 1990b; Dershowitz and
Pinchover, 1990) to the framework of ordered rewriting.

The mixing of programs and program synthesis with termination issues requires some
explanation. Demanding that the rewrite relation be always included in a well-founded
order has two consequences: First, it ensures that programs terminate along all evalu-
ation paths. While this i1s a reasonable requirement for most common programs, some
applications also require programs that do not terminate, but make progress indefinitely.
Programs in lazy functional languages (Bird and Wadler, 1988) often exhibit this prop-

8 N. Dershowitz and U. S. Reddy

erty. We envisage that the techniques of this paper will eventually be extended to such
programs by suitable relaxation of the termination requirements, or an extension of the
operational semantics of rewriting.

A second consequence of the termination of rewrite relations i1s that the automated
reasoning procedures have some heuristic guidance about the direction they should
employ in reducing problems. Without such guidance, the reasoning procedures need
to explore too many possibilities resulting in large search spaces and much redundancy.
It will be seen that the well-founded orders used for the rewrite relations play an essential
role in the problem specification for program synthesis as well as in the synthesis process
itself.

However, it must be noted that the use of ordered rewriting allows us to avoid limita-
tions that have been traditionally caused by termination criteria. First, it allows us to
include in programs equations that are not orientable as rewrite rules. Commutativity
equations such as (2.11) are well-known examples of this. Since such equations are
symmetric, orienting them in either direction results in infinite rewrite sequences and, so,
they cannot be included in conventional programming languages based on rewriting. On
the other hand, ordered rewriting allows us to use such equations in programs and rewrites
terms of the form ¢+ s to s+t whenever t+s > s+t. If we use a > ordering that is total on
ground terms then, for any ground terms ¢ and s, either ¢ 4 s is rewritable to s+t or wice
versa. So, we have rewrite proofs for all such equalities even though the equation itself
is not orientable as a rewrite rule. Secondly, it is often hard (or impossible) to design
well-founded orders that cover all the equations that may be derived in a deduction
procedure. Procedures based on traditional rewriting fai! when they encounter equations
that cannot be oriented as rewrite rules. Our program synthesis procedure avoids this
problem by employing equations and ordered rewriting rather than rewrite rules.

3.1. ORDERINGS

We now state the required properties of the well-founded order. A well-founded order
> on ground terms is called a complete reduction order if (a) it is total on ground terms,
(b) it has the replacement property (s > s’ implies t[s] > t[s]), and (¢) it has the
subterm property (¢ > s whenever s is a proper subterm of ¢). (We use the notation #[]
to denote a “context”, that is, a term with a unique hole. The notation ¢[s] denotes the
term with the hole filled by a term s. When necessary, the position of a hole may be
made precise, as in t[s],; the subterm of ¢ at p is denoted ¢|,.) Such an order must be
well-founded (Dershowitz, 1987). A complete reduction order > is extended to a partial
order = on free terms by defining

t>s <= to > so for all ground substitutions ¢

Note that > inherits the replacement and subterm properties. In addition, it has the
substitution property: ¢ »= s impliestf = sf for all substitutions @. (In practice, it suffices
to approximate this order by using an ordering of free terms that can be extended to a
complete reduction order.)

One complete reduction order of particular interest in program synthesis is the lezico-
graphic path order (Dershowitz, 1987; Kamin and Lévy, 1980). Assume a total order >p
on function symbols, referred to as a “precedence”. Then, the lexicographic path order
> is defined inductively by t = f(¢1,...,tm) > ¢(s1,...,8,) = s iff one of the following
conditions holds:

Synthesis of Equational Programs 9

t; > s forsomei=1,...,m;

f >p ¢ in the precedence order and ¢t > s; forall i = 1,...,n;

f =9 (m =n), {tr,...,tm) is greater than (s1,...,sy) by the (left-to-right)
lexicographic extension of > and, in addition, ¢t > s; foralli =1,... n.

In practice, one also specifies the sequence in which the arguments of a function sym-
bol must be compared lexicographically (so that one obtains flexibility in ordering the
arguments of a function symbol). The extension of this ordering to free terms can be
computed (Comon, 1990), or one can approximate it by using the above definition for
free terms, as well. (One can also work with a partial precedence, since it can be extended
to a complete reduction order.)

We illustrate the path order with examples. Consider the precedence

reverse > append > - > nil

and equations (2.1-2.6). With the corresponding lexicographic path order, every left-hand
side is greater than the corresponding right-hand side. For example, for (2.1), we have

append(x, nil) = »
because # is a subterm of append (x, nil). For equation (2.4),

append (append (x,y), z) »= append(x, append(y, z))

because (append(x,y),z) is greater than (x, append(y,z)) (by lexicographic order and
subterm property), and the left-hand side term is greater than z as well as append(y, z)
(the last of these by another application of the definition of). For equation (2.6),

reverse(w - u) > append(reverse(u), w - nil)

because reverse > append in the precedence order and reverse(w - u) = reverse(u) and
reverse(w - u) = w - nil (reverse > -, reverse > nil and reverse(w - u) = w).

To handle the specification (2.7) of revap, we must extend the precedence order to
include revap. A good heuristic in choosing precedences is that a symbol f should be
greater than all the symbols that may be introduced during the evaluation of f(t1,...,%,).
Since the evaluation of revap(t,u) must not introduce reverse and append, but may
introduce - and nil, we choose the order

reverse > append > revap > - > nil

Since
append(reverse(x),y) = revap(z,y)

in the extended term ordering, the specification (2.7) cannot be used left-to-right in eval-
uating terms of the form revap(t, «). This defines the problem for the program synthesis
procedure: Tt must find simpler equations which can be used to evaluate revap(t, u).

3.2. PROGRAMS

A rewrite relation — g » is said to be confluent if, whenever ¢t —7%, u, there is a rewrite
proof of ¢ = u. It is said to be ground confluent if this property holds for all ground
terms ¢ and u. We also say that B is confluent or ground confluent (with respect to >
) if these properties hold. Confluence implies that all terms have unique normal forms;
ground confluence implies that ground terms have unique normal forms.

10 N. Dershowitz and U. S. Reddy

DEeFINITION 3.1. An equational program s a finite set E of equations, together with a
computable complete reduction order >, such that —g s ground confluent.

The ground confluence requirement means that the results of programs are deterministic.

Ground confluence is not a decidable property (Kapur et al, 1987). On the other
hand, confluence of rewrite rules is decidable and forms a sufficient condition for ground
confluence. So, in practice, we use the following method. We divide equational theories
into parts: azioms and inductive theorems. The axioms serve to define the function
symbols and are used in the evaluation of terms. The inductive theorems form additional
knowledge about the problem domain which may be used in program synthesis. If the set
of axioms is ground confluent, then the full theory with inductive theorems is also ground
confluent. (See Section 5.) Ground confluence of axioms can then be ensured by checking
confluence. Of the equations (2.1-2.6), two (2.1,2.4) are inductive theorems. The others
define the functions append and reverse. By standard results in rewriting, they form a
confluent system (no greater side unifies with a non-variable subterm of a greater side).
Hence, the whole system is ground confluent.

An equational program is said to be complete with respect to a set of ground input
terms ® and a set of ground output terms W if the normal form of every ¢ in @ belongs
to W. The output terms are typically formed of constructor symbols, such as nil and - in
the case of list axioms. Sometimes, we want to model equivalences over constructor terms
in which case only a subset of constructor terms may be included in ¥. For example,
considering the axioms (2.10-2.12) for + in the unary number system, ¥ includes 0, 1
and m + 1 where m € U. All other terms, such as m + 0, 0+ m, m + (n + k) must
be reducible. The set of input terms is often the set of all terms, but occasionally we
want to model partial functions or partial axiomatizations of functions. For example, the
natural number axiom (2.15) only models the true case of comparison. We say that an
axiomatization is fotal if its set of input terms ® includes all terms. Otherwise we call it
partial.

