
J� Symbolic Computation ������ ��� �����

Deductive and Inductive Synthesis
of Equational Programsy

NACHUM DERSHOWITZ AND UDAY S� REDDY

Department of Computer Science� University of Illinois at Urbana�Champaign� U�S�A�

�Received � June ���	

An equational approach to the synthesis of functional and logic program is taken� In this
context� the synthesis task involves�nding executable equations such that the given spec�
i�cation holds in their standardmodel� Hence� to synthesize such programs� induction is
necessary�We formulate procedures for inductive proof� as well as for program synthesis�
using the framework of �ordered rewriting�� We also propose heuristics for generalizing
from a sequence of equational consequences� These heuristics handle cases where the
deductive process alone is inadequate for coming up with a program�

�� Introduction

In seminal work� Burstall and Darlington ������ showed how functional programs�
expressed as equations� can be transformed to more e	cient ones using equational rea

soning� Given a speci�cation of a new function to be synthesized� they use the original
program equations forward ��unfolding� and backward ��folding� in a controlled fash

ion and obtain a recursive program for the new function� The method has come to be
called the �fold
unfold method and forms an important component in reasoning about
functional programs� �See �Bird and Wadler� ������� Signi�cant e�ort has been devoted
to building automated systems based on the methodology �see� for example� �Darlington�
����� Feather� ������� which has been adapted to reasoning about logic programs �Hog

ger� ����� Tamaki and Sato� ����� Deville� ������ Partial evaluation systems� increasingly
successful in recent times �Bjorner et al�� ����� ACM� ������ are also based on the
fold
unfold method�
In building reliable general
purpose program synthesis systems� however� several issues

arise�

How does one determine if the transformed programs are correct� �While the
soundness is immediate from the technique� termination and completeness remain
concerns��

y First author�s research supported in part by the U� S� National Science Foundation under Grants
CCR�	
�
��	 and CCR�	
������ and by a Meyerho� Visiting Professorship at the Weizmann Institute
of Science� The second author�s research was supported in part by U� S� National Science Foundation
grant CCR����

	��� NASA grant NAG������ and a grant from Motorola Corporation�

���������	
�

 �

 �
��

�
 c� �		� Academic Press Limited

� N� Dershowitz and U� S� Reddy

How does one control the application of equations� �Na��ve application of equa

tions leads to large search spaces� The controlled application used by Burstall and
Darlington is sometimes restrictive��

How does the method generalize to forms of programs �and logics� other than
equational ones �such as conditional equations� Horn clauses or �rst
order clauses��

What role does �mathematical� induction play in the synthesis process�

How does the method relate to other methodologies of deductive synthesis� like
�Manna and Waldinger� ����� Bibel and H�ornig� ����� Smith� ������

In attempting to answer some of these questions� we are led to the framework of term
rewriting� the best known technique of controlled equational reasoning� Term rewriting
was �rst used in automated reasoning by Knuth and Bendix ������ for solving word
problems in equational theories� Two fundamental operations underlie the technique�
rewriting and superposition� Rewriting uses a terminating system of oriented equations�
called �rewrite� rules� to rewrite a term to a �normal form� Superposition uses existing
rewrite rules to deduce a new equation� The combination of the two techniques achieves
extremely high performance in equational reasoning� In recent work� term rewriting tech

niques have been extended to deal with unoriented equations �Hsiang and Rusinowitch�
����� Bachmair et al�� ����� Martin and Nipkow� ����� Peterson� ����� Bachmair and
Dershowitz� to appear�� conditional equations �Bergstra and Klop� ����� Kaplan� �����
Kounalis and Rusinowitch� ����� Ganzinger� ������ and �rst
order reasoning �Hsiang and
Dershowitz� ����� Hsiang and Rusinowitch� ����� Zhang and Kapur� ����� Bronsard and
Reddy� ����� Nieuwenhuis and Orejas� ������ See �Huet and Oppen� ����� Dershowitz�
����� Dershowitz and Jouannaud� ����� Klop� ����� for accessible surveys of this rapidly
developing area�
The contributions of this paper are threefold� First� we enrich the basic equational

reasoning techniques used by Burstall and Darlington with additional structure to obtain
rewrite
based reasoning� Second� we propose �mathematical� induction techniques to
de�ne and ensure the correctness of synthesized programs� Third� we demonstrate how
inductive generalization techniques supplement the basic deductive techniques to achieve
an automated program synthesis system� This paper consolidates and extends our previ

ous work reported in �Dershowitz� ����� Dershowitz� ����b� Reddy� ����� Reddy� ����b�
Dershowitz and Pinchover� ������ In the cited work� we treated rewrite systems� here�
we generalize those techniques to a mix of oriented and unoriented equations� using
the notion of �ordered rewriting� This makes the method complete for the class of
deductively veri�able programs� The application of ordered rewriting to program synthe

sis or inductive proofs has also been considered in �Bachmair� ����� Gramlich� �����
Bellegarde� ������ recent work of Goldammer ������ is also based on similar ideas�
Franh�ofer and Furbach ������ compare rewriting techniques with the plain equational
methods of Burstall and Darlington� In early work� Kapur and Srivas ������ present
many ideas closely related to those here�
We begin with an overview of program synthesis� It is followed� in Section �� by a

description of the basic properties of equational programs� Sections � and �� respectively�
deal with deductive and inductive reasoning� Details of the formal methods for synthesis
are given in Section �� Section � describes the heuristic techniques used in conjunction
with the formal ones� We conclude with a brief discussion�

Synthesis of Equational Programs �

�� Overview

Suppose we wish to synthesize a program for some function f and are given a speci�

cation S for f � together with an axiomatizationE of the problem domain� There are two
ways to think about the program synthesis process� We can try to generate all interesting
logical consequences of S and E in the hope of eventually obtaining some set of equations
which serves as a program for f � Or� we can try to reduce the speci�cation S to simpler
equations� using E� in the hope of eventually obtaining equations simple enough to serve
as a program for f � The former� forward reasoning� approach seems to underlie Burstall
and Darlington ������� whereas the latter� backward reasoning� approach is the basis of
Manna and Waldinger ������� Interestingly�in the context of equational reasoning�the
two approaches produce very similar results and one can view the same set of deductions
from both the forward and backward reasoning points of view�
For example� consider the following axiomatization of append and reverse functions

for lists�

append �x� nil� � x �����

append �nil� y� � y �����

append �w � u� y� � w � append �u� y� �����

append �append �x� y�� z� � append �x� append �y� z�� �����

reverse�nil� � nil �����

reverse�w � u� � append �reverse�u�� w � nil� �����

Suppose we want a program for the function revap which reverses its �rst argument and
appends it to the second argument� It is speci�ed by the equation�

revap�x� y� � append �reverse�x�� y� �����

To synthesize a program from this speci�cation� we �rst note that the subterm reverse�x�
can be simpli�ed using the de�ning equations ��������� of reverse if x is instantiated to nil
and w �u� respectively� It is then fairly straightforward to derive the following equations�

revap�nil� y� � append �reverse�nil�� y� from �����
� append �nil� y� by �����
� y by �����

revap�w � u� y� � append �reverse�w � u�� y� from �����
� append �append �reverse�u�� w � nil�� y� by �����
� append �reverse�u�� append �w � nil� y�� by �����
� append �reverse�u�� w � append �nil� y�� by �����
� append �reverse�u�� w � y� by �����
� revap�u�w � y� by �����

All the steps use axioms to replace �equals by equals� except for the last step which uses
the original speci�cation ����� for a smaller instance� �Such use of the original speci�cation
is termed �folding in �Burstall and Darlington� ������� The two equations derived above
form a program for revap�

revap�nil� y� � y

revap�w � u� y� � revap�u�w � y�
�����

which is similar to what one would write in a pattern
directed functional programming
language like ML �Paulson� ������

� N� Dershowitz and U� S� Reddy

The above calculations can be viewed as a forward reasoning process� The two derived
equations are evidently logical consequences of the speci�cation ������ However� it is not
entirely clear that the two equations form a correct �terminating and complete� program
for revap� If we design a synthesis procedure based on the forward reasoning approach�
we would have to use some other mechanism to ensure the correctness of the derived
program� Moreover� we would also need some heuristic guidance to navigate through the
space of all logical consequences so that �interesting consequences are found�

We can also view the above calculations as a backward reasoning process in which
the speci�cation ����� acts as the theorem being proved� the program ����� consists of
the axioms necessary to prove the theorem� and the synthesis process itself provides
a backward proof of the theorem� Note that all the equational replacement steps are
equivalence
preserving� Thus� they can be viewed as either forward or backward steps�
The initial instantiation step is justi�ed by noting that� to prove ����� as an inductive
theorem� it is adequate to prove the two instances� The �nal folding step is justi�ed as
the use of ����� as the inductive hypothesis applied to the smaller instance x � u� when
proving that the hypothesis holds for the larger instance x � w � u�
There are good reasons to prefer the backward reasoning view to the forward rea

soning view� For one� it eliminates the need for navigating through all possible logical
consequences in search of the program� giving better control over the search process� For
another� it integrates inductive reasoning with the deductive process� so that the derived
programs are guaranteed to be correct� Therefore� we adopt the backward reasoning view
in the rest of the paper�

The synthesis of the revap function is just part of the more general task of �nding an
e	cient program for reverse� The program represented by the axioms ��������� takes time
quadratic in the length of the list� To �nd an e	cient program� we must eliminate its use
of append � However� unlike the above synthesis� this cannot be achieved by deduction
alone� No amount of replacing equals by equals will eliminate the use of append � To
successfully synthesize a program� we need an �insight �a �eureka step� as Burstall and
Darlington termed it�� We must recognize that we need an auxiliary function to compute
the quantity append �reverse�u�� v�� where the extra variable v has been introduced to hold
the partial result of reversal� Having synthesized a program for it �the revap function��
we can use its speci�cation ����� to simplify the program of reverse as follows�

reverse�nil� � nil

reverse�w � u� � revap�u�w � nil�
�����

and� thereby� eliminate the use of append �

Can an automatic synthesis procedure �nd the eureka step� Indeed� a number of
heuristics can be used to postulate auxiliary functions �similar to postulating lemmas
in inductive proofs�� For the problem on hand� a simple generalization heuristic �Boyer
and Moore� ����� Arsac and Kodrato�� ����� su	ces� We �rst attempt to perform a
derivation starting from the speci�cation

reverse�w � u� � append �reverse�u�� w � nil�

in the same manner as that of the revap function above� We notice that the subterm
reverse�u� can be simpli�ed using the de�ning equations of reverse if u is instantiated

Synthesis of Equational Programs

Table �� Equational axiomatization of propositional calculus

�u � u � false

u � v � �u � v�� v

u � v � �u � v�� v � u

u � u � u

u � true � true

u � false � u

u� u � true

u� true � u

�u� v� � w � �u � w�� �v � w�
u� v � v � u

�u� v�� w � u � �v� w�
u � v � v � u

�u � v� � w � u � �v �w�

to nil and w� � u�� This gives the equations�

reverse�w � nil� � append �reverse�nil�� w � nil�
� append �nil� w � nil�
� w � nil

reverse�w �w� � u�� � append �append �reverse�u��� w� � nil�� w � nil�
� append �reverse�u��� append �w� � nil� w � nil��
� append �reverse�u��� w� �w � nil�

At this point� a successful derivation would be able to apply a folding step� Since we
are unable to do this� we attempt to �nd a more general speci�cation expression which
might enable a folding step� The expression append �reverse�u�� v� generalizes the original
speci�cation expression as well as the current one� �In fact� the least generalization
append �reverse�u�� w � v� works as well� This is what our algorithm would �nd�� This
gives the auxiliary function needed to complete the synthesis�
Many program synthesis tasks involve conditional reasoning in addition to equational

reasoning� Though term rewriting techniques have been extended to conditional equa

tions� as well as �rst
order clauses� we do not get into these technical areas in this paper�
Instead� we will use an equational axiomatization of Boolean algebras� Here� �� denotes
equality of truth values� that is� logical equivalence� All predicate symbols are treated
as function symbols and so are the logical connectives �� �� �� �� and �� Table � gives
an equational axiomatization of propositional calculus in this notation �compare �Hsiang
and Dershowitz� �������
Consider the following axiomatization of addition� subtraction� multiplication and

equality of natural numbers in successor notation� wherein the number n is represented
as sn����

x� � � x ������

x� y � y � x ������

�x� y� � z � x� �y � z� ������

x� � � � ������

x� s�y� � �x� y� � x ������

� N� Dershowitz and U� S� Reddy

x 	 x � true ������

x 	 y � z � x
 z 	 y ������

Here� �	 is the equality comparison operator for naturals� Notice that we only specify
equations for the true case of 	� This is because we want to view these equations as logic
programs where the false cases simply �fail� See �Dershowitz� ����a� for a discussion of
how logic programs are treated in the equational framework�
Suppose our goal is to produce a program for natural number division speci�ed by

div �x� s�y�� q� r� � �r � y� � �x 	 s�y� � q � r� ������

The predicate div �x� s�y�� q� r�� meaning that dividing x by y � � gives quotient q and
remainder r� is speci�ed by stating that the remainder is less than the divisor and that
the quotient and remainder are related to the divisor and dividend by the appropriate
equation�
As in the revap example� we instantiate q to � and s�z�� so as to simplify the subterm

s�y��q by axioms ������������ �The other possibility is to simplify r � y� but this choice
does not lead to a good program�� The following equations are then obtained�

div �x� s�y�� �� r� � r � y � x 	 s�y� � � � r from ������
� r � y � x 	 � � r by ������
� r � y � x 	 r � � by ������
� r � y � x 	 r by ������

div �x� s�y�� s�z�� r� � r � y � x 	 s�y� � s�z� � r from ������
� r � y � x 	 �s�y� � z � s�y�� � r by ������
� r � y � x 	 s�y� � z � �s�y� � r� by ������
� r � y � x 	 s�y� � z � �r � s�y�� by ������
� r � y � x 	 �s�y� � z � r� � s�y� by ������

For the �rst case� we can instantiate r to x to make domain fact ������ applicable�
This gives a more compact version� namely�

div�x� s�y�� �� x� � x � s�y�

For the second case� we can apply axiom ������ with the substitution fx � x� y �
s�y� � z � r� z � s�y�g� This gives�

div �x� s�y�� s�z�� r� � r � y � x
 s�y� 	 s�y� � z � r

� div�x
 s�y�� s�y�� z� r�

where the last step is a folding step using the speci�cation� The two equations

div�x� s�y�� �� x� � x � s�y�
div �x� s�y�� s�z�� r� � div �x
 s�y�� s�y�� z� r�

can be viewed as a logic program for division�

�� Equational Programs

First� we brie�y explain our notation� By an alphabet of function symbols � we mean
a set of function symbols together with an arity associated with each symbol� The set of
variable
free terms over �respecting arities� is denoted G and they are called ground

Synthesis of Equational Programs �

terms� the set of terms over allowing variables �from some set X� is denoted T and
they are called free terms� or simply terms�
An equation is a pair of terms written as r � s� Given a set of equations E and terms

t and t�� E j� t � t� if and only if there are terms t�� t�� � � � � tn �n � �� such that

t � t� �E t� �E � � ��E tn � t�

where �E is the �replacing equals by equals relation of E ��� is used to denote
syntactic identity�� A sequence such as the one exhibited is called an �equational proof�
The standard relational notations ��

E and ��

E are used to denote the transitive and
re�exive
transitive closures� respectively� of �E � Thus� E j� t � t� i� t��

E t��
Equational programs work by replacing equals by equals� However� this cannot be done

in an arbitrary fashion� a program must make �progress in evaluating terms� We specify
the notion of progress via a well
founded order � with certain extra properties stated in
Section ���� Let � be such an order� We say that t rewrites to s if t �E s and t � s�
This fact is denoted by writing t E�� s but we often omit �� and write t E s�
The idea is that an equation is used for rewriting only in one direction� the direction
that achieves reduction by the order �� Since � is well
founded� every rewrite sequence
t� E t� E � � � is �nite and results in an unrewritable term� called a normal form
�which need not be unique�� Equational programs are �executed by rewriting ground
terms to normal forms� Since this form of rewriting always reduces the term it is applied
to in the well
founded order �� execution is always terminating�
An equation t � s is said to have a rewrite proof if there are terms t�� t�� � � � � tn and

s�� s�� � � � sm such that

t � t� E t� E � � �E tn � sm �E � � ��E s� �E s� � s

where �E is the relational inverse of E � Thus� a rewrite proof is an equational proof
that rewrites both t and s to some common normal form� Again� �

E and �

E will be
used respectively to denote the transitive and re�exive
transitive closures of E �
If r � s is an equation in E such that r � s� no matter what terms are substituted

for the variables of the equation� we may� alternatively� write the equation as r s�
The idea is that such an equation is always used in one direction� to rewrite instances
of r to the corresponding instances of s� The equation r s is often called a rewrite
rule to emphasize this fact� but note that all our equations are rewrite rules in a more
general sense� they are always used for rewriting along a reducing direction although the
direction may vary from instance to instance� Conventional term rewriting theory �Knuth
and Bendix� ����� Huet and Oppen� ����� deals with rewrite systems� sets of equations all
oriented in a particular direction� The idea that unoriented equations can also be used for
rewriting� provided they are used along a reducing direction was developed in �Hsiang
and Rusinowitch� ����� Bachmair et al�� ������ This form of rewriting is now called
ordered rewriting� The results of this paper generalize our previous results �Dershowitz�
����� Dershowitz� ����a� Dershowitz� ����b� Reddy� ����� Reddy� ����b� Dershowitz and
Pinchover� ����� to the framework of ordered rewriting�
The mixing of programs and program synthesis with termination issues requires some

explanation� Demanding that the rewrite relation be always included in a well
founded
order has two consequences� First� it ensures that programs terminate along all evalu

ation paths� While this is a reasonable requirement for most common programs� some
applications also require programs that do not terminate� but make progress inde�nitely�
Programs in lazy functional languages �Bird and Wadler� ����� often exhibit this prop

� N� Dershowitz and U� S� Reddy

erty� We envisage that the techniques of this paper will eventually be extended to such
programs by suitable relaxation of the termination requirements� or an extension of the
operational semantics of rewriting�
A second consequence of the termination of rewrite relations is that the automated

reasoning procedures have some heuristic guidance about the direction they should
employ in reducing problems� Without such guidance� the reasoning procedures need
to explore too many possibilities resulting in large search spaces and much redundancy�
It will be seen that the well
founded orders used for the rewrite relations play an essential
role in the problem speci�cation for program synthesis as well as in the synthesis process
itself�
However� it must be noted that the use of ordered rewriting allows us to avoid limita

tions that have been traditionally caused by termination criteria� First� it allows us to
include in programs equations that are not orientable as rewrite rules� Commutativity
equations such as ������ are well
known examples of this� Since such equations are
symmetric� orienting them in either direction results in in�nite rewrite sequences and� so�
they cannot be included in conventional programming languages based on rewriting� On
the other hand� ordered rewriting allows us to use such equations in programs and rewrites
terms of the form t�s to s�t whenever t�s � s�t� If we use a � ordering that is total on
ground terms then� for any ground terms t and s� either t� s is rewritable to s� t or vice
versa� So� we have rewrite proofs for all such equalities even though the equation itself
is not orientable as a rewrite rule� Secondly� it is often hard �or impossible� to design
well
founded orders that cover all the equations that may be derived in a deduction
procedure� Procedures based on traditional rewriting fail when they encounter equations
that cannot be oriented as rewrite rules� Our program synthesis procedure avoids this
problem by employing equations and ordered rewriting rather than rewrite rules�

���� Orderings

We now state the required properties of the well
founded order� A well
founded order
� on ground terms is called a complete reduction order if �a� it is total on ground terms�
�b� it has the replacement property �s � s� implies t!s" � t!s�"�� and �c� it has the
subterm property �t � s whenever s is a proper subterm of t�� �We use the notation t! "
to denote a �context� that is� a term with a unique hole� The notation t!s" denotes the
term with the hole �lled by a term s� When necessary� the position of a hole may be
made precise� as in t!s"p� the subterm of t at p is denoted tjp�� Such an order must be
well
founded �Dershowitz� ������ A complete reduction order � is extended to a partial
order � on free terms by de�ning

t � s �� t� � s� for all ground substitutions �

Note that � inherits the replacement and subterm properties� In addition� it has the
substitution property� t � s implies t� � s� for all substitutions �� �In practice� it su	ces
to approximate this order by using an ordering of free terms that can be extended to a
complete reduction order��
One complete reduction order of particular interest in program synthesis is the lexico�

graphic path order �Dershowitz� ����� Kamin and L#evy� ������ Assume a total order �P

on function symbols� referred to as a �precedence� Then� the lexicographic path order
� is de�ned inductively by t � f�t�� � � � � tm� � g�s�� � � � � sn� � s i� one of the following
conditions holds�

Synthesis of Equational Programs 	

ti � s for some i � �� � � � �m�
f �P g in the precedence order and t � si for all i � �� � � � � n�
f � g �m � n�� ht�� � � � � tmi is greater than hs�� � � � � smi by the �left
to
right�
lexicographic extension of � and� in addition� t � si for all i � �� � � � � n�

In practice� one also speci�es the sequence in which the arguments of a function sym

bol must be compared lexicographically �so that one obtains �exibility in ordering the
arguments of a function symbol�� The extension of this ordering to free terms can be
computed �Comon� ������ or one can approximate it by using the above de�nition for
free terms� as well� �One can also work with a partial precedence� since it can be extended
to a complete reduction order��
We illustrate the path order with examples� Consider the precedence

reverse � append � � � nil

and equations ����������With the corresponding lexicographic path order� every left
hand
side is greater than the corresponding right
hand side� For example� for ������ we have

append �x� nil� � x

because x is a subterm of append �x� nil�� For equation ������

append �append �x� y�� z� � append �x� append �y� z��

because happend �x� y�� zi is greater than hx� append�y� z�i �by lexicographic order and
subterm property�� and the left
hand side term is greater than x as well as append �y� z�
�the last of these by another application of the de�nition of ��� For equation ������

reverse�w � u� � append �reverse�u�� w � nil�

because reverse � append in the precedence order and reverse�w � u� � reverse�u� and
reverse�w � u� � w � nil �reverse � �� reverse � nil and reverse�w � u� � w��
To handle the speci�cation ����� of revap� we must extend the precedence order to

include revap� A good heuristic in choosing precedences is that a symbol f should be
greater than all the symbols that may be introduced during the evaluation of f�t�� � � � � tn��
Since the evaluation of revap�t� u� must not introduce reverse and append � but may
introduce � and nil� we choose the order

reverse � append � revap � � � nil

Since

append �reverse�x�� y� � revap�x� y�

in the extended term ordering� the speci�cation ����� cannot be used left
to
right in eval

uating terms of the form revap�t� u�� This de�nes the problem for the program synthesis
procedure� It must �nd simpler equations which can be used to evaluate revap�t� u��

���� Programs

A rewrite relationE�� is said to be con�uent if� whenever t��

E u� there is a rewrite
proof of t � u� It is said to be ground con�uent if this property holds for all ground
terms t and u� We also say that E is con�uent or ground con�uent �with respect to �
� if these properties hold� Con�uence implies that all terms have unique normal forms�
ground con�uence implies that ground terms have unique normal forms�

�
 N� Dershowitz and U� S� Reddy

Definition ���� An equational program is a �nite set E of equations� together with a
computable complete reduction order �� such that E�� is ground con�uent�

The ground con�uence requirement means that the results of programs are deterministic�
Ground con�uence is not a decidable property �Kapur et al�� ������ On the other

hand� con�uence of rewrite rules is decidable and forms a su	cient condition for ground
con�uence� So� in practice� we use the following method� We divide equational theories
into parts� axioms and inductive theorems� The axioms serve to de�ne the function
symbols and are used in the evaluation of terms� The inductive theorems form additional
knowledge about the problem domain which may be used in program synthesis� If the set
of axioms is ground con�uent� then the full theory with inductive theorems is also ground
con�uent� �See Section ��� Ground con�uence of axioms can then be ensured by checking
con�uence� Of the equations ���������� two ��������� are inductive theorems� The others
de�ne the functions append and reverse� By standard results in rewriting� they form a
con�uent system �no greater side uni�es with a non
variable subterm of a greater side��
Hence� the whole system is ground con�uent�
An equational program is said to be complete with respect to a set of ground input

terms $ and a set of ground output terms % if the normal form of every t in $ belongs
to %� The output terms are typically formed of constructor symbols� such as nil and � in
the case of list axioms� Sometimes� we want to model equivalences over constructor terms
in which case only a subset of constructor terms may be included in %� For example�
considering the axioms ����������� for � in the unary number system� % includes �� �
and m � � where m � %� All other terms� such as m � �� � � m� m � �n � k� must
be reducible� The set of input terms is often the set of all terms� but occasionally we
want to model partial functions or partial axiomatizations of functions� For example� the
natural number axiom ������ only models the true case of comparison� We say that an
axiomatization is total if its set of input terms $ includes all terms� Otherwise we call it
partial�
It is not� in general� possible to specify the sets $ and % in a mechanically veri�able

fashion� but �Dershowitz� ����a� and others give methods for some important cases�

�� Superposition for Deriving Cases

An important component in the informal synthesis procedure outlined in Section � is
the instantiation of equations for the various cases of their variables� Two questions to
be answered in the formalization of the procedure are how to �nd instantiations that
are useful for synthesis� and how to verify that the chosen instantiations are complete�
The informal procedure already gives an indication of the answer to the �rst question�
we should choose instantiations that make further simpli�cations possible� For example�
in the synthesis of revap� we chose instantiations that enable simpli�cation by axioms
���������� For the second question� the general method we use is to assume that the initial
axiomatization is complete �in the sense of Sect� ���� and� then� use this assumption to
�nd complete sets of instantiations� These issues are elaborated in the present section�
Consider a speci�cation t � u� with t and u in normal form� such as�

append �reverse�x�� y� � revap�x� y� �����

The program synthesis task is to derive enough program equations so that every ground
instance of the speci�cation is �covered� that is� every ground instance has an equational

Synthesis of Equational Programs ��

proof� For the sake of argument� assume that we already have the necessary program
equations as a part of the domain theory� Let t� � u� be a ground instance of the
speci�cation that has some equational proof t� �E � � � �E u�� Focus on the �rst step
of this proof� There must be a domain equation l � r �or r � l� such that t� contains an
instance of l �say� at position p�� and the equational proof has the form

t� � t�!l� "p �E t�!r� "p ��

E u� �����

There exists a most general proof schema of this form whose �rst step has the above
structure�

t� � t�!l�"p �E t�!r�"p � u� �����

where � � mgu�l� tjp� is the most general uni�er of l and the subterm of t at p� The
equation t�!r�"p � u� is a new speci�cation equation whose program would be a part
of the overall program� This equation is called a paramodulant of the equations t � u

and l � r� and the operation deriving it is called paramodulation �Robinson and Wos�
����� Brand� ������ For example� paramodulating the revap speci�cation at the subterm
reverse�x� with equations ����� and ������ we can derive the paramodulants�

append �nil� y� � revap�nil� y�
append �append �reverse�w�� u�� y� � revap�w � u� y�

�����

While these two equations su	ce to derive a program for revap� there are many other
paramodulants� For instance� another paramodulant is obtained using ����� right to left�

append �reverse�x�� append �y� z�� ������ append �append �reverse�x�� y�� z�
� revap�x� append �y� z��

In fact� there are in all �� paramodulants using the domain theory ���������&
To cut down this search space� we �rst note that there is no need to paramodulate into

variables �Peterson� ������ That leaves � paramodulants� To cut down further� we use
the ideas of ordered rewriting� Since the domain theory E is ground con�uent� requiring
that t� � u� has an equational proof is equivalent to requiring that it has a rewrite proof
of the form t� �

E v ��

E u�� This allows us to place the following restrictions on the
proof schema ������

� t�!l� "p � t�!r�"p� The �rst step must be a rewrite step�
� t� � u�� This results in no loss of generality because � is a well
founded order and
the rewrite proof will eventually reduce t� to a term smaller than or equal to u��

� � is irreducible� Since E is terminating� every grounding substitution � has a
normal form ��� Thus� t� � u� has a rewrite proof if and only if t�� � u�� has a
rewrite proof�

Lifting these considerations to the paramodulation proof schema�

t�!l�"p �E t�!r�"p � u�

we can impose the following restrictions�

� t�!l�"p �� t�!r�"p� because otherwise t�!l� "p � t�!r� "p�
� t�!l�"p �� u�� because otherwise t�!l� "p � u��
� p is a nonvariable position of t� because otherwise we would be reducing ��

�� N� Dershowitz and U� S� Reddy

Paramodulants satisfying these restrictions are called critical pairs�

Definition ���� A critical pair of equations l � r and t � u �whose variables are
renamed apart� is an equation

t�!r�"p � u�

where � � mgu�l� tjp� for a nonvariable position p of t� t� �� t�!r�"p and t� �� u�� The
inference rule of deriving critical pairs is called �ordered� superposition�

The notion of critical pair in �Knuth and Bendix� ����� is a special case of this where
the two equations participating in the inference are rewrite rules l r and t u� In
that case� the conditions t�!l�"p �� t�!r�"p and t� �� u� are automatically satis�ed�
Applying these ideas to the revap speci�cation� we �nd that� of the �� paramodulants�

there are only three critical pairs� These include the two essential critical pairs ����� and
another one that comes from an overlap with ������

append �reverse�x�� nil� ����� reverse�x� � revap�x� nil�

While this critical pair� reverse�x� � revap�x� nil�� is not necessary for synthesizing a
program for revap� it is still a useful equation� It can serve as the program for reverse
instead of the more elaborate program ������
Though superposition is an essential part of our program synthesis procedure� our

use of it di�ers from its conventional usage in completion or refutational theorem prov

ing �Hsiang and Rusinowitch� ����� Bachmair et al�� ����� Martin and Nipkow� ������
Conventionally� superposition is a forward inference mechanism used to deduce equa

tional consequences of the given theory� In contrast� we use superposition as a backward
inference to reduce a given goal to smaller goals� Another important di�erence is that�
in the conventional framework� superposition is used symmetrically in its two premises�
That is� given two equations� either one can be chosen as l � r and the the other used
as t � u� In contrast� in our case� t � u is always a speci�cation equation and l � r is
a domain fact� We overlap a domain fact with a subterm of the speci�cation� but not
the other way� Thus� in general� the program synthesis procedure does less work than a
completion procedure�
As noted above� some of the critical pairs of a speci�cation equation are necessary for

deriving a program�We now address the question which subset of the critical pairs� if any�
forms a su	cient set of subgoals� Looking back at the cases ������ we can say that these
equations form a su	cient set of subgoals because they are obtained from the speci�cation
����� using the instantiations fx � nilg and fx � w � ug� and these instantiations are
�complete� The following de�nition captures this notion of completeness�

Definition ���� A set of substitutions ' is said to be inductively complete if for every
ground substitution �� there exist � in ' and ground substitution � such that x��

E x��

for all variables x� �If the domain theory is partial� then this must hold for all substitutions
� over input terms��

For example� using the domain theory ���������� the substitutions fx � nilg� and fx �
w � ug form an inductively complete set because all ground substitutions for x reduce to
an instance of one of them�

Synthesis of Equational Programs ��

Notice that it is adequate to restrict attention to irreducible �(s in the above de�nition�
because other substitutions reduce to irreducible ones� We can then simplify the condition
x��

E x�� to x� � x�� �
Using this notion� we can de�ne a rule for reasoning by cases as follows�

Cases
t!r�"�� � u�� � � � t!rk"�k � u�k

t!s" � u

if fli � rigi � E� �i � mgu�li� s�� t!li"�i �� t!ri"�i� t!s"�i �� u�i and f�igi is inductively
complete� That is� given a set of critical pairs of t!s" � u whose overlapping substitutions
form an inductively complete set� we can infer the equation itself� The soundness property
of the inference is as follows�

Lemma ���� Given a Cases inference� if all the ground instances of the premises have
rewrite proofs in E� then all the ground instances of the conclusion have rewrite proofs
in E�

The Cases rule considers superposition at a single position of the given equation� It is
also possible to choose any position on either side of the equation for critical pairs� using
ideas from �Bachmair� ������

Definition ���� A set of equations C is said to be a cover set for an equation t � u

�with respect to E and �� if� for every irreducible ground substitution �� either t� � u�

or there exists an equation r � s �or s � r� in C such that �t� � u���

E �r� � s� � and
max�t�� u�� � max�r�� s� � for some substitution � �

Here� max�t�� u�� is the maximumwith respect to the complete reduction order �� The
general rule for Cases uses a cover set of t � u as premises�

Cases
r� � s� � � � rk � sk

t � u

where fri � sigi is a cover set of t � u� Members of a cover set cannot simply be instances
of the conclusion equation� they should incorporate at least one step of reduction in order
to satisfy the condition max�t�� u�� � max�ri�� si� �� This de�nes a notion of �progress
for the inference�
To formalize this notion� we de�ne a complexity measure for proofs� as in �Bachmair

et al�� ����� Bachmair and Dershowitz� to appear�� Consider a ground proof using E �S
where E is the domain theory and S is some set of equations� We associate with it a
complexity measure in G � f�g ordered by an extension of the reduction order where
t � � for all ground terms t in G� The complexity of a proof step t �E t� is � and
the complexity of t �S t� is max�t� t��� The complexity of a proof is the maximum
complexity of all its proof steps� So� essentially� the complexity of a proof t� � � � �� tn
is the maximum term ti which participates in an�S step and � if there is no such term�

Lemma ���� Given a Cases inference of the above form� for every ground instance t� �
u� of the conclusion� there is an equational proof using the premises and the equational
system E whose complexity is strictly less than that of t��t�u u��

�� N� Dershowitz and U� S� Reddy

Proof� By induction on max�t�� u��� If � is a reducible substitution with � �
E ���

use the inductive hypothesis for t�� � u��� If � is irreducible� by de�nition of cover set�
there is an equation ri � si such that �t� � u�� �

E �ri� � si� � and max�t�� u�� �
max�ri�� si� �� So� the equation t� � u� has a ground proof of the form

t� �

E ri� �ri�si si� �
�

E u�

whose complexity� max�ri�� si� �� is less than max�t�� u��� �

An important question is how to test whether a given set of critical pairs is a cover set�
Several methods are possible� A set of terms called test set may be computed� such that
every irreducible ground term is an instance of some member of the test set �Plaisted�
������ To check if a given set of critical pairs is a cover set� it is enough to see if
each combination of terms from the test set is covered in the overlap substitutions�
For instance� for the domain theory ���������� fnil� w � ug is a test set� This veri�es that
critical pairs ����� form a cover set�
Another method is to use a ground reducibility test� An equation t � t� is said to

be ground reducible if� for every ground instance t� � t��� either t� is identical to t��

or one of them is reducible� In this case� the set of all critical pairs is a cover set� �If
one of them is reducible then the larger one is� Suppose t� is the larger term� If it is
reducible by some domain equation� then t� is covered by a critical pair between the
domain equation and t � t��� The set of all critical pairs is often too large for a cover
set� As we have noted� the critical pair reverse�x� � revap�x� nil� need not be in a cover
set of the revap speci�cation� If extraneous critical pairs are included in a cover set� they
might generate other critical pairs and lead to nontermination� �We present an example of
this situation in Section ��� A useful optimization has been suggested in �Fribourg� �����
K�uchlin� ������ A term is ground reducible if every ground instance is reducible� It su	ces
to consider a subterm s of either t or t� that is ground reducible� Then superposition at
the subterm s is enough to obtain a cover set�
Another optimization was suggested in �Kapur et al�� ������ It is enough to restrict

attention to irreducible substitutions in the de�nition of �ground reducible� Whenever
t � s is not ground reducible� it equates some pair of irreducible ground terms� An
�irreducible ground term test set can be devised to detect this situation� This form of
test set has the property that the equation t � s reduces an irreducible ground term if
and only if it reduces some member of the test set� The advantage of this method is that
the test set is computed only once and reused in each Cases inference� However� this
method still requires all critical pairs to be computed for the cover set�
Other methods for testing ground reducibility may found in �Kounalis and Zhang� �����

Jouannaud and Kounalis� ����� B�undgen and K�uchlin� ������

�� Induction

In synthesizing a program from a speci�cation� we must ensure that the derived
program satis�es the speci�cation� That is� the speci�cation must be an inductive theorem
of the derived program� So� inductive reasoning is an integral part of program synthesis�
In this section� we brie�y outline our inductive reasoning procedure based on term
rewriting induction� This method was �rst presented in �Reddy� ����b� and is based on
the �inductive completion and �proof by consistency methods studied in �Musser� �����

Synthesis of Equational Programs �

Huet and Hullot� ����� Dershowitz� ����� Dershowitz� ����a� Kapur and Musser� �����
Jouannaud and Kounalis� ����� Fribourg� ����� K�uchlin� ����� Bachmair� ������

An equation e is said to be an inductive consequence of an equational system E� written
E j�ind e� if every ground instance e� follows from E� When E is ground con�uent �with
respect to ��� this is equivalent to requiring that e� have a rewrite proof using E� Adding
such an inductive theorem to E does not a�ect its ground con�uence� This is one way to
build ground con�uent equational theories�

The proof of E j�ind e involves three kinds of steps� we can simplify e using the
equations in E� we can instantiate it using the Cases rule of the previous section� or
we can use e as an inductive hypothesis in proving one or more of its cases� Notice
that� whenever we use the Cases rule� we always reduce the instances e� in complexity�
Since simpli�cation and Cases always reduce the ground instances of the equation the
original equation e can be used for simpli�cation of the cases as if it were an �ordinary
equation� This method� sometimes referred to as �inductionless induction� di�ers from
conventional induction in that one never needs to check that the inductive hypothesis
is used for a smaller instance than the one being proved� The proof method itself takes
care of the condition� Such implicit application of induction may also be found in a
variety of program veri�cation methods such as Hoare logic �especially� the treatment of
recursion �Hoare� ������ and �xed point induction �Manna� ����� Scott� ������

We make these ideas precise by the following inference procedure for pairs of equation
sets H and S� We write such a pair as H � S� S is a set of conjectures to be proved and
H is the set of induction hypotheses which may be assumed in the proof of S� The pair
H � S may be read as the judgment �assuming H as induction hypotheses� S� but see
Theorem ��� for a precise statement� The inference rules of the procedure are as follows�

Axiom
H � �

Cases
H � feg � S �C

H � S � feg
if C is a cover set of e

Delete
H � S

H � S � ft � tg

Simplify
H � S � fe�g
H � S � feg

if eE�H�S e�

Subsume
H � S

H � S � ft!l�" � t!r�"g
if l � r in H

Hypothesize
H � S � feg

H � S

The procedure is used by starting with a goal of the form � � S� and using some inference
rule backwards in each step� If� eventually� a goal of the formH � � is obtained� the initial
theorems in S� are all proved and H contains a useful representation of the theorems
as well as any lemmas generated in the process� Simplify allows a conjecture e to be
simpli�ed using equations in E� induction hypotheses in H or other conjectures in S�
��� denotes disjoint union�� Subsume allows an induction hypothesis to be applied
without a concomitant reduction� Note that� in contrast to Simplify� this form of an
application can be done only once for a conjecture� Hypothesize allows one to postulate

�� N� Dershowitz and U� S� Reddy

new lemmas �eureka steps� which may help the proof the theorem� Such lemmas are
introduced either by heuristics or by manual intervention�
Consider proving the associativity property of append using the rewrite program �����

����� and suppose the arguments of append are compared left to right for the lexicographic
path order� We start with the goal�

� fappend �append �x� y�� z� � append �x� append �y� z��g

Using Cases� we can reduce this to

fappend �append �x� y�� z� append �x� append�y� z��g ��
w � append�y� z� � append �nil� append �y� z���

append �w � append �u� y�� z� � append �w � u� append �y� z��

�

The �rst equation simpli�es to the identity append �y� z� � append �y� z� and is deleted�
The second one simpli�es to

w � append �append �u� y�� z� � w � append �u� append �y� z��

Using the inductive hypothesis �by either Simplify or Subsume�� this too reduces to an
identity and is deleted� The inductive hypothesis in H is now an inductive theorem and
it can be added to the underlying equational theory E as a domain fact�
As another example� assume the following program for revap�

revap�nil� y� y

revap�w � u� y� revap�u�w � y�

We would like to prove that it satis�es the correctness condition�

revap�x� nil� � reverse�x�

We start with this as the only conjecture in the goal� However� we immediately notice
that we require a more general inductive hypothesis� Hypothesize another conjecture �to
be proved as a lemma��

revap�x� y� � append �reverse�x�� y�

�We postpone to Section � the issue of how such lemmas may be invented�� Assume
that the function symbols are ordered as revap � reverse � append � � � nil in the
precedence� We can use Cases to reduce the two
equation goal to�

frevap�x� y� append �reverse�x�� y�g ���
�

y � append �reverse�nil�� y��
revap�u�w � y� � append �reverse�w � u�� y��
revap�x� nil� � reverse�x�

��
�

The �rst equation simpli�es to identity and is deleted� The second equation simpli�es to

revap�u�w � y� � append �append �reverse�u�� w � nil�� y�
� append �reverse�u�� w � y�

The two sides are equal by the inductive hypothesis� Finally� the third equation reduces�
using the inductive hypothesis �which is really an inductive �theorem at this stage�� to

append �reverse�x�� nil� � reverse�x�

and this too reduces to identity� The proof is now complete� and we obtain a more general

Synthesis of Equational Programs ��

version of the original equation as a useful rewrite rule to be added to the domain theory
of the program�
To prove the soundness of the induction proof procedure� we need to show that all

ground instances of the equations in S have proofs using E� The last four inference rules
are all instances of the general rule

H � S�

H � S

where S is provable from E �H �S� and any proof step s�S t using S is more complex
than an alternative proof s��

E�H�S� t of the same equation�

Theorem ���� Let H � S be a derivable judgment� If all ground instances r� � s� of
equations in H have proofs using E � S of complexity smaller than that of r� �H s��
then all ground instances of S have proofs using E�

Proof� To simplify the argument we introduce some terminology� We say an equation
r � s �has �strictly� bounded S
proofs if every ground instance r� � s� has a proof
using E�S with complexity �strictly less than� less than or equal to that of r� �r�s s��
�Note that this means� by the replacement property of �� that every ground application
of r � s of the form c!r�" � c!s�" has a proof with complexity less than or equal to
that of c!r�" �r�s c!s�"�� We say r � s �has proofs if every ground instance r� � s�

has a proof using E� So� the statement of the theorem becomes �H has strictly bounded
S
proofs �� S has proofs�
The proof is by induction on the derivation of H � S� It is trivial for Axiom� Suppose

H � � S�

H � S

is an inference� The plan is to show that the hypothesis of the theorem holds for H� � S�

�H� has strictly bounded S�
proofs� whenever it holds for H � S �H has strictly bounded
S
proofs� and that the conclusion holds for S �S has proofs� whenever it holds for S� �S�

has proofs��
For inferences Delete and Hypothesize� the proof is trivial� Consider a Cases inference

Cases
H � feg � S �C

H � S � feg
where C is a cover set for e

Assume that the equations in H have strictly bounded S � feg
proofs� By Lemma ���� e
has strictly bounded C
proofs� So� the equations inH �as well as e� have strictly bounded
S � C
proofs� For the conclusion� if the equations in C have proofs� then e has proofs�
again� by Lemma ����
Next� consider a Simplify inference�

Simplify
H � S � ft� � sg
H � S � ft � sg

where tE�H�S t� and t � s is not in S

Assume that the equations in H have strictly bounded S � ft � sg
proofs� If t E t��
t � s has bounded ft� � sg
proofs� If t H t�� we show below that t � s has bounded
S � ft� � sg
proofs� If t S t�� t � s has bounded S � ft� � sg
proofs� So� in all cases�
the equations in H have strictly bounded S � ft� � sg
proofs� For the conclusion� if
S � ft� � sg has proofs then t � s has proofs by essentially the same argument�

�� N� Dershowitz and U� S� Reddy

To show that t � s has bounded S � ft� � sg
proofs for the case t H t�� consider
a ground instance t� � s� and use induction on max�t�� s��� The instance has a proof
t� H t�� �t��s s�� For the second step� note that max�t��� s�� � max�t�� s��� The
�rst step� by the assumption above� can be replaced by a proof using S � ft � sg with
a complexity strictly less than max�t�� t��� � t�� If this proof contains a step using
t � s� say c!t� "� c!s� "� then max�c!t� "� c!s� "� � t� � max�t�� s��� Since max�t�� s� � �
max�c!t� "� c!s� "� by the subterm property of �� we can conclude� by induction� that
t� � s� has a proof using S � ft� � sg of complexity less than or equal to max�t�� s� ��
By replacement property of �� c!t� " � c!s� " has a proof using S � ft� � sg of complexity
less than or equal to max�c!t� "� c!s� "� which is� in turn� strictly less than max�t�� s���
Instances of Subsume can be veri�ed similarly��

What if a goal of the form H � � cannot be obtained� That means that there is an
equation t � s in S for which none of the rules Cases through Subsume are applicable�
This means� in particular� that there is no cover set C for t � s� We have already
seen that if t � s is ground reducible� then the set of all critical pairs with E would
be a cover set� So� we conclude that t � s is not ground reducible� that is� there is a
ground instance t� � s� such that t� and s� are distinct normal forms by E� Since E is
assumed to be ground con�uent� t� � s� does not follow from E and� hence� t � s is not
an inductive theorem� Thus� whenever an equation t � s cannot be eliminated from S�
we have disproved the equation� Thus� the induction proof procedure is robust� It fails
only if the given conjectures are not inductive theorems� If they are inductive theorems�
the procedure may go on inde�nitely� Postulating appropriate lemmas using Hypothesize
will help complete the proof�

�� Program Synthesis

In this section� we return to the problem of program synthesis� To start with� one
has a speci�cation alphabet � an equational axiomatizationE� and a complete reduction
order � over G �the ground terms over � such that E is ground con�uent� The synthesis
problem is speci�ed in terms of a new� target alphabet �� an equational speci�cation C�
and an extension of the reduction order � to G� �the ground terms over � ��� The
reduction order must be extended to � in such a way that� for each new symbol f in ��
a term containing f is greater than terms constructed from �primitive operations� and
smaller than terms containing speci�cation symbols that may not appear in a program�
For example� considering the synthesis problem for revap� given by ���������� the initial
alphabet consists of reverse� append � � and nil� listed in the decreasing order of
precedence� the alphabet � consists of revap and the precedence order is extended to
reverse � append � revap � � � nil� This indicates that � and nil may appear in the
program for revap� but not reverse or append �
The synthesis task is to derive a program P such that �a� P is a consistent enrichment

of E� that is� not a�ecting the ground equivalences of G that follow from E� and �b�
E �P j�ind S� We have already seen� in Section �� how to verify E �P j�ind S� To infer
P � given only E and S� we run the inductive proof procedure with P as an �unknown�
The axioms E are �xed� so the goal is to �nd P � constructed from primitive operations�
such that E � P j�ind S� The equations t � u in S tha tcannot be eliminated by any
of the inference rules� called persisting equations� require knowledge of P � By accepting
the set of all persisting equations of S as P � we can trivially satisfy the requirement

Synthesis of Equational Programs �	

E � P j�ind S� Of course� not all such P (s satisfy the consistent enrichment condition�
We return to this issue below�
Consider synthesizing revap� The speci�cation is

revap�x� y� � append �reverse�x�� y�

Here� the right
hand side is greater than the left
hand side �because append and reverse
are given higher precedence than revap�� So� the equation cannot be used as the program
for revap� Instead� the synthesis procedure must reduce it to simpler equations that have
instances of revap�x� y� as the greater side� We consider superposition at the subterm
reverse�x�� and derive the following cover set by Cases�

revap�nil� y� � append �nil� y�
revap�w � u� y� � append �append �reverse�u�� w � nil�� y�

At this stage� we have the speci�cation as an inductive hypothesis in H� The cases
simplify to

revap�nil� y� � y

revap�w � u� y� � append �reverse�u�� w � y�

We can use the inductive hypothesis with Simplify to reduce the second right
hand side
to revap�u�w � y�� �This corresponds to a �folding step in the terminology of Burstall
and Darlington �������� No more rules are applicable to these equations� So� the two
orientable equations

revap�nil� y� y

revap�w � u� y� rev�u�w � y�

form the candidate program for revap�
To check for the consistent enrichment condition� we use the following result�

Theorem ���� Let E and E �P be ground con�uent sets of equations over alphabets
and � �� respectively� Then� P is a consistent enrichment of E if� for every ground
instance t� � u� of an equation in P such that t� � u�� either t� contains target symbols
from �� or t� and u� are in the speci�cation language G and t� is reducible by E�

Proof� We show by induction on max�t�� u�� that every ground instance t� � u�

of an equation in P such that t�� u� � G has a proof using E� Assume� without loss
of generality� that t� � u�� By hypothesis� t� is reducible by E� Let t� E s� By
ground con�uence� the equation s � u� has a rewrite proof using E � P � All the �P

steps of this proof necessarily have complexity less than or equal to max�t�� u��� Since
max�s� u�� � t�� we can conclude by induction that� for each P step in the latter proof�
there is a proof using E� Hence� t� � u� has a proof using E� �

We use this result as follows� Given a candidate program P�� we calculate the com

pletion of E � P�� �Only the axioms in E need to be used in the completion� Inductive
theorems in E do not a�ect ground con�uence�� Suppose completion generates a set
E � P�� If all equations t � u in P� are such that t � u and t contains target symbols�
then P� is an acceptable program� �It is enough to ensure that for every equation t � u

in P�� t� � u� only if t contains target symbols� for all substitutions � of speci�cation
language ground terms�� If t and u are in the speci�cation language� then we need to
verify that t � u is an inductive theorem of E� If t is a speci�cation language term� but u

�
 N� Dershowitz and U� S� Reddy

has target symbols� then t � u is a further speci�cation of � and we continue to derive
a program for it�
Thus� synthesis is an iterative process� After �nding a candidate program� adding

it to the axioms generates certain equational consequences� These consequences may
involve problems for further program synthesis� However� we often �nd that no iteration
is needed� For instance� adding the above candidate program for revap to the axioms
generates no new critical pairs� So� this is indeed the �nal program for revap�
As a somewhat intricate example of the synthesis process� consider the problem of

checking two binary trees for the equality of their fringes� �This is a problem considered
by Burstall and Darlington �������� We start with the following axioms �where tip and
� are constructors for binary trees� f denotes the fringe of a tree and 	L is equality
comparison for lists��

f�tip�x�� � w � nil �����

f�tip�x� �w� � x � f�w� �����

f��u � v� �w� � f�u � �v �w�� �����

nil 	L nil � true �����

x � u 	L nil � false �����

nil 	L y � v � false �����

x � u 	L y � v � x 	 y � u 	L v �����

u 	L v � v 	L u �����

�These are used together with the list axioms ����
���� and the propositional axioms in
Table ��� The fringe equality of trees is then speci�ed by

x 	F y � f�x� 	L f�y� �����

The problem is to synthesize a direct program for 	F that does not use f or 	L� We
order the function symbols by the precedence

	L � f � 	F � � � tip � � � nil

and have � order its arguments from left to right� All the axioms are orientable left to
right using this order�
The synthesis proceeds as follows� We can �nd a cover set for ����� by considering

superposition at the subterm f�x� on the larger �right� side of the speci�cation� This
gives the cases �shown after possible simpli�cation steps��

tip�x� 	F y � x � nil 	L f�y� ������

tip�x� �w 	F y � x � f�w� 	L f�y� ������

�u � v� �w 	F y � u � �v �w� 	F y ������

The cases ������ and ������ need further synthesis� This time� we choose f�y� �again on
the larger side� for superposition� This gives the cases�

tip�x� 	F tip�x�� � x 	 x� ������

tip�x� 	F tip�x�� �w� � x 	 x� � nil 	L f�w�� ������

tip�x� 	F �u
� � v�� �w� � tip�x� 	F u� � �v� �w�� ������

tip�x� �w 	F tip�x�� � x 	 x� � f�w� 	L nil ������

Synthesis of Equational Programs ��

tip�x� �w 	F tip�x�� �w� � x 	 x� �w 	F w� ������

tip�x� � w 	F �u
� � v�� �w� � tip�x� �w 	F u� � �v� �w�� ������

At this stage� we have three inductive hypotheses in the H component of the procedure�
������ ������ and ������� The hypothesis ������ has been used in simplifying ������� and
������ in simplifying ������ and ������� The only remaining cases that need further work
are ������ and ������� Program equations for them can be synthesized using the same
process� but we get a clearer program if we �manually� postulate the lemmas�

nil 	L f�x� � false ������

f�x� 	L nil � false ������

These are proved in the standard fashion� Using them to simplify the equations results
in the following �nal program�

tip�x� 	F tip�x�� x 	 x�

tip�x� 	F tip�x�� �w� false

tip�x� 	F �u� � v�� �w� tip�x� 	F u� � �v� �w��
tip�x� � w 	F tip�x�� false

tip�x� �w 	F tip�x�� �w� x 	 x� �w 	F w�

tip�x� �w 	F �u� � v�� �w� tip�x� �w 	F u� � �v� �w��
�u � v� �w 	F y u � �v �w� 	F y

We also obtain the following inductive theorems as by products�

f�x� 	L f�y� x 	F y

x � nil 	L f�y� tip�x� 	F y

x � f�w� 	L f�y� tip�x� �w 	F y

nil 	L f�x� false

f�x� 	L nil false

This example is interesting in that we need to instantiate the variables x and y of the
original speci�cation in a controlled fashion to obtain a valid program� Note that we did
not need to postulate an auxiliary function to calculate the fringe of a list of trees� as
done in �Burstall and Darlington� ������

�� Generalization and Auxiliary Procedures

In this section� we describe some of the heuristics that can be applied to hypothesize
program statements and inductive lemmas�
Suppose we wish to synthesize a program that doubles a natural number �in successor

notation�� without recourse to the addition function� Running the synthesis procedure
with domain equations

x� � � x

x� s�y� � s�x � y�

and speci�cation

x� x � d�x�

�� N� Dershowitz and U� S� Reddy

generates an in�nite set of equations�

d��� � �
s�s�x� � x� � d�s�x��

d�s���� � s�s����
s�s�s�s�x� � x��� � d�s�s�x���

d�s�s����� � s�s�s�s������
���

There is� of course� little one can do with the resultant �program� which is no more
than an in�nite table lookup� fd�si���� � s�i��� � i � �g� What is needed is some way
of guessing the more general equation d�s�x�� � s�s�d�x����
We use two processes to generate hypotheses� The �rst involves generating critical

pairs between equations� the second is a syntactic form of generalization�)a la �Boyer and
Moore� ����� Arsac and Kodrato�� ������ The intuition is that if we are dissatis�ed from
the computational point of view with the equations generated� we look for new equations
between terms containing the de�ned function symbol in the hope of discovering a
pattern� This approach was suggested in �Dershowitz and Pinchover� ������
For the �rst step� we overlap the smaller sides of the equations in the current partial

program� For this purpose we use an ordering under which constructor terms are larger
than terms containing the de�ned function applied to non
base cases� d��� � �� but
s�s���� � d�s����� s�s�s�s������ � d�s�s������ etc� Using the equations in this direc

tion brings patterns involving d to the fore� By overlapping the right
hand sides of
d�s���� � s�s���� and d�s�s����� � s�s�s�s������� we get a critical pair d�s�s����� �
s�s�d�s������� From d�s�s����� � s�s�s�s������ and d�s�s�s������ � s�s�s�s�s�s���������
we get d�s�s�s������ � s�s�d�s�s�������� and so on�
For the second step� we generate most speci�c generalizations of pairs of equations�

by replacing con�icting subterms with a new variable �see �Plotkin� ������� This process
has been called �anti
uni�cation� given two terms s and t� it computes their greatest
lower bound �glb� in the subsumption lattice� The above two critical pairs generate the
hypothesis d�s�x�� � s�s�d�x���� Applying d�x� � x� x� gives s�x� � s�x� � s�s�x� x���
which simpli�es to s�s�x��x� � s�s�x�x��� using the equation x� s�y� � s�x� y�� but
no further �not knowing the inductive theorem s�x� � y � s�x � y��� Note that we are
assuming d�x� � x � x for the purposes of veri�cation� which is the opposite direction
of what was used for synthesis� Were this equation provable by deductive means� we
would be �nished� it is not� so the inductive proof method continues in the same manner�
generating an in�nite sequence of hypotheses�

s�s�x� � x� � s�s�x � x��
s�s�s�s�y�� � y�� � s�s�s�s�y� � y���

���

Clearly� we need to substitute the �missing� lemma s�x� � y � s�x � y� for these
instances� We employ the same generalization methods as for synthesis �see �Jantke� �����
Lange� ������� An additional helpful technique is cancellation� as used in deduction� for
example� in �Stickel� ������ In particular� we can take advantage of constructors� replacing
hypotheses of the from c�s�� � � � � sn� � c�t�� � � � � tn� with n hypotheses si � ti� when the
constructor is free �Huet and Hullot� ������ In the above case� we are free to strip o�

Synthesis of Equational Programs ��

matching outer s(s from the generated hypotheses�

s�x� � x � s�x � x�
s�s�y�� � y � s�s�y� � y�

���

Generalizing� as before� leads to the hypothesis s�x��y � s�x�y�� exactly what we were
looking for�
With this added to the speci�cation� the recursive program

d��� � �
d�s�x�� � s�s�d�x���

for d is �nally proved correct� The �rst equation is a deductive consequence of the
speci�cation� the second is an inductive consequence�
Having succeeded in producing a program for doubling� a recursive program for halving

can be generated from the implicit de�nition

h�d�x�� � x

h�s�d�x��� � x

The following sequence of equations is produced�

h��� � �
h�s���� � �

h�s�s����� � s���
h�s�s�s������ � s���

h�s�s�s�s������� � s�s����
���

These equations suggest at least two hypotheses� namely�

h�x� � h�s�x��
s�h�x�� � h�s�s�x���

The former generalizes the equations

h��� � h�s����
h�s�s����� � h�s�s�s������

but is disproved� since �taking x � s���� it implies that s��� � �� The second hypothesis
is obtained by looking at di�erent pairs of equations ��rst and third� second and fourth�
etc�� and generalizes the equations

s�h���� � h�s�s�����
s�h�s�s������ � h�s�s�s�s�������

It is proved immediately by induction� yielding the correct and complete program

h��� � �
h�s���� � �

h�s�s�x��� � s�h�x��

Most programs require auxiliary procedures� in addition to the speci�ed top
level
program� Two heuristics come into play here� The �rst is to abstract a subterm appearing

