The Curse of Dimensionality
(formal definition)

e Stone (1982); Optimal rate of convergence for non-
parametric regression:

n—2p/(2p+d)

e E.g. for dimensionality d = 8, and smoothness p =
2 (p bounded derivatives of the unknown regression
function), a sample of size n > 10° is needed to
make

n—2r/r+d) ~ o7

e T he success of some recent methods suggests that
the bound is not optimal for real world problems

e Motivates search for lower dimensional structure
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What Are Interesting
Directions/How to Reduce
Dimensionality

e Diaconis and Freedman (1984): Non-
interesting — Gaussian projections

e [ herefore, measure some deviation from
Normality

e Concentrate on the center of the distribu-
tion

e Seek distinguishing features between clus-
ters (Discriminant Analysis)
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Second Order Statistics
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Principal Components can not find good projections
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Exploratory Projection Pursuit
(EPP)

e Introduced by Kruskal (1969), Switzer
(1970), Friedman and Tukey (1974).

e Seeks interesting low dimensional projec-
tions of a high dimensional point cloud, by
numerically maximizing a projection index.

e For review see Huber (1985), Jones and
Sibson (1987).
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BCM Neuron and Projection
Pursuit

e A recent variant of the BCM neuron (Bi-
enenstock Cooper and Munro, 1982) vields
synaptic modification equations that max-
imize a projection index (Intrator 1990; In-
trator and Cooper, 1992).

e [ his formulation naturally extends to a lat-
eral inhibition network, which can find sev-
eral projections at once.

N. Intrator PPR Motivation and the BCM Learning Rule (bcm) 5



How Does The BCM Neuron
Reduce Dimensionality

e [ he solution to a 2 dimensional problem
with 2 inputs is either m! which is orthog-
onal to d?2 or m? which is orthogonal to the
input d!

=
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BCM In clustered data

e In a two cluster input problem:

Projections through m'

(0 ) ad
o 1

Projected distribution

e [ he distribution of the projections say
through m! is bi-modal with one mode cen-
tered at zero

e [ his is the general behavior in high dimen-
sional space as well
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BCM Modification Equations

dmi
dt
for ©,, = E[(m - d)?] and ¢(c,®,,) = c(c — O,,).
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Related Computational Issues

e Use of low order polynomial moments —
computationally efficient

e Unsensitive to outliers

e Naturally extends to multi-dimensional pro-
jection pursuit

e Number of calculations of the gradient
grows linearly with the number of projec-
tions sought

e [ he projection index has a stochastic gra-
dient descent version
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Related Statistical Issues

e | ess biased to the class labels, in contrast
to discriminant analysis

e Seeks cluster discrimination not faithful
representation of the data (principal com-
ponents analysis, factor analysis — com-
bines features with high correlation)

e Unlike cluster analysis or multi-dim scaling,
the searches is done in the low dimensional
projection space

e [ he search is constrained by seeking pro-
jections orthogonal to all but one of the
clusters (have a mode at zero). Thus, at
most K optimal projections not ([2() sepa-

rating hyperplanes.
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