It is not, in general, possible to specify the sets ® and ¥ in a mechanically verifiable
fashion, but (Dershowitz, 1985a) and others give methods for some important cases.

4. Superposition for Deriving Cases

An important component in the informal synthesis procedure outlined in Section 2 is
the instantiation of equations for the various cases of their variables. Two questions to
be answered in the formalization of the procedure are how to find instantiations that
are useful for synthesis, and how to verify that the chosen instantiations are complete.
The informal procedure already gives an indication of the answer to the first question:
we should choose instantiations that make further simplifications possible. For example,
in the synthesis of revap, we chose instantiations that enable simplification by axioms
(2.2-2.3). For the second question, the general method we use is to assume that the initial
axiomatization is complete (in the sense of Sect. 3.2) and, then, use this assumption to
find complete sets of instantiations. These issues are elaborated in the present section.

Consider a specification ¢ = u, with £ and w in normal form, such as:

append(reverse(x),y) = revap(z,y) (4.1)

The program synthesis task is to derive enough program equations so that every ground
instance of the specification is “covered”, that is, every ground instance has an equational

Synthesis of Equational Programs 11

proof. For the sake of argument, assume that we already have the necessary program
equations as a part of the domain theory. Let {6 = uo be a ground instance of the
specification that has some equational proof to «~g ... < g uo. Focus on the first step
of this proof. There must be a domain equation [= r (or » =) such that to contains an
instance of { (say, at position p), and the equational proof has the form

to =tollr], <g tolrr], <% uc (4.2)

There exists a most general proof schema of this form whose first step has the above
structure:

0 =10[l6], —pg tO[rf], = ub (4.3)

where # = mgu(l,¢|,) is the most general unifier of [and the subterm of ¢ at p. The
equation t6[rf], = uf is a new specification equation whose program would be a part
of the overall program. This equation is called a paramodulant of the equations ¢ = u
and [= r, and the operation deriving it is called paramodulation (Robinson and Wos,
1969; Brand, 1975). For example, paramodulating the revap specification at the subterm
reverse(x) with equations (2.5) and (2.6), we can derive the paramodulants:

append(nil,y) = revap(nil,y) (4.4)
append (append (reverse(w),u),y) = revap(w - u,y) ’

While these two equations suffice to derive a program for revap, there are many other
paramodulants. For instance, another paramodulant is obtained using (2.4) right to left:

append(reverse(z), append(y, z)) —(2.4) append(append (reverse(z),y), z)
= revap(x, append(ya Z))

In fact, there are in all 29 paramodulants using the domain theory (2.1-2.6)!

To cut down this search space, we first note that there is no need to paramodulate into
variables (Peterson, 1983). That leaves 5 paramodulants. To cut down further, we use
the ideas of ordered rewriting. Since the domain theory E is ground confluent, requiring
that {0 = uo has an equational proof is equivalent to requiring that it has a rewrite proof
of the form t¢ —% v % uo. This allows us to place the following restrictions on the
proof schema (4.2):

1 to[it], > to[ro],. The first step must be a rewrite step.

2 to > wuo. This results in no loss of generality because > is a well-founded order and
the rewrite proof will eventually reduce to to a term smaller than or equal to uc.

3 o is irreducible. Since —p is terminating, every grounding substitution ¢ has a
normal form ¢’. Thus, to = uo has a rewrite proof if and only if {6’ = uo’ has a
rewrite proof.

Lifting these considerations to the paramodulation proof schema:
t0[l6], —g t8[rd], = wub
we can impose the following restrictions:
1 t0[l8), A t0[rb),, because otherwise to[iT], < to[rr],.

2 t6[10], £ ub, because otherwise to[l7], < uc.
3 p1s a nonvariable position of ¢, because otherwise we would be reducing o.

12 N. Dershowitz and U. S. Reddy

Paramodulants satisfying these restrictions are called critical pairs.

DEFINITION 4.1. A critical pair of equations | = r and t = u (whose variables are
renamed apart) is an equation

0[], = ub

where 6 = mgu(l,t|,) for a nonvariable position p of t, 16 £ t0[r6], and t0 £ uf. The
inference rule of deriving critical pairs is called (ordered) superposition.

The notion of critical pair in (Knuth and Bendix, 1970) is a special case of this where
the two equations participating in the inference are rewrite rules [— r and ¢t — u. In
that case, the conditions t0[{f], £ t8[rf], and t6 £ uf are automatically satisfied.

Applying these ideas to the revap specification, we find that, of the 29 paramodulants,
there are only three critical pairs. These include the two essential critical pairs (4.4) and
another one that comes from an overlap with (2.1):

append (reverse(x), nil) —(3.1) reverse(r) = revap(x,nil)

While this critical pair, reverse(x) = revap(xz,nil), is not necessary for synthesizing a
program for revap, it is still a useful equation. It can serve as the program for reverse
instead of the more elaborate program (2.9).

Though superposition is an essential part of our program synthesis procedure, our
use of it differs from its conventional usage in completion or refutational theorem prov-
ing (Hsiang and Rusinowitch, 1987; Bachmair et al., 1989; Martin and Nipkow, 1990).
Conventionally, superposition is a forward inference mechanism used to deduce equa-
tional consequences of the given theory. In contrast, we use superposition as a backward
inference to reduce a given goal to smaller goals. Another important difference is that,
in the conventional framework, superposition is used symmetrically in its two premises.
That is, given two equations, either one can be chosen as [= r and the the other used
as t = u. In contrast, in our case, ¢ = u is always a specification equation and [= r is
a domain fact. We overlap a domain fact with a subterm of the specification, but not
the other way. Thus, in general, the program synthesis procedure does less work than a
completion procedure.

As noted above, some of the critical pairs of a specification equation are necessary for
deriving a program. We now address the question which subset of the critical pairs, if any,
forms a sufficient set of subgoals. Looking back at the cases (4.4), we can say that these
equations form a sufficient set of subgoals because they are obtained from the specification
(4.1) using the instantiations {# — nél} and {# — w - u}, and these instantiations are
“complete”. The following definition captures this notion of completeness:

DEFINITION 4.2. A set of substitutions © s said to be inductively complete if for every
ground substitution o, there exist f in © and ground substitution T such that xo —7p x0Tt
for all variables x. (If the domain theory is partial, then this must hold for all substitutions
o over input terms.)

For example, using the domain theory (2.1-2.6), the substitutions {z — nil}, and {z —
w - u} form an inductively complete set because all ground substitutions for @ reduce to
an instance of one of them.

Synthesis of Equational Programs 13

Notice that it is adequate to restrict attention to irreducible ¢’s in the above definition,
because other substitutions reduce to irreducible ones. We can then simplify the condition
ro — 207 to xo = zfT.

Using this notion, we can define a rule for reasoning by cases as follows:

t[rl]gl = Ugl . t[rk]ﬁk = u@k
t[s] = u

Cases

if {{; = r;}i CE,0; = mgu(ly,s), t[l;10; £ t[r:i]b;, t[s]f; £ ub; and {6;}; is inductively
complete. That is, given a set of critical pairs of {[s] = u whose overlapping substitutions
form an inductively complete set, we can infer the equation itself. The soundness property
of the inference is as follows:

LEMMA 4.3. Gwen a Cases inference, if all the ground instances of the premises have
rewrite proofs in E, then all the ground instances of the conclusion have rewrite proofs
m E.

The Cases rule considers superposition at a single position of the given equation. It is
also possible to choose any position on either side of the equation for critical pairs, using
ideas from (Bachmair, 1988).

DEFINITION 4.4. A set of equations C' 1s said to be a cover set for an equation t = u
(with respect to E and >) if, for every irreducible ground substitution o, either tc = uo
or there exists an equation v = s (or s =r) in C such that (to = uo) =% (r7 = s7) and

max(to, uo) > max(rr, st) for some substitution .

Here, max(to, uo) is the maximum with respect to the complete reduction order >. The
general rule for Cases uses a cover set of { = u as premises.

= 81 'y = Sk

Cases rom.
where {r; = s;}; is a cover set of t = u. Members of a cover set cannot simply be instances
of the conclusion equation; they should incorporate at least one step of reduction in order
to satisfy the condition max(te, uo) > max(r;, s;7). This defines a notion of “progress”
for the inference.

To formalize this notion, we define a complexity measure for proofs, as in (Bachmair
et al., 1989; Bachmair and Dershowitz, to appear). Consider a ground proof using £ U S
where E is the domain theory and S is some set of equations. We associate with it a
complexity measure in G U {L} ordered by an extension of the reduction order where
t > 1 for all ground terms ¢t in . The complexity of a proof step ¢ «g #' is L and
the complexity of ¢ —g ' is max(¢,¢'). The complexity of a proof is the maximum
complexity of all its proof steps. So, essentially, the complexity of a proof g «— ... — ¢,
1s the maximum term ¢; which participates in an < g step and L if there is no such term.

LEMMA 4.5. Gwen a Cases inference of the above form, for every ground instance to =
uo of the concluston, there is an equational proof using the premises and the equational
system E whose complexity is strictly less than that of to <=y uo.

14 N. Dershowitz and U. S. Reddy

Proor. By induction on max(to,us). If o is a reducible substitution with ¢ —} o',

use the inductive hypothesis for t0/ = uo’. If ¢ is irreducible, by definition of cover set,
there is an equation r; = s; such that (to = uo) —% (r;7 = $;7) and max(to, uo) >
max(r;7, 8;7). So, the equation to = uc has a ground proof of the form

lo —p 7T <=5, SiT < UC

whose complexity, max(r;7, s;7), is less than max(te, uo). U

An important question is how to test whether a given set of critical pairs is a cover set.
Several methods are possible. A set of terms called test set may be computed, such that
every irreducible ground term is an instance of some member of the test set (Plaisted,
1985). To check if a given set of critical pairs is a cover set, it is enough to see if
each combination of terms from the test set is covered in the overlap substitutions.
For instance, for the domain theory (2.1-2.6), {nil,w - u} is a test set. This verifies that
critical pairs (4.4) form a cover set.

Another method is to use a ground reducibility test. An equation ¢ = ¢’ is said to
be ground reducible if, for every ground instance tc = /o, either ¢o is identical to o
or one of them is reducible. In this case, the set of all critical pairs is a cover set. (If
one of them is reducible then the larger one is. Suppose {c is the larger term. If it is
reducible by some domain equation, then to is covered by a critical pair between the
domain equation and ¢ = t’.) The set of all critical pairs is often too large for a cover
set. As we have noted, the critical pair reverse(z) = revap(z, nil) need not be in a cover
set of the revap specification. If extraneous critical pairs are included in a cover set, they
might generate other critical pairs and lead to nontermination. (We present an example of
this situation in Section 6.) A useful optimization has been suggested in (Fribourg, 1989;
Kiichlin, 1989). A term is ground reducible if every ground instance is reducible. Tt suffices
to consider a subterm s of either ¢ or ¢’ that is ground reducible. Then superposition at
the subterm s is enough to obtain a cover set.

Another optimization was suggested in (Kapur et al., 1991): Tt is enough to restrict
attention to irreducible substitutions in the definition of “ground reducible”. Whenever
t = s 1s not ground reducible, it equates some pair of irreducible ground terms. An
“irreducible ground term” test set can be devised to detect this situation. This form of
test set has the property that the equation ¢ = s reduces an irreducible ground term if
and only if it reduces some member of the test set. The advantage of this method is that
the test set is computed only once and reused in each Cases inference. However, this
method still requires all critical pairs to be computed for the cover set.

Other methods for testing ground reducibility may found in (Kounalis and Zhang, 1985;
Jouannaud and Kounalis, 1989; Biindgen and Kiichlin, 1989).

5. Induction

In synthesizing a program from a specification, we must ensure that the derived
program satisfies the specification. That is, the specification must be an inductive theorem
of the derived program. So, inductive reasoning is an integral part of program synthesis.
In this section, we briefly outline our inductive reasoning procedure based on term
rewriting induction. This method was first presented in (Reddy, 1990b) and is based on
the “inductive completion” and “proof by consistency” methods studied in (Musser, 1980;

Synthesis of Equational Programs 15

Huet and Hullot, 1982; Dershowitz, 1982; Dershowitz, 1985a; Kapur and Musser, 1987;
Jouannaud and Kounalis, 1989; Fribourg, 1989; Kiichlin, 1989; Bachmair, 1988).

An equation e is said to be an inductive consequence of an equational system F, written
FE Eing €, if every ground instance eo follows from E. When F is ground confluent (with
respect to >), this is equivalent to requiring that e have a rewrite proof using F. Adding
such an inductive theorem to E does not affect its ground confluence. This is one way to
build ground confluent equational theories.

The proof of E |=;u4 e involves three kinds of steps: we can simplify e using the
equations in E, we can instantiate it using the Cases rule of the previous section, or
we can use e as an inductive hypothesis in proving one or more of its cases. Notice
that, whenever we use the Cases rule, we always reduce the instances ec in complexity.
Since simplification and Cases always reduce the ground instances of the equation the
original equation e can be used for simplification of the cases as if it were an “ordinary”
equation. This method, sometimes referred to as “inductionless induction”, differs from
conventional induction in that one never needs to check that the inductive hypothesis
is used for a smaller instance than the one being proved. The proof method itself takes
care of the condition. Such implicit application of induction may also be found in a
variety of program verification methods such as Hoare logic (especially, the treatment of
recursion (Hoare, 1971)) and fixed point induction (Manna, 1974; Scott, 1976).

We make these ideas precise by the following inference procedure for pairs of equation
sets H and S. We write such a pair as H F 5; S is a set of conjectures to be proved and
H is the set of induction hypotheses which may be assumed in the proof of S. The pair
H F S may be read as the judgment “assuming H as induction hypotheses, S”, but see
Theorem 5.1 for a precise statement. The inference rules of the procedure are as follows:

Aziom HET

Cases HIL{J £623§6L; ¢ if C'is a cover set of e
Delete HT gJ{f: g

Stmplify % if e —purus €
Subsume TES Ufif'[_l@k]g: Tl ifl=rin H
Hypothesize %

The procedure is used by starting with a goal of the form) F Sy and using some inference
rule backwards in each step. If, eventually, a goal of the form H F () is obtained, the initial
theorems in Sy are all proved and H contains a useful representation of the theorems
as well as any lemmas generated in the process. Simplify allows a conjecture e to be
simplified using equations in £, induction hypotheses in H or other conjectures in S.
(“@” denotes disjoint union.) Subsume allows an induction hypothesis to be applied
without a concomitant reduction. Note that, in contrast to Simplify, this form of an
application can be done only once for a conjecture. Hypothesize allows one to postulate

16 N. Dershowitz and U. S. Reddy

new lemmas (eureka steps) which may help the proof the theorem. Such lemmas are
introduced either by heuristics or by manual intervention.

