Approach to Model Fitting

e Models differ by their ability to con-
trol model properties Capacity, Variance,
Bias, Smoothness

e First, capacity should be sufficient

e Second, Variance and Bias should be
addressed separately for optimal perfor-
mance.

Is it easy to control these properties for net-
works?
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Few good words about NN

e Simple model - composition of ridge func-
tion

e Natural for imposing bias via Projection
Pursuit constraints

e Ideal for high dimensional space

e Ideal when linear projections are useful,
e.g., for image recognition

e Simple interpretability as an extension of
logistic regression
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Specific problems to NN
estimation

e Nonidentifiable model: Variability due to
local minima

e Requires special care for high dimensional
optimization

— Adaptation of acceleration methods for
gradient search

— Methods for finding (nearly) global min-

imum

e Since works well in high dim, one tends to
apply directly to the large data representa-
tion (other data representations)
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Variance/Bias Decomposition for
Ensembles
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The first RHS term can we rewritten as
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ARV as a function of ensemble
size and training time
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Different ensembles of two predictors as a function of

training time. The variance goes down as 1/Q.
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Bias Control
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knowledge

e Since we want to use in NN which perform
projection of the input space onto weight
space, we want to find interesting direc-
tions in the data

e Statistical framework for prior knowledge -
Exploratory Projection Pursuit EPP
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