The Curse of Dimensionality (formal definition)

• Stone (1982); Optimal rate of convergence for nonparametric regression:

$$n^{-2p/(2p+d)}$$

• E.g. for dimensionality d=8, and smoothness p=2 (p bounded derivatives of the unknown regression function), a sample of size $n\geq 10^6$ is needed to make

$$n^{-2p/(2p+d)} < .01$$

- The success of some recent methods suggests that the bound is not optimal for real world problems
- Motivates search for lower dimensional structure

What Are Interesting Directions/How to Reduce Dimensionality

- Diaconis and Freedman (1984): Noninteresting – Gaussian projections
- Therefore, measure some deviation from Normality
- Concentrate on the center of the distribution
- Seek distinguishing features between clusters (Discriminant Analysis)

Second Order Statistics

Principal Components can not find good projections

Exploratory Projection Pursuit (EPP)

- Introduced by Kruskal (1969), Switzer (1970), Friedman and Tukey (1974).
- Seeks interesting low dimensional projections of a high dimensional point cloud, by numerically maximizing a projection index.
- For review see Huber (1985), Jones and Sibson (1987).

BCM Neuron and Projection Pursuit

- A recent variant of the BCM neuron (Bienenstock Cooper and Munro, 1982) yields synaptic modification equations that maximize a projection index (Intrator 1990; Intrator and Cooper, 1992).
- The projection index emphasizes deviation from normality of a multi-modality type.
- This formulation naturally extends to a lateral inhibition network, which can find several projections at once.

How Does The BCM Neuron Reduce Dimensionality

 \bullet The solution to a 2 dimensional problem with 2 inputs is either m^1 which is orthogonal to d^2 or m^2 which is orthogonal to the input d^1

BCM in clustered data

• In a two cluster input problem:

- ullet The distribution of the projections say through m^1 is bi-modal with one mode centered at zero
- This is the general behavior in high dimensional space as well

BCM Modification Equations

$$\frac{dm_i}{dt} = \mu \ \phi(c, \Theta_m) d_i,$$

for $\Theta_m = E[(m \cdot d)^2]$ and $\phi(c, \Theta_m) = c(c - \Theta_m)$.

In the lateral inhibition network $c_k = m_k \cdot d$;, where

$$\tilde{c}_k = \sigma(c_k - \eta \sum_{j \neq k} c_j),$$

$$\tilde{\Theta}_m^k = E[\tilde{c}_k^2],$$

$$R(w_k) = -\{\frac{1}{3}E[\tilde{c}_k^3] - \frac{1}{4}E^2[\tilde{c}_k^2]\}.$$

$$\dot{m}_k = \mu[\phi(\tilde{c}_k, \tilde{\Theta}_m^k)\sigma'(\tilde{c}_k) - \eta \sum_{j \neq k} \phi(\tilde{c}_j, \tilde{\Theta}_m^j)\sigma'(\tilde{c}_j)]d.$$

Related Computational Issues

- Use of low order polynomial moments computationally efficient
- Unsensitive to outliers
- Naturally extends to multi-dimensional projection pursuit
- Number of calculations of the gradient grows linearly with the number of projections sought
- The projection index has a stochastic gradient descent version

Related Statistical Issues

- Less biased to the class labels, in contrast to discriminant analysis
- Seeks cluster discrimination not faithful representation of the data (principal components analysis, factor analysis – combines features with high correlation)
- Unlike cluster analysis or multi-dim scaling, the searches is done in the low dimensional projection space
- The search is constrained by seeking projections orthogonal to all but one of the clusters (have a mode at zero). Thus, at most K optimal projections not $\binom{K}{2}$ separating hyperplanes.