Consider proving the associativity property of append using the rewrite program (2.1-
2.3), and suppose the arguments of append are compared left to right for the lexicographic
path order. We start with the goal:

F {append(append(z,y),z) = append(z, append(y,z))}
Using Cases, we can reduce this to
{append(append(z,y),z) — append(x, append(y,z))}

w-append(y,z) = append(nil, append(y, z)),
append(w - append(u,y),z) = append(w - u, append(y, z))

The first equation simplifies to the identity append(y,z) = append(y, z) and is deleted.
The second one simplifies to

w - append (append(u,y),z) = w - append(u, append(y, z))

Using the inductive hypothesis (by either Simplify or Subsume), this too reduces to an
identity and is deleted. The inductive hypothesis in H i1s now an inductive theorem and
it can be added to the underlying equational theory E as a domain fact.
As another example, assume the following program for revap:
revap(nil,y) — vy
revap(w - w,y) — revap(u,w-y)

We would like to prove that it satisfies the correctness condition:
revap(xz,nil) = reverse(x)

We start with this as the only conjecture in the goal. However, we immediately notice
that we require a more general inductive hypothesis. Hypothesize another conjecture (to
be proved as a lemma):

revap(z,y) = append(reverse(x),y)

(We postpone to Section 7 the issue of how such lemmas may be invented.) Assume
that the function symbols are ordered as revap > reverse > append > - > nil in the
precedence. We can use Cases to reduce the two-equation goal to:

{revap(z,y) — append(reverse(z),y)}

y = append(reverse(nil),y),
revap(u,w-y) = append(reverse(w - u),y),
revap(z,nil) = reverse(x)

The first equation simplifies to identity and is deleted. The second equation simplifies to

revap(u,w-y) = append(append(reverse(u), w - nil), y)
= append(reverse(u), w - y)

The two sides are equal by the inductive hypothesis. Finally, the third equation reduces,
using the inductive hypothesis (which is really an inductive “theorem” at this stage), to

append(reverse(x),nil) = reverse(x)

and this too reduces to identity. The proof is now complete, and we obtain a more general

Synthesis of Equational Programs 17

version of the original equation as a useful rewrite rule to be added to the domain theory
of the program.

To prove the soundness of the induction proof procedure, we need to show that all
ground instances of the equations in .S have proofs using E. The last four inference rules
are all instances of the general rule

Hr s
HES

where S is provable from F'U H U S’ and any proof step s <5 ¢ using S is more complex
than an alternative proof s <% s/ t of the same equation.

THEOREM 5.1. Let H S be a derwvable judgment. If all ground instances ro = so of
equations in H have proofs using E U S of complexity smaller than that of ro —p so,
then all ground instances of S have proofs using E.

Proor. To simplify the argument we introduce some terminology. We say an equation
r = s “has (strictly) bounded S-proofs” if every ground instance ro = so has a proof
using EF'US with complexity (strictly less than) less than or equal to that of ro —,—; so.
(Note that this means, by the replacement property of <, that every ground application
of » = s of the form ¢[ro] = ¢[so] has a proof with complexity less than or equal to
that of ¢[ro] —,=; c[sc].) We say r = s “has proofs” if every ground instance ro = so
has a proof using E. So, the statement of the theorem becomes “H has strictly bounded
S-proofs = S has proofs”.

The proof i1s by induction on the derivation of H - S. It is trivial for Aziom. Suppose

H S
HFS

is an inference. The plan is to show that the hypothesis of the theorem holds for H’ - 5’
(H' has strictly bounded S’-proofs) whenever it holds for H F .S (H has strictly bounded
S-proofs) and that the conclusion holds for S (S has proofs) whenever it holds for 5" (S
has proofs).

For inferences Delete and Hypothesize, the proof is trivial. Consider a Cases inference

Hu{e}FSUC
HESu{e}

where C' 1s a cover set for e

Cases

Assume that the equations in H have strictly bounded S'U {e}-proofs. By Lemma 4.5, ¢
has strictly bounded C-proofs. So, the equations in H (as well as €) have strictly bounded
S U C-proofs. For the conclusion, if the equations in C' have proofs, then e has proofs,
again, by Lemma 4.5.

Next, consider a Simplify inference:

HESU{t =s}
HESU{t=s}

Simplify where t —pupgus ¢ and t = s is not in .S
Assume that the equations in H have strictly bounded S U {¢ = s}-proofs. If t —g ¢/,
t = s has bounded {t/ = s}-proofs. If t —g ¢/, we show below that { = s has bounded
SU{t' = s}-proofs. If t —g ¢/, t = s has bounded S U {t/ = s}-proofs. So, in all cases,
the equations in H have strictly bounded S U {t' = s}-proofs. For the conclusion, if
S U {t' = s} has proofs then ¢ = s has proofs by essentially the same argument.

18 N. Dershowitz and U. S. Reddy

To show that ¢ = s has bounded S U {t' = s}-proofs for the case t — g t/, consider
a ground instance to = so and use induction on max(te, so). The instance has a proof
to —pg t'0c = so. For the second step, note that max(t'c, so) < max(to, so). The
first step, by the assumption above, can be replaced by a proof using S U {t = s} with
a complexity strictly less than max(to,t'c) = to. If this proof contains a step using
t = s, say c[tr] < ¢[s7], then maxz(c[tT], c[s7]) < to < max(to, so). Since max(tr, s7) <
max(c[t7], ¢[sT]) by the subterm property of <, we can conclude, by induction, that
tr = s7 has a proof using S U {t' = s} of complexity less than or equal to max(tr, s7).
By replacement property of <, ¢[t7] = ¢[s7] has a proof using S U {t’ = s} of complexity
less than or equal to max(c[tr], ¢[sT]) which is, in turn, strictly less than max(to, so).

Instances of Subsume can be verified similarly. O

What if a goal of the form H F () cannot be obtained? That means that there is an
equation t = s in S for which none of the rules Cases through Subsume are applicable.
This means, in particular, that there is no cover set C' for ¢ = s. We have already
seen that if ¢ = s is ground reducible, then the set of all critical pairs with £ would
be a cover set. So, we conclude that ¢ = s is not ground reducible, that is, there is a
ground instance {o = so such that {o and s are distinct normal forms by E. Since E is
assumed to be ground confluent, to = so does not follow from £ and, hence, { = s is not
an inductive theorem. Thus, whenever an equation ¢ = s cannot be eliminated from 5,
we have disproved the equation. Thus, the induction proof procedure is robust. It fails
only if the given conjectures are not inductive theorems. If they are inductive theorems,
the procedure may go on indefinitely. Postulating appropriate lemmas using Hypothesize
will help complete the proof.

6. Program Synthesis

In this section, we return to the problem of program synthesis. To start with, one
has a specification alphabet X2, an equational axiomatization £, and a complete reduction
order > over (¢ (the ground terms over) such that E is ground confluent. The synthesis
problem is specified in terms of a new, target alphabet X', an equational specification O,
and an extension of the reduction order > to G’ (the ground terms over X UX'). The
reduction order must be extended to ¥/ in such a way that, for each new symbol f in ¥/,
a term containing f 1s greater than terms constructed from “primitive” operations, and
smaller than terms containing specification symbols that may not appear in a program.
For example, considering the synthesis problem for revap, given by (2.1-2.7), the initial
alphabet ¥ consists of reverse, append, - and nil, listed in the decreasing order of
precedence; the alphabet Y/ consists of revap and the precedence order is extended to
reverse > append > revap > - > nil. This indicates that - and n#l may appear in the
program for revap, but not reverse or append.

The synthesis task is to derive a program P such that (a) P is a consistent enrichment
of E, that is, not affecting the ground equivalences of G that follow from E, and (b)
FEUP Eina S. We have already seen, in Section 5, how to verify EU P =4 S. To infer
P, given only E and S, we run the inductive proof procedure with P as an “unknown”.
The axioms E are fixed, so the goal is to find P, constructed from primitive operations,
such that EU P [=,,4 S. The equations ¢ = uw in S tha tcannot be eliminated by any
of the inference rules, called persisting equations, require knowledge of P. By accepting
the set of all persisting equations of S as P, we can trivially satisfy the requirement

Synthesis of Equational Programs 19

EUP Eina S. Of course, not all such P’s satisfy the consistent enrichment condition.
We return to this issue below.
Consider synthesizing revap. The specification is

revap(z,y) = append(reverse(x),y)

Here, the right-hand side is greater than the left-hand side (because append and reverse
are given higher precedence than revap). So, the equation cannot be used as the program
for revap. Instead, the synthesis procedure must reduce it to simpler equations that have
instances of revap(x,y) as the greater side. We consider superposition at the subterm
reverse(z), and derive the following cover set by Cases:

revap(nil,y) = append(nil,y)
revap(w - w,y) = append(append(reverse(u), w - nil), y)
At this stage, we have the specification as an inductive hypothesis in H. The cases
simplify to
revap(nil,y) =
revap(w - u,y) = append(reverse(u), w - y)

We can use the inductive hypothesis with Simplify to reduce the second right-hand side
to revap(u,w - y). (This corresponds to a “folding” step in the terminology of Burstall
and Darlington (1977).) No more rules are applicable to these equations. So, the two
orientable equations
revap(nil,y) — vy
revap(w - u,y) — rev(u,w-y)

form the candidate program for revap.
To check for the consistent enrichment condition, we use the following result:

THEOREM 6.1. Let B and E'U P be ground confluent sets of equations over alphabets ¥
and X UY', respectively. Then, P is a consistent enrichment of E if, for every ground
wstance to = uo of an equation in P such that to > uo, eitherto contains target symbols
from ¥, or to and uwo are in the specification language G and to is reducible by F.

ProoF. We show by induction on max(to, uc) that every ground instance to = uc
of an equation in P such that to,uc € G has a proof using E. Assume, without loss
of generality, that to > uo. By hypothesis, to is reducible by E. Let to¢ —g s. By
ground confluence, the equation s = uo has a rewrite proof using F U P. All the —p
steps of this proof necessarily have complexity less than or equal to max(to, us). Since
max(s, uc) < to, we can conclude by induction that, for each P step in the latter proof,
there is a proof using E. Hence, tc = uc has a proof using F. O

We use this result as follows: Given a candidate program P;, we calculate the com-
pletion of £ U Py. (Only the axioms in F need to be used in the completion. Inductive
theorems in F do not affect ground confluence.) Suppose completion generates a set
E U Py. If all equations ¢ = w in P; are such that £ > u and ¢ contains target symbols,
then P; is an acceptable program. (It is enough to ensure that for every equation ¢t = u
in Py, to > uo only if ¢ contains target symbols, for all substitutions o of specification
language ground terms.) If ¢ and u are in the specification language, then we need to
verify that ¢ = u is an inductive theorem of E. If ¢ is a specification language term, but u

20 N. Dershowitz and U. S. Reddy

has target symbols, then ¢ = u is a further specification of ¥’ and we continue to derive
a program for it.

Thus, synthesis is an iterative process. After finding a candidate program, adding
it to the axioms generates certain equational consequences. These consequences may
involve problems for further program synthesis. However, we often find that no iteration
is needed. For instance, adding the above candidate program for revap to the axioms
generates no new critical pairs. So, this i1s indeed the final program for revap.

As a somewhat intricate example of the synthesis process, consider the problem of
checking two binary trees for the equality of their fringes. (This is a problem considered
by Burstall and Darlington (1977).) We start with the following axioms (where tip and
o are constructors for binary trees, f denotes the fringe of a tree and = is equality
comparison for lists):

flip(x)) = w-nil (6.1)
fltin(e)ow) = o f(w) (62)
flluov)ow) = f(uo(vow)) (6.3)

ntl = nil = true (6.4)
r-urrnid = false (6.5)
nilpy-v = false (6.6)

rTuRLYy-v = TRYAURLV (6.7)
URL U = VAL U (6.8)

(These are used together with the list axioms (2.1-2.6) and the propositional axioms in
Table 1.) The fringe equality of trees is then specified by

rpy = flz)~r f(y) (6.9)

The problem is to synthesize a direct program for a&p that does not use f or &p. We
order the function symbols by the precedence

~p > f>ap>o0>tp > > nil

and have o order its arguments from left to right. All the axioms are orientable left to
right using this order.

The synthesis proceeds as follows: We can find a cover set for (6.9) by considering
superposition at the subterm f(z) on the larger (right) side of the specification. This
gives the cases (shown after possible simplification steps):

tip(x)=py = =z -nil = f(y) (6.10)
tip(r)owrnpy = x-f(w)=r fly) (6.11)
(uov)owmpy = uo(vow)mpy (6.12)

The cases (6.10) and (6.11) need further synthesis. This time, we choose f(y) (again on
the larger side) for superposition. This gives the cases:

tip(x) ~p tip(x’) = w=x2 (6.13)
tip(x) mp tip(2')ow’ = z~a’ Anilxp f(w') (6.14)
tip(x) ~p (W ov)ow' = tip(x)mp u' o (v ow) (6.15)
tip(r)ow mp tip(x') = zma' Aflw) g nil (6.16)

Synthesis of Equational Programs 21

tip(r) ow mp tip(x')ow' = zma’ Nwmpw (6.17)
tip(r)owmp (W ov)ouw = tip(x)owmp u o(v ow) (6.18)

At this stage, we have three inductive hypotheses in the H component of the procedure:
(6.9), (6.10) and (6.11). The hypothesis (6.10) has been used in simplifying (6.15), and
(6.11) in simplifying (6.17) and (6.18). The only remaining cases that need further work
are (6.14) and (6.16). Program equations for them can be synthesized using the same
process, but we get a clearer program if we (manually) postulate the lemmas:

nil &p f(x) = false (6.19)
f(z) ~p nil = false (6.20)

These are proved in the standard fashion. Using them to simplify the equations results
in the following final program:

tip(x) mp tip(x’) ra
tip(z) =p tip(z') o w' false
tip(z) mp (W ov')ow tip(x) mp u' o (v o w')
tip(x) o w mp tip(x') false

rx ANw g w
tip(z) ow mp v o (v o w')
uo(vow)=py

tip(x) o w mp tip(x') o w'
tip(x)ow mp (W ov')ow
(wov)owmp y

Ll

We also obtain the following inductive theorems as by products:

f@)~L fly) — zrpy
z-nil =p fly) — tip(x)mpy
v f(w) =L fly) — tp(x)owmpy
nil =p f(z) — false
flx) mp nil — false

This example is interesting in that we need to instantiate the variables and y of the
original specification in a controlled fashion to obtain a valid program. Note that we did
not need to postulate an auxiliary function to calculate the fringe of a list of trees, as
done in (Burstall and Darlington, 1977).

7. Generalization and Auxiliary Procedures

In this section, we describe some of the heuristics that can be applied to hypothesize
program statements and inductive lemmas.

Suppose we wish to synthesize a program that doubles a natural number (in successor
notation), without recourse to the addition function. Running the synthesis procedure
with domain equations

x4+ 0 x
r+s(y) = s(zx+y)

and specification

r+zx = dx)

22 N. Dershowitz and U. S. Reddy

generates an infinite set of equations:

d(0) = 0
s(s() +x) = d(s(x))
d(s(0)) = s(s(0))
s(s(s(s(x) + 2))) = d(s(s(x)))
d(s(s(0))) = s(s(s(s(0))))

There is, of course, little one can do with the resultant “program”, which is no more
than an infinite table lookup: {d(s'(0)) = s*(0) : i > 0}. What is needed is some way
of guessing the more general equation d(s(z)) = s(s(d(z))).

We use two processes to generate hypotheses. The first involves generating critical
pairs between equations; the second is a syntactic form of generalization, & la (Boyer and
Moore, 1977; Arsac and Kodratoff, 1982). The intuition is that if we are dissatisfied from
the computational point of view with the equations generated, we look for new equations
between terms containing the defined function symbol in the hope of discovering a
pattern. This approach was suggested in (Dershowitz and Pinchover, 1990).

For the first step, we overlap the smaller sides of the equations in the current partial
program. For this purpose we use an ordering under which constructor terms are larger
than terms containing the defined function applied to non-base cases: d(0) = 0, but
s(s(0)) = d(s(0)), s(s(s(s(0)))) = d(s(s(0))), etc. Using the equations in this direc-
tion brings patterns involving d to the fore. By overlapping the right-hand sides of
d(s(0)) = s(s(0)) and d(s(s(0))) = s(s(s(s(0)))), we get a critical pair d(s(s(0))) =
s(s(d(s(0)))). From d(s(5(0))) = s(s(s(s(0)))) and d(s(s((0)))) = s(s(s(s(s(5(O))))))
we get d(s(s(s(0)))) = s(s(d(s(s(0))))), and so on.

For the second step, we generate most specific generalizations of pairs of equations,
by replacing conflicting subterms with a new variable (see (Plotkin, 1970)). This process
has been called “anti-unification”; given two terms s and ¢, it computes their greatest
lower bound (glb) in the subsumption lattice. The above two critical pairs generate the
hypothesis d(s(z)) = s(s(d(z))). Applying d(z) = « + =, gives s(x) + s(x) = s(s(z + x)),
which simplifies to s(s(x) 4+) = s(s(x + x)), using the equation z + s(y) = s(x +y), but
no further (not knowing the inductive theorem s(z) + y = s(x + y)). Note that we are
assuming d(z) = x + « for the purposes of verification, which is the opposite direction
of what was used for synthesis. Were this equation provable by deductive means, we
would be finished; it is not, so the inductive proof method continues in the same manner,
generating an infinite sequence of hypotheses:

s(s(2) +2) = s(s(x +2))
S(s(s(s) + 1)) = s(s(s(s(y) +)

Clearly, we need to substitute the (missing) lemma s(z) +y = s(z + y) for these
instances. We employ the same generalization methods as for synthesis (see (Jantke, 1989;
Lange, 1989)). An additional helpful technique is cancellation, as used in deduction, for
example, in (Stickel, 1984). In particular, we can take advantage of constructors, replacing
hypotheses of the from ¢(s1,...,8,) = ¢(t1,...,t,) with n hypotheses s; = ¢;, when the
constructor is free (Huet and Hullot, 1982). In the above case, we are free to strip off

Synthesis of Equational Programs 23

matching outer s’s from the generated hypotheses:

s(x)+x = s(e+x)
s(s(y) +y = s(s(y) +y)

Generalizing, as before, leads to the hypothesis s(z)+y = s(x +y), exactly what we were
looking for.
With this added to the specification, the recursive program

d0) = 0
d(s(x)) = s(s(d(z)))
for d is finally proved correct. The first equation is a deductive consequence of the
specification; the second is an inductive consequence.

Having succeeded in producing a program for doubling, a recursive program for halving
can be generated from the implicit definition

hid(z)) = =
h(s(d(x))) = =

The following sequence of equations is produced:

hO) = 0
h(s(0)) = 0
h(s(s(0))) = s(0)
h(s(s(s(0)))) = s(0)
h(s(s(s(s(0))))) = s(s(0))

These equations suggest at least two hypotheses, namely:
h(z) = h(s(x))
s(h(z)) = h(s(s(z)))
The former generalizes the equations
h(0) = h(s(0))
h(s(s(0))) = h(s(s(s(0))))
but is disproved, since (taking = s(0)) it implies that s(0) = 0. The second hypothesis

is obtained by looking at different pairs of equations (first and third, second and fourth,
etc.) and generalizes the equations

s(h(0)) h(s(s(0)))
s(h(s(s(0)))) h(s(s(5(s(0)))))
It is proved immediately by induction, yielding the correct and complete program
h(0) = 0
h(s(0)) = 0
h(s(s(x))) s(h(x))
Most programs require auxiliary procedures, in addition to the specified top-level
program. Two heuristics come into play here: The first is to abstract a subterm appearing

24 N. Dershowitz and U. S. Reddy

in a program, creating a subprogram to compute it (cf. (Kodratoff and Picard, 1983;
Bellegarde, 1991)). The second is to compute two functions at once, or one function
for two arguments, when expanding (unfolding) the definition of one leads to multiple
applications of the same function (cf. (Burstall and Darlington, 1977; Feather, 1982;
Reddy, 1989; Bellegarde, 1991)).

For example, suppose we have all three equations for addition, and wish to manufacture
a program q(z) for squaring from the following equations for multiplication:

zx0 = 0
rxs(y) = (exy +=
s(@) xy = (vxy) +y

exx = qx)

The synthesis procedure with precedence x > + > ¢ will generate the following facts
(among others):

q(0) =
s((¢(x) +a)+2) = q(s(x))
s(s(s((q(s() +y) +v)) = a(s(s(y)))

Noting the repeating left-hand side subterm pattern (#+ z)+ z suggests the introduction
of an ancillary function:

(x+2)+z = pz,z)
Synthesizing p in the same manner as we synthesized d, gives

p(z,0) = =

p(z,s(y) = s(s(p(z,y)))

Letting p be a smaller operator symbol than ¢ (since it is all right for ¢ to be defined in
terms of p), we get

q(s(x)) = s(p(e(),2))

With this equation, used from left to right, equations like s(s(s((q(s(v)) +y) + y))) =
q(s(s(y))) simplify away. Together, the equations for p and ¢ constitute a program for
squaring.

Alternatively, suppose we know that + is associative:

(x+y)+z = 24+(y+2)
with the left side greater than the right. Then the consequences

s(q(x) + (z +) q(s(x))
s(s(s(q(s() + (¥ +v)) = q(s(s(y)))

suggest the auxiliary function:

r+zx = dx)
That leaves us with the following squaring program:

q(0) = 0
g(s(x)) = s(q(z) +d(x))

Synthesis of Equational Programs 25

8. Discussion

Rewriting is a powerful tool in equational reasoning, in which orderings on terms play
a central role. In ordered rewriting, orderings are used to determine the direction of
computation, by providing a suitable concept of what makes one term “simpler” than
another. Ordered rewriting is more flexible than standard rewriting, since it allows the
same equation to be used sometimes in one direction, and sometimes in the other. In
theorem proving, as well, orderings are crucial for incorporating powerful simplification
rules in complete inference systems. Last, but not least, orderings supply us with a basis
for inductive proofs, which are essential for proving properties of programs.

The approach to synthesis described here comprises both formal and informal aspects.
We use equational reasoning and mathematical induction to guarantee correctness of the
synthesized programs. On the other hand, we apply heuristics to suggest equations for
incorporation in developing programs, as well as for forming lemmas needed in inductive
proofs.

We have only considered rewriting with equations. Conditional rewriting and goal
solving may provide a better combination of functional and logic programming than
purely equational programs; see, for instance, (Dershowitz and Plaisted, 1988). Con-
ditional synthesis, however, would necessitate more powerful deductive and inductive
methods for handling conditional equations, such as have been investigated in (Kounalis
and Rusinowitch, 1991; Ganzinger, 1991; Bronsard and Reddy, 1992). More elaborate
generalization methods would also be required.

An interactive program transformation system called “Focus” has been implemented
at the University of Illinois based on the techniques presented here. The system incorpo-
rates “oriented” rewriting techniques (a special case of the ordered rewriting techniques
considered here) and also several extensions for conditional and first-order reasoning. It
has been used to synthesize several interesting examples including some reasonably large

programs (Reddy, 1988; Reddy, 1990a; Reddy, 1991).

References

ACM, (1991). Symp. Partial Evaluation and Semantics-Based Program Manipulation. SIGPLAN
Notices, 26(9):1991.

Arsac, J., Kodratoff, Y., (1982). Some techniques for recursion removal from recursive functions. ACM
Trans. Program. Lang. Systems, 4(2), 295-322.

Bachmair, L., (1988). Proof by consistency. In Symp. on Logic in Comp. Science. IEEE.

Bachmair, L., Dershowitz, N., (to appear). Equational inference, canonical proofs, and proof orderings.
J. ACM, .

Bachmair, L., Dershowitz, N., Plaisted, D. A., (1989). Completion without failure. In Alt-Kaci, H.,
Nivat, M., eds., Resolution of Fquations in Algebraic Structures, volume 2: Rewriting Techniques,
chapter 1, pages 1-30. Academic Press.

Bellegarde, F., (1991). Program transformation and rewriting. In Book, R., ed., Fourth Intern. Conf.
on Rewriting Techniques and Applications, volume 488 of Lect. Notes tn Comp. Science, pages
226—239. Springer-Verlag.

Bergstra, J. A., Klop, J. W., (1986). Conditional rewrite rules: Confluency and termination. J. of
Computer and System Sciences, 32, 323-362.

Bibel, W., Hornig, K. M., (1984). LOPS - A system based on a strategical approach to program synthesis.
In Biermann, A. W., Guiho, G., Kodratoff, Y., eds., Automatic Program Construction Techniques,
chapter 3, pages 69-90. New York: MacMillan Pub. Co.

Bird, R., Wadler, P., (1988). Introduction to Functional Programming. London: Prentice-Hall
International.

Bjorner, D., Erschov, A. P., Jones (eds), N. D., (1988). Partial Evaluation and Mived Computation.
North-Holland.

Boyer, R. S., Moore, J. S., (1977). A lemma driven automatic theorem prover for recursive function
theory. In Intern. Joint Conf. on Artificial Intelligence, pages 511-519, Cambridge, MA.

26 N. Dershowitz and U. S. Reddy

Brand, D., (1975). Proving theorems with the modification method. SIAM J. on Computing, 4, 412-430.

Bronsard, F., Reddy, U. S., (1991). Conditional rewriting in Focus. In Kaplan, S., Okada, M., eds.,
Conditional and Typed Rewriting Systems — Second International CTRS Workshop, volume 516
of Lect. Notes in Comp. Science, pages 2—13. Springer-Verlag.

Bronsard, F., Reddy, U. S., (1992). Reduction techniques for first-order reasoning. In Rusinowitch,
M., Rémy, J. L., eds., Conditional Term Rewriting Systems, volume 656 of Lect. Notes in Comp.
Science, pages 242—256. Springer-Verlag.

Biindgen, R., Kiichlin, W., (1989). Computing ground reducibility and inductively complete positions.
In Dershowitz, N., ed., Rewriting Techniques and Applications, volume 355 of Lect. Notes in Comp.
Science, pages 59-75. Springer-Verlag.

Burstall, R. M., Darlington, J., (1977). A transformation system for developing recursive programs. J.
ACM, 24(1), 44-67.

Comon, H., (1990). Solving inequations in term algebras (Preliminary version). In Fifth Ann. Symp. on
Logic in Comp. Science, pages 62—69, Philadelphia, PA. IEEE.

Darlington, J., (1981). The structured description of algorithm derivations. In de Bakker, J. W., van
Vliet, J. C., eds., Algorithmic Languages, pages 221-250. North-Holland.

Dershowitz, N., (1982). Applications of the Knuth-Bendix completion procedure. In Proc. of the
Seminaire d’Informatiqgue Theorigue, Paris, pages 95—-111. (Also vailable as Technical Report ATR-
83(8478)-2, Information Sciences Research Office, The Aerospace Corporation, El Segundo, CA.)

Dershowitz, N., (1985). Computing with rewrite systems. Information and Control, 65(2/3), 122-157.

Dershowitz, N., (1985). Synthesis by completion. In Proc. Ninth Intern. Joint Conf. on Artificial
Intelligence, pages 208—214.

Dershowitz, N., (1987). Termination of rewriting. J. Symbolic Computation, 3, 69-116.

Dershowitz, N., (1989). Completion and its applications. In Resolution of Equations in Algebraic
Structures, volume 2: Rewriting Techniques, pages 31-86. San Diego: Academic Press.

Dershowitz, N., Jouannaud, J.-P., (1990). Rewrite systems. In van Leeuwen, J., ed., Handbook of
Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pages 243-320.
Amsterdam: North-Holland.

Dershowitz, N., Pinchover, E., (1990). Inductive synthesis of equational programs. In Fighth National
Conf. on Artificial Intelligence, pages 234-239, Boston, MA. AAAL

Dershowitz, N., Plaisted, D. A., (1988). Equational programming. In Hayes, J. E., Michie, D., Richards,
J., eds., Machine Intelligence 11: The logic and acquisition of knowledge, chapter 2, pages 21-56.
Oxford: Oxford Press. To be reprinted in Logical Foundations of Machine Intelligence, Horwood.

Deville, Y., (1990). Logic Programming: Systematic Program Development. Wokingham: Addison-
Wesley.

Feather, M. S., (1982). A system for assisting program transformation. ACM Trans. Program. Lang.
Systems, 4(1), 1-20.

Fribourg, L., (1989). A strong restriction of the inductive completion procedure. J. Symbolic
Computation, 8(3), 253-276.

Fronhéfer, B., Furbach, U., (1986). Knuth-Bendix completion versus fold/unfold: A comparative study
in program synthesis. In Rollinger, C., Horn, W., eds., Proc. of the Tenth German Workshop on
Artificial Intelligence, pages 289-300.

Ganzinger, H., (1991). A completion procedure for conditional equations. J. Symbolic Computation, 11,
51-81.

Goldammer, U., (1992). A method for the inductive synthesis of rewrite programs based on Knuth-Bendix
completion techniques. GOSLER Report 06/92, Technische Hochschule Leipzig, Leipzig, Germany.

Gramlich, B., (1989). Induction theorem proving using refined unfailing completion techniques. Technical
Report SR89-14, Universitat Kaiserslautern, Germany.

Hoare, C. A. R., (1971). Procedures and parameters: An axiomatic approach. In Engeler, E., ed.,
Symp. Semantics of Algorithmic Languages, volume 188 of Lect. Notes in Math., pages 102-116.
Springer-Verlag.

Hogger, C. J., (1976). Derivation of logic programs. J. ACM, 28(2), 372-392.

Hsiang, J., Dershowitz, N., (1983). Rewrite methods for clausal and non-clausal theorem proving. In
10th Intern. Collog. Automata, Languages and Programming, volume 154 of Lect. Notes in Comp.
Science, pages 331-346. Springer-Verlag.

Hsiang, J., Rusinowitch, M., (1987). On word problems in equational theories. In Ottmann, T., ed.,
14th Intern. Colloq. Automata, Languages and Programming, volume 267 of Lect. Notes in Comp.
Science, pages 54—71. Springer-Verlag.

Hsiang, J., Rusinowitch, M., (1991). A new method for establishingrefutational completeness in theorem
proving. J. ACM, 38(3), 559—587.

Huet, G., Hullot, J.-M., (1982). Proofs by induction in equational theories with constructors. J. Comp.
and System Sciences, 25, 239—-266.

Huet, G., Oppen, D. C., (1980). Equations and rewrite rules: A survey. In Book, R., ed., Formal
Language Theory: Perspectives and Open Problems, pages 349-405. New York: Academic Press.

Synthesis of Equational Programs 27

Jantke, K. P., (1989). Algorithmic learning from incomplete information: Principles and problems. In
Dassow, J., Kelemen, J., eds., Machines, Languages, and Complezity (Selected Contributions of the
5th International Meeting of Young Computer Scientists, Smolenice, Czechoslovakia, November
1988), volume 381 of Lect. Notes in Comp. Science, pages 188—207. Springer-Verlag.

Jouannaud, J.-P., Kounalis, E., (1989). Automatic proofs by induction in equational theories without
constructors. Information and Computation, 82, 1-33.

Kamin, S., Lévy, J.-J., (1980). Two generalizations of the recursive path ordering. Unpublished note,
Department of Computer Science, University of Illinois, Urbana, IL.

Kaplan, S., (1987). Simplifying conditional term rewriting systems: Unification, termination and
confluence. J. Symbolic Computation, 4, 295-334.

Kapur, D., Musser, D. R., (1987). Proof by consistency. Artificial Intelligence, 31(2), 125-157.

Kapur, D., Srivas, M., (1985). A rewrite rule based approach for synthesizing data types. In Intern.
Joint Conf. Theory and Practice of Softw. Development (TAPSOFT), volume 186 of Lect. Notes
. Comp. Science, pages 188-207. Springer-Verlag.

Kapur, D., Narendran, P., Otto, F., (1987). On ground confluence of term rewriting systems. Technical
Report 87-6, General Electric R & D Center, Schenectady, New York. To appear in Information
and Computation.

Kapur, D., Narendran, P., Zhang, H., (1991). Automating inductionless induction using test sets. J.
Symbolic Computation, 11, 83—-112.

Klop, J. W., (1992). Term rewriting systems. In Abramsky, S., Gabbay, D. M., Maibaum, T. S. E., eds.,
Handbook of Logic in Computer Science, volume 1, chapter 6. Oxford: Oxford University Press.

Knuth, D., Bendix, P., (1970). Simple word problems in universal algebras. In Leech, J., ed.,
Computational Problems in Abstract Algebra, pages 263—-297. Oxford: Pergamon Press.

Kodratoff, Y., Picard, M., (1983). Complétion de systémes de réécriture et synthése de programmes a
partir deleurs spécifications. Bigre, 35.

Kounalis, E., Rusinowitch, M., (1987). On word problems in Horn theories. In Kaplan, S., Jouannaud,
J.-P., eds., Conditional Term Rewriting Systems, volume 308 of Lect. Notes in Comp. Science,
pages 144-160. Springer-Verlag.

Kounalis, E., Rusinowitch, M., (1991). Inductive reasoning in conditional theories. In Kaplan, S., Okada,
M., eds., Conditional and Typed Rewriting Systems — Second International CTRS Workshop,
volume 516 of Lect. Notes in Comp. Science. Springer-Verlag.

Kounalis, E., Zhang, H., (1985). A general completeness test for equational specifications. In Hungarian
Conference of Computer Science. (Also available as Tech. Report CRIN [85-R-05], University of
Nancy, Nancy, France.)

Kiichlin, W., (1989). Inductive completion by ground proof transformation. In Ait-Kaci, H., Nivat,
M., eds., Resolution of Equations in Algebraic Structures, volume 2: Rewriting Techniques, pages
211-245. San Diego: Academic Press.

Lange, S., (1989). Towards a set of inference rules for solving divergence in Knuth-Bendix completion. In
Jantke, K. P., ed., Proceedings of the International Workshop on Analogical and Inductive Inference,
volume 397 of Lect. Notes in Comp. Science, pages 304-316. Springer-Verlag.

Manna, Z., (1974). Mathematical Theory of Computation. New York: McGraw-Hill.

Manna, Z., Waldinger, R., (1980). A deductive approach to program synthesis. ACM Trans. Program.
Lang. Systems, 2(1), 90-121.

Martin, U., Nipkow, T., (1990). Ordered completion. In Stickel, M., ed., Conf. on Automated Deduction,
Lect. Notes in Comp. Science, pages 366—380.

Musser, D. R., (1980). On proving inductive properties of abstract data types. In ACM Symp. on Princ.
of Program. Lang., pages 154-162. ACM.

Nieuwenhuis, R., Orejas, F., (1991). Clausal rewriting. In Kaplan, S., Okada, M., eds., Conditional and
Typed Rewriting Systems — Second International CTRS Workshop, volume 516 of Lect. Notes in
Comp. Science, pages 246—258. Springer- Verlag.

Paulson, L. C., (1991). ML for the Working Programmer. Cambridge: Cambridge Univ. Press.

Peterson, G. E., (1983). A technique for establishing completeness results in theorem proving with
equality. SIAM J. Computing, 12(1), 82-100.

Peterson, G. E., (1990). Complete sets of reductions with constraints. In Stickel, M., ed., 10th Intern.
Conf. on Automated Deduction, Lect. Notes in Comp. Science, pages 381-395.

Plaisted, D., (1985). Semantic confluence tests and completion methods. Information and Control, 65,
182-215.

Plotkin, G., (1970). Lattice theoretic properties of subsumption. Technical Report MIP-R-77, University
of Edinburgh, Edinburgh, Scotland.

Reddy, U. S., (1988). Transformational derivation of programs using the Focus system. SIGSOFT
Software Engineering Notes, 13(5), 163-172. (Proceedings, ACM SIGSOFT/SIGPLAN Softw. Eng.
Symp. on Practical Software Development Environments, also published as SIGPLAN Notices, Feb.
1989.)

28 N. Dershowitz and U. S. Reddy

Reddy, U. S., (1989). Rewriting techniques for program synthesis. In Dershowitz, N., ed., Rewriting
Techniques and Applications, volume 355 of Lect. Notes in Comp. Science, pages 388—403. Springer-
Verlag.

Reddy, U. S., (1990). Formal methods in transformational derivation of programs. Software Engineering
Notices, 15(4), 104-114. (Proceedings of the ACM SIGSOFT Workshop on Formal Methods in
Software Development.)

Reddy, U. S., (1990). Term rewriting induction. In Stickel, M., ed., 10tk Intern. Conf. on Automated
Deduction, volume 449 of Lect. Notes in Artificial Intelligence, pages 162—177. Springer-Verlag.

Reddy, U. S., (1991). Design principles for an interactive program derivation system. In Lowry, M.,
McCartney, R. D., eds., Automating Software Design, chapter 18. AAAI Press.

Robinson, G., Wos, L., (1969). Paramodulation and theorem-proving in first order theories with equality.
In Meltzer, B., Michie, D., eds., Machine Intelligence 4, pages 135-150. Edinburgh, Scotland:
Edinburgh University Press.

Scott, D., (1976). Data types as lattices. SIAM J. Computing, 5(3), 522-587.

Smith, D., (1985). Top-down synthesis of divide and conquer algorithms. Artificial Intelligence, 27,
43-96.

Stickel, M. E., (1984). A case study of theorem proving by the Knuth Bendix method discovering that
2% = ¢ implies ring commutativity. In Shostak, R. E., ed., Proceedings of the Seventh International
Conference on Automated Deduction, volume 170 of Lect. Notes in Comp. Science, pages 248—259.
Springer-Verlag.

Tamaki, H., Sato, T., (1984). Unfold/fold transformation of logic programs. In Intern. Conf. on Logic
Programming, pages 127-138.

Zhang, H., Kapur, D., (1988). First-order theorem proving using conditional rewrite rules. In Lusk, E.,
Overbeek, R., eds., 9th Intern. Conf. on Automated Deduction, pages 1-20. Springer-Verlag.