�� N� Dershowitz and U� S� Reddy

in a program� creating a subprogram to compute it �cf� �Kodrato� and Picard� �����
Bellegarde� ������� The second is to compute two functions at once� or one function
for two arguments� when expanding �unfolding� the de�nition of one leads to multiple
applications of the same function �cf� �Burstall and Darlington� ����� Feather� �����
Reddy� ����� Bellegarde� �������
For example� suppose we have all three equations for addition� and wish to manufacture

a program q�x� for squaring from the following equations for multiplication�

x� � � �
x� s�y� � �x� y� � x

s�x� � y � �x� y� � y

x� x � q�x�

The synthesis procedure with precedence � � � � q will generate the following facts
�among others��

q��� � �
s��q�x� � x� � x� � q�s�x��

s�s�s��q�s�y�� � y� � y��� � q�s�s�y���

Noting the repeating left
hand side subterm pattern �x�z��z suggests the introduction
of an ancillary function�

�x� z� � z � p�x� z�

Synthesizing p in the same manner as we synthesized d� gives

p�x� �� � x

p�x� s�y�� � s�s�p�x� y���

Letting p be a smaller operator symbol than q �since it is all right for q to be de�ned in
terms of p�� we get

q�s�x�� � s�p�q�x�� x��

With this equation� used from left to right� equations like s�s�s��q�s�y�� � y� � y��� �
q�s�s�y��� simplify away� Together� the equations for p and q constitute a program for
squaring�
Alternatively� suppose we know that � is associative�

�x� y� � z � x� �y � z�

with the left side greater than the right� Then the consequences

s�q�x� � �x� x�� � q�s�x��
s�s�s�q�s�y�� � �y � y���� � q�s�s�y���

suggest the auxiliary function�

x� x � d�x�

That leaves us with the following squaring program�

q��� � �
q�s�x�� � s�q�x� � d�x��

Synthesis of Equational Programs �

	� Discussion

Rewriting is a powerful tool in equational reasoning� in which orderings on terms play
a central role� In ordered rewriting� orderings are used to determine the direction of
computation� by providing a suitable concept of what makes one term �simpler than
another� Ordered rewriting is more �exible than standard rewriting� since it allows the
same equation to be used sometimes in one direction� and sometimes in the other� In
theorem proving� as well� orderings are crucial for incorporating powerful simpli�cation
rules in complete inference systems� Last� but not least� orderings supply us with a basis
for inductive proofs� which are essential for proving properties of programs�
The approach to synthesis described here comprises both formal and informal aspects�

We use equational reasoning and mathematical induction to guarantee correctness of the
synthesized programs� On the other hand� we apply heuristics to suggest equations for
incorporation in developing programs� as well as for forming lemmas needed in inductive
proofs�
We have only considered rewriting with equations� Conditional rewriting and goal

solving may provide a better combination of functional and logic programming than
purely equational programs� see� for instance� �Dershowitz and Plaisted� ������ Con

ditional synthesis� however� would necessitate more powerful deductive and inductive
methods for handling conditional equations� such as have been investigated in �Kounalis
and Rusinowitch� ����� Ganzinger� ����� Bronsard and Reddy� ������ More elaborate
generalization methods would also be required�
An interactive program transformation system called �Focus has been implemented

at the University of Illinois based on the techniques presented here� The system incorpo

rates �oriented rewriting techniques �a special case of the ordered rewriting techniques
considered here� and also several extensions for conditional and �rst
order reasoning� It
has been used to synthesize several interesting examples including some reasonably large
programs �Reddy� ����� Reddy� ����a� Reddy� ������

References

ACM� ��		��� Symp� Partial Evaluation and Semantics�Based Program Manipulation� SIGPLAN
Notices� ���	���		��

Arsac� J�� Kodrato�� Y�� ��	���� Some techniques for recursion removal from recursive functions� ACM
Trans� Program� Lang� Systems� ����� �	�����

Bachmair� L�� ��	���� Proof by consistency� In Symp� on Logic in Comp� Science� IEEE�
Bachmair� L�� Dershowitz� N�� �to appear�� Equational inference� canonical proofs� and proof orderings�

J� ACM� �
Bachmair� L�� Dershowitz� N�� Plaisted� D� A�� ��	�	�� Completion without failure� In A��t�Kaci� H��

Nivat� M�� eds�� Resolution of Equations in Algebraic Structures� volume �� Rewriting Techniques�
chapter �� pages ���
� Academic Press�

Bellegarde� F�� ��		��� Program transformation and rewriting� In Book� R�� ed�� Fourth Intern� Conf�
on Rewriting Techniques and Applications� volume ��� of Lect� Notes in Comp� Science� pages
������	� Springer�Verlag�

Bergstra� J� A�� Klop� J� W�� ��	���� Conditional rewrite rules� Con�uency and termination� J� of
Computer and System Sciences� ��� ��������

Bibel�W�� H�ornig� K� M�� ��	���� LOPS � A system based on a strategical approach to program synthesis�
In Biermann� A� W�� Guiho� G�� Kodrato�� Y�� eds�� Automatic Program Construction Techniques�
chapter �� pages �	�	
� New York� MacMillan Pub� Co�

Bird� R�� Wadler� P�� ��	���� Introduction to Functional Programming� London� Prentice�Hall
International�

Bjorner� D�� Erschov� A� P�� Jones �eds�� N� D�� ��	���� Partial Evaluation and Mixed Computation�
North�Holland�

Boyer� R� S�� Moore� J� S�� ��	���� A lemma driven automatic theorem prover for recursive function
theory� In Intern� Joint Conf� on Arti�cial Intelligence� pages ����	� Cambridge� MA�

�� N� Dershowitz and U� S� Reddy

Brand� D�� ��	��� Proving theoremswith the modi�cationmethod� SIAM J� on Computing� �� ������
�
Bronsard� F�� Reddy� U� S�� ��		��� Conditional rewriting in Focus� In Kaplan� S�� Okada� M�� eds��

Conditional and Typed Rewriting Systems � Second International CTRS Workshop� volume ��
of Lect� Notes in Comp� Science� pages ����� Springer�Verlag�

Bronsard� F�� Reddy� U� S�� ��		��� Reduction techniques for �rst�order reasoning� In Rusinowitch�
M�� R�emy� J� L�� eds�� Conditional Term Rewriting Systems� volume �� of Lect� Notes in Comp�
Science� pages ������� Springer�Verlag�

B�undgen� R�� K�uchlin� W�� ��	�	�� Computing ground reducibility and inductively complete positions�
In Dershowitz� N�� ed�� Rewriting Techniques and Applications� volume � of Lect� Notes in Comp�
Science� pages 	��� Springer�Verlag�

Burstall� R� M�� Darlington� J�� ��	���� A transformation system for developing recursive programs� J�
ACM� ������ ������

Comon� H�� ��		
�� Solving inequations in term algebras �Preliminary version�� In Fifth Ann� Symp� on
Logic in Comp� Science� pages ����	� Philadelphia� PA� IEEE�

Darlington� J�� ��	���� The structured description of algorithm derivations� In de Bakker� J� W�� van
Vliet� J� C�� eds�� Algorithmic Languages� pages �����
� North�Holland�

Dershowitz� N�� ��	���� Applications of the Knuth�Bendix completion procedure� In Proc� of the
Seminaire d�Informatique Theorique� Paris� pages 	����� �Also vailable as Technical Report ATR�
����������� Information Sciences Research O ce� The Aerospace Corporation� El Segundo� CA��

Dershowitz� N�� ��	��� Computing with rewrite systems� Information and Control� �������� �������
Dershowitz� N�� ��	��� Synthesis by completion� In Proc� Ninth Intern� Joint Conf� on Arti�cial

Intelligence� pages �
������
Dershowitz� N�� ��	���� Termination of rewriting� J� Symbolic Computation� �� �	�����
Dershowitz� N�� ��	�	�� Completion and its applications� In Resolution of Equations in Algebraic

Structures� volume �� Rewriting Techniques� pages ������ San Diego� Academic Press�
Dershowitz� N�� Jouannaud� J��P�� ��		
�� Rewrite systems� In van Leeuwen� J�� ed�� Handbook of

Theoretical Computer Science B� Formal Methods and Semantics� chapter �� pages ������
�
Amsterdam� North�Holland�

Dershowitz� N�� Pinchover� E�� ��		
�� Inductive synthesis of equational programs� In Eighth National
Conf� on Arti�cial Intelligence� pages ������	� Boston� MA� AAAI�

Dershowitz� N�� Plaisted� D� A�� ��	���� Equational programming� In Hayes� J� E�� Michie� D�� Richards�
J�� eds�� Machine Intelligence 		� The logic and acquisition of knowledge� chapter �� pages �����
Oxford� Oxford Press� To be reprinted in Logical Foundations of Machine Intelligence� Horwood�

Deville� Y�� ��		
�� Logic Programming� Systematic Program Development� Wokingham� Addison�
Wesley�

Feather� M� S�� ��	���� A system for assisting program transformation� ACM Trans� Program� Lang�
Systems� ����� ���
�

Fribourg� L�� ��	�	�� A strong restriction of the inductive completion procedure� J� Symbolic
Computation� ����� �������

Fronh�ofer� B�� Furbach� U�� ��	���� Knuth�Bendix completion versus fold�unfold� A comparative study
in program synthesis� In Rollinger� C�� Horn� W�� eds�� Proc� of the Tenth German Workshop on
Arti�cial Intelligence� pages ��	��

�

Ganzinger� H�� ��		��� A completion procedure for conditional equations� J� Symbolic Computation� ���
�����

Goldammer�U�� ��		��� A method for the inductive synthesis of rewrite programs based on Knuth�Bendix
completion techniques� GOSLER Report
��	�� Technische Hochschule Leipzig� Leipzig� Germany�

Gramlich�B�� ��	�	�� Induction theoremproving using re�ned unfailing completion techniques� Technical
Report SR�	���� Universit�at Kaiserslautern� Germany�

Hoare� C� A� R�� ��	���� Procedures and parameters� An axiomatic approach� In Engeler� E�� ed��
Symp� Semantics of Algorithmic Languages� volume ��� of Lect� Notes in Math�� pages �
������
Springer�Verlag�

Hogger� C� J�� ��	���� Derivation of logic programs� J� ACM� ������ �����	��
Hsiang� J�� Dershowitz� N�� ��	���� Rewrite methods for clausal and non�clausal theorem proving� In

	
th Intern� Colloq� Automata� Languages and Programming� volume �� of Lect� Notes in Comp�
Science� pages �������� Springer�Verlag�

Hsiang� J�� Rusinowitch� M�� ��	���� On word problems in equational theories� In Ottmann� T�� ed��
	�th Intern� Colloq� Automata� Languages and Programming� volume ��� of Lect� Notes in Comp�
Science� pages ����� Springer�Verlag�

Hsiang� J�� Rusinowitch�M�� ��		��� A new method for establishing refutational completeness in theorem
proving� J� ACM� ������ 	����

Huet� G�� Hullot� J��M�� ��	���� Proofs by induction in equational theories with constructors� J� Comp�
and System Sciences� ��� ��	�����

Huet� G�� Oppen� D� C�� ��	�
�� Equations and rewrite rules� A survey� In Book� R�� ed�� Formal
Language Theory� Perspectives and Open Problems� pages ��	��
� New York� Academic Press�

Synthesis of Equational Programs ��

Jantke� K� P�� ��	�	�� Algorithmic learning from incomplete information� Principles and problems� In
Dassow� J�� Kelemen� J�� eds��Machines� Languages� and Complexity �Selected Contributions of the
th International Meeting of Young Computer Scientists� Smolenice� Czechoslovakia� November
	����� volume ��� of Lect� Notes in Comp� Science� pages �����
�� Springer�Verlag�

Jouannaud� J��P�� Kounalis� E�� ��	�	�� Automatic proofs by induction in equational theories without
constructors� Information and Computation� ��� �����

Kamin� S�� L�evy� J��J�� ��	�
�� Two generalizations of the recursive path ordering� Unpublished note�
Department of Computer Science� University of Illinois� Urbana� IL�

Kaplan� S�� ��	���� Simplifying conditional term rewriting systems� Uni�cation� termination and
con�uence� J� Symbolic Computation� �� �	�����

Kapur� D�� Musser� D� R�� ��	���� Proof by consistency� Arti�cial Intelligence� ������ ������
Kapur� D�� Srivas� M�� ��	��� A rewrite rule based approach for synthesizing data types� In Intern�

Joint Conf� Theory and Practice of Softw� Development �TAPSOFT�� volume ��� of Lect� Notes
in Comp� Science� pages �����
�� Springer�Verlag�

Kapur� D�� Narendran� P�� Otto� F�� ��	���� On ground con�uence of term rewriting systems� Technical
Report ����� General Electric R ! D Center� Schenectady� New York� To appear in Information
and Computation�

Kapur� D�� Narendran� P�� Zhang� H�� ��		��� Automating inductionless induction using test sets� J�
Symbolic Computation� ��� �������

Klop� J� W�� ��		��� Term rewriting systems� In Abramsky� S�� Gabbay� D� M�� Maibaum� T� S� E�� eds��
Handbook of Logic in Computer Science� volume �� chapter �� Oxford� Oxford University Press�

Knuth� D�� Bendix� P�� ��	�
�� Simple word problems in universal algebras� In Leech� J�� ed��
Computational Problems in Abstract Algebra� pages �����	�� Oxford� Pergamon Press�

Kodrato�� Y�� Picard� M�� ��	���� Compl�etion de syst"emes de r�e�ecriture et synth"ese de programmes "a
partir deleurs sp�eci�cations� Bigre� ���

Kounalis� E�� Rusinowitch� M�� ��	���� On word problems in Horn theories� In Kaplan� S�� Jouannaud�
J��P�� eds�� Conditional Term Rewriting Systems� volume �
� of Lect� Notes in Comp� Science�
pages ������
� Springer�Verlag�

Kounalis� E�� Rusinowitch� M�� ��		��� Inductive reasoning in conditional theories� In Kaplan� S�� Okada�
M�� eds�� Conditional and Typed Rewriting Systems � Second International CTRS Workshop�
volume �� of Lect� Notes in Comp� Science� Springer�Verlag�

Kounalis� E�� Zhang� H�� ��	��� A general completeness test for equational speci�cations� In Hungarian
Conference of Computer Science� �Also available as Tech� Report CRIN #��R�
$� University of
Nancy� Nancy� France��

K�uchlin� W�� ��	�	�� Inductive completion by ground proof transformation� In A��t�Kaci� H�� Nivat�
M�� eds�� Resolution of Equations in Algebraic Structures� volume �� Rewriting Techniques� pages
������� San Diego� Academic Press�

Lange� S�� ��	�	�� Towards a set of inference rules for solving divergence in Knuth�Bendix completion� In
Jantke� K� P�� ed��Proceedings of the International Workshop on Analogical and Inductive Inference�
volume �	� of Lect� Notes in Comp� Science� pages �
������ Springer�Verlag�

Manna� Z�� ��	���� Mathematical Theory of Computation� New York� McGraw�Hill�
Manna� Z�� Waldinger� R�� ��	�
�� A deductive approach to program synthesis� ACM Trans� Program�

Lang� Systems� ����� 	
�����
Martin� U�� Nipkow� T�� ��		
�� Ordered completion� In Stickel� M�� ed�� Conf� on Automated Deduction�

Lect� Notes in Comp� Science� pages ������
�
Musser� D� R�� ��	�
�� On proving inductive properties of abstract data types� In ACM Symp� on Princ�

of Program� Lang�� pages ������� ACM�
Nieuwenhuis� R�� Orejas� F�� ��		��� Clausal rewriting� In Kaplan� S�� Okada� M�� eds�� Conditional and

Typed Rewriting Systems � Second International CTRS Workshop� volume �� of Lect� Notes in
Comp� Science� pages ������� Springer�Verlag�

Paulson� L� C�� ��		��� ML for the Working Programmer� Cambridge� Cambridge Univ� Press�
Peterson� G� E�� ��	���� A technique for establishing completeness results in theorem proving with

equality� SIAM J� Computing� ������ ����

�
Peterson� G� E�� ��		
�� Complete sets of reductions with constraints� In Stickel� M�� ed�� 	
th Intern�

Conf� on Automated Deduction� Lect� Notes in Comp� Science� pages �����	�
Plaisted� D�� ��	��� Semantic con�uence tests and completion methods� Information and Control� ���

�������
Plotkin� G�� ��	�
�� Lattice theoretic properties of subsumption� Technical Report MIP�R���� University

of Edinburgh� Edinburgh� Scotland�
Reddy� U� S�� ��	���� Transformational derivation of programs using the Focus system� SIGSOFT

Software Engineering Notes� ����� �������� �Proceedings� ACM SIGSOFT�SIGPLAN Softw� Eng�
Symp� on Practical Software Development Environments� also published as SIGPLAN Notices� Feb�
�	�	��

�� N� Dershowitz and U� S� Reddy

Reddy� U� S�� ��	�	�� Rewriting techniques for program synthesis� In Dershowitz� N�� ed�� Rewriting
Techniques and Applications� volume � of Lect� Notes in Comp� Science� pages �����
�� Springer�
Verlag�

Reddy� U� S�� ��		
�� Formal methods in transformational derivation of programs� Software Engineering
Notices� ������ �
������ �Proceedings of the ACM SIGSOFT Workshop on Formal Methods in
Software Development��

Reddy� U� S�� ��		
�� Term rewriting induction� In Stickel� M�� ed�� 	
th Intern� Conf� on Automated
Deduction� volume ��	 of Lect� Notes in Arti�cial Intelligence� pages �������� Springer�Verlag�

Reddy� U� S�� ��		��� Design principles for an interactive program derivation system� In Lowry� M��
McCartney� R� D�� eds�� Automating Software Design� chapter ��� AAAI Press�

Robinson�G�� Wos� L�� ��	�	�� Paramodulation and theorem�proving in �rst order theories with equality�
In Meltzer� B�� Michie� D�� eds�� Machine Intelligence �� pages ����
� Edinburgh� Scotland�
Edinburgh University Press�

Scott� D�� ��	���� Data types as lattices� SIAM J� Computing� ����� ������
Smith� D�� ��	��� Top�down synthesis of divide and conquer algorithms� Arti�cial Intelligence� �	�

���	��
Stickel� M� E�� ��	���� A case study of theorem proving by the Knuth Bendix method discovering that

x
� � x implies ring commutativity� In Shostak� R� E�� ed�� Proceedings of the Seventh International

Conference on Automated Deduction� volume ��
 of Lect� Notes in Comp� Science� pages �����	�
Springer�Verlag�

Tamaki� H�� Sato� T�� ��	���� Unfold�fold transformation of logic programs� In Intern� Conf� on Logic
Programming� pages ��������

Zhang� H�� Kapur� D�� ��	���� First�order theorem proving using conditional rewrite rules� In Lusk� E��
Overbeek� R�� eds�� �th Intern� Conf� on Automated Deduction� pages ���
� Springer�Verlag�

