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ABSTRACT 
This review provides an introduction to the use ofparametric modelling techniques f&r time series analysis, and in 

particular the application of autoregressive modelling to the analysis of physiological sign& such as the human 

electroencephalogram. The concept of signal stationarity is considered and, in the light of this, both adaptive models, 

and non-adaptive models employing fixed or adaptive segmentation, are discussed. For non-adaptive autoregressive 

models, the Yule-Walker equations are o!erived and the popular Levinson-Durbin and Burg algorithms are intro- 

duced. The interpretation of an autoregressive model as a recursive digital jilter and its use in spectral estimation 

are considered, and the important issues of model stability and model complexity are discussed. 
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1. INTRODUCTION 

Parametric modelling is a technique for time ser- 
ies analysis in which a mathematical model is fit- 
ted to a sampled signal. If the model forms a good 
approximation to the signal’s observed behavior 
it can then be used in a wide range of appli- 
cations, such as spectral estimation, linear predic- 
tion coding (LPC) for data compression, speech 
synthesis, and feature extraction for pattern classi- 
fication problems. 

The mathematical model that is most widely 
used is a rational transfer function, the exact form 
of which is determined by estimating suitable 
values for its free parameters. If all of these para- 
meters lie in the transfer function’s denominator 
then the model is termed an all-pole or autorepss- 
ive (AR) model, while an all-zero or moving-average 
(MA) model has all of its free parameters in the 
numerator. A model with free parameters in both 
the numerator and denominator is then termed 
a pole-zero or autoregressive moving-average 
(ARMA) model. 

Furthermore, in adaptive models the values of 
the free parameters are updated with the arrival 
of each new data sample, whereas in non-adaptive 
models the parameters are chosen so as to give 

the best fit to a sequence of data samples. Because 
of this, non-adaptive models require that the sig- 
nal is stationq, i.e. that its statistical character- 
istics, such as average amplitude and frequency 
content, do not vary with time. Most signals, 
including speech and the electroencephalogram 
(EEG) , are non-stationary (i.e. they have a time- 
varying frequency spectrum), although they can 
be considered locally stationary over short time 
intervals. For such signals, either an adaptive 
model can be used, or the signal can be divided 
into sufficiently short, quasi-stationary segments 
and a non-adaptive model fitted to each segment. 
The length of these segments can be either fixed, 
typically at 1 s for EEG analysis, or variable, in 
which case the signal is continuously monitored 
for departures from stationarity and segment 
boundaries are placed accordingly.’ 

The key to the performance of parametric mod- 
elling techniques, however, lies in the relative 
effectiveness of the various algorithms that can be 
used to estimate the free parameters. For non- 
adaptive AR models the two most popular algor- 
ithms are the Levinson-Durbin algorithm and the 
Burg algorithm, while for adaptive AR models the 
Kalman filtering algorithm2*3 is commonly used. 
This is summarized in Figure 1. 



I 
autoregressive 

I 
moving-average 

I 
autoregressive moving-average 

non-adaptive adaptive 

Levinson-Durbin algorithm Burg algorithm Kalman filter 

Figure 1 ‘l‘rchniqurc for parametric modelling using a rational tlanufrr function and algorithms for autoqrcssivr parameter rrtimation 

The relative simplicity and reliability of the Lev- 
inson-Durbin and Burg algorithms have made 
non-adaptive AR modelling by far the most popu- 

lar method of time series analysis to date, and it 
is this method that will be considered in the 
remainder of the paper. The development of 
these algorithms in such diverse areas as econ- 
omic forecasting and geophysics, however, has led 
to confusion both in the terminology used and in 
the different perspectives from which the algor- 
ithms are derived. One purpose of this paper is 
thus to streamline the approach to AR modelling 
and algorithm development. The AR modelling 
technique is formulated in Section 2, where the 
Yule-Walker equations are derived and the Levin- 
son-Durbin and Burg algorithms are presented. 
In Section 3 the interpretation of the AR model 
as a recursive digital filter, its use in spectral esti- 
mation, and its stability are considered, while the 
choice of model complexity is investigated in Sec- 
tion 4. Section 5 summarizes the material pre- 
sented in Sections 2-4, and concludes with a few 
comments on adaptive AR modelling. 

2. AUTOREGRESSIVE MODELLING 

The AR modelling technique can be formulated 
either in the frequency domain as a spectral 
matching problem or in the time domain as a lin- 
ear prediction problem.” The latter approach, 
which is more intuitive and will therefore be 
adopted here, assumes that the value of the cur- 
rent sample, s,,, in a data sequence, s,,s,,. . .,s,~, can 
be predicted as a linearly weighted sum of the p 
most recent sample values, s,, _ ,,s,, ~ ?,. . .,s,, ,, 
where p is the model order and is general y r 
chosen to be much smaller than the sequence 
length, N. If $, denotes the predicted value of s,,, 
then this can be expressed as follows: 

s;, = - i a,,,s,, ,, (1) 
I I 

where the weight, nPi, denotes the ith coefficient 
of the pth-order model. This is depicted in &JUTP 
2. The error between the actual value and the pre- 
dicted value is called the forward prediction error, 
P,,,, and is given by 

The mean of the squared prediction errors for the 
entire data sequence, s,, s:, . . . , .s,~, is equal to the 
prediction error power, E, (assuming the missing 
samples prior to s, to be zero in the calculation 
of 5,) 32, . . . , T,,): 

Note that the use of equation (1) assumes that the 
signal being modelled is linear, even though the 
process (or processes) generating it may be non- 
linear, in which case the use of non-linear 
methods to model the signal would perhaps be 
more appropriate. For applications in EEG analy- 
sis, however, a comparison of non-linear fore- 
casting methods versus the predictive perform- 
ance - as given by equation (2) - of AR modelling 
techniques has shown that the latter gives very 
similar, or even slightly improved performance 
over non-linear methods’. 

Given that the technique is a suitable one, 
therefore, an estimate is required of the coef- 
ficients, a,,,,, spy, . . . , u~$,. Typically a least-squares 
error criterion is used, whereby the best fit of the 
@h-order model in equation (1) to a given data 
sequence is obtained by finding the set of coef- 
ficients for which E in equation (3) is minimized. 
This is achieved by setting: 

which yields the following set of p equations in 
p unknowns: 

3 
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(4) 

Solving these for all, up2, . . . , upl, and substituting 
the values obtained back into equation (3) gives 
an expression for the minimum prediction error 
power, denoted by Et,: 

However, given that the autocorrelation function 
of an infinite date sequence, SK,,. . . ,s,, is given 
by: 

R, = pj!$% s,s, - i, for ---co < i <co, 
cc 

n=l 

where & = Ri (i.e. an even function of i) if the 
data sequence is stationary, so the parenthetic 
terms in (4) and (5) are just estimates of the first 
p + 1 terms of the truncated autocorrelation func- 
tion, &, R1, . . . , f$,, using only the finite data 
sequence, s], s2, , . . , sN: 

for05 ispand 1 ‘jlp,. (6) 

where the missing samples prior to s1 are assumed 
to be-zero, as in (3). The use of 1 i - ~1 indicates 
that & -II depends on the difference between i 
and j (assuming stationarity) and not on their 
individual values. Substituting the values of &, RI, 

5) , and . , &, obtained using (6) into (4) and (, 
rearranging (4) in matrix form gives: 

& . . . & 

I$ . . . R? 

4 

(7) 

The error between the actual value and the pre- 
dicted value in this case is called the backward p-e- 
diction error, bpn: 

P 
Alternatively, the matrix equation in (7) can be 
augmented to include the expression for Ep: 

bpn = s, ~ p - s;, - p = sn - p + c +A ~ p + ? (9) 
i= 1 

1 

UP1 

UP2 

UPP 

-% 

0 

= 0 

0 

- (8) 

Equations (7) or (8) are called the Y&J-WulFzer 
equations, and describe the p unknown AR coef- 
ficients in terms of the p + 1 estimated autocorre- 
lation coefficients. Solving the Yule-Walker equa- 
tions for upl, up2, . . ., upp is termed the 
uutocomelution method of AR parameter estimation 
and can be accomplished using a standard tech- 
nique such as Gaussian elimination6 or a recur- 
sive technique such as the Levinson-Durbin ulgor- 
ithm4. The latter approach is computationally 
more efficient since it exploits the fact that the 
autocorrelation matrix on the left-hand side of 
equation (7) or (8) is both symmetric and a Toe- 
plitz matrix (i.e. the terms along any diagonal are 
the same). The algorithm, which is shown in Fig- 
ure 3, solves the Yule-Walker equations for each 
value of the model order from m = 0 to m = p. 
On each pass through the algorithm the estimated 
autocorrelation coefficients are used to generate 
a single, new coefficient, umm. The remaining coef- 
ficients, a,,, um2, . . . , umcm - ri, are then generated 
recursively from their (m - 1) th-order values, 
a(,- 1)lY qm- 1)2, . . . 7 qm- l)(m- l)? which are 
known from the previous pass through the algor- 
ithm. The expression for umj in Figure 3 is called 
the Levinson recursion, and will be used again 
later on. 

The algorithm thus calculates the parameter 
sets, L%l, {all, 41, {a21, Q+,,, &A, and so on, for all 
of the lower order fits, m < p, to the data until the 
desired solution, {a ,, up2, . . . , a#, Ep], is obtained. 
Note that m = 0 escribes a zeroth-order model cf 
which does no prediction at all, so that E;, is simply 
the power in the data sequence, sl, s,, . . . , sN, and 
this in turn is equal to the zeroth autocorrelation 
coefficient, &, in equation (6). The intermediate 
values, k,, in Figure 3 are called the rejection, or 
partial correlation (PARCOR) coefficients, and can 
be interpreted as the partial correlation between 
s, and s~+~ holding s,+~, s,+~, . . . . sn+m-l 
constant. 

Once the coefficients, upI, upz, . . . , upp, have 
been obtained, the AR model can be applied to 
the same data sequence, s,, s,, . . . , s,, but in the 
reverse direction. This is shown in Figure 4, where 
the value of the sample, s,- 
“predicted” as a linearly werg 3 

is retrospectively 
ted sum of the p 

future samples, s,+,+ 1, s, _ p + 2, . . ., s,: 

fnep = - f: upisn-p+? 

i= 1 

4 



Initialisation : 

For rn = 1,2, . ..?p. 

m-l 

I;, zz - km’+ C a(m-l);Rm-i Em-1 
i=l I/ 

Gnrn = km 

ami = a(m-l)i + atnma(m-1)(,-i), for 1 < i < m - 1 

Em = (I- k,$%-1 

Figure 3 The I,winson-Durbin algorithm 

Figure 4 Forward and backward linrar prediction 

(Note that although this describes the prediction 
error for S, p it is denoted by b 

cr 
and not 

b!,(” - PI as might intuitively be expecte , this pecul- 
iar notation is just a mathematical convenience to 
simplify the expressions that follow.) Further- 
more, the fact that the AR coefficients were gener- 
ated using the Levinson recursion in J@-ure 3 
enables the following recursive relationships to be 
derived (see Appendix) between the forward pre- 
diction error in equation (2) and the backward 
prediction error in equation (9): 

f? pn = “cp 1 ) N + appb,l, - I)(?, I) (10) 

b,,, = b,,, I ) ( ,I I 1 + al,p7 ,, ~ I ) ,). (11) 

These relationships express the pth-order predic- 
tion errors for s, and s,~ ~ ,,, in terms of their corre- 
sponding (p - 1) th-order prediction errors, and 
lead to a second, superior technique for AR para- 
meter estimation called the maximum entropy 
method (MEM). Like the autocorrelation method 
described above, the maximum entropy method is 
a recursive estimation technique based on a least- 
squares error criterion. However, in the derivation 
of the Yule-Walker equations, the range of the 
summatiqn in the expressions for E in equation 
(3) and 4, il in equation (6) implicitly assumes 

that the data outside the interval, s,, sZ, . . . , sh,, 
are zero. Since this is almost always an unrealistic 
assumption, the maximum entropy method 
restricts the range of the summation so as to use 
only the available data. Furthermore, instead of 
minimizing only the forward prediction error 
power, the maximum entropy method seeks to 
minimize the mean of both the forward and back- 
ward prediction error powers: 

fi,‘ = 1-- A’ 
c (f$,, + $,J, 2(N- P),, = ,,+ , (15.3 

subject to the constraint that the AR coefficients 
are updated using the Levinson recursion. This 
constraint enables the recursive relationships in 
equations (10) and (11) to be used, so that equ- 
ation (12) can be expanded as follows: 

1 
.‘I 

I:‘= 2(N- p) ~ 
__--- c (b,, I ) I, + ~~pp4p 1 ) (II I 1 I 2 

n ! ’  + ’ + [b,,, I) (,I - 1, + $+,/‘QJ - 1) ,!I ‘1. 
This is a function of the unknown coefficient, a#, 
and the (p - 1) th-order forward and backward 
prediction errors, which are known from the pre- 
vious pass through the algorithm. b: can thus be 
minimized by setting: 

which yields 

Using equation (13) in place of the correspond- 
ing expression in the Levinson-Durbin algorithm 
and adding the extra recursions for rP,& and bpn 
yields the Burg algorithm’ shown in FQure 5. An 

5 
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Initialisation : 

eon = bon = sn, for l<n<N 

For m= 1,2,...,p: 

N N 

km = -2 C b(m--l)(n--l)qm-lfn 

I 
c [b&x-1)(,-l) + gn-1)7&l 

n=m+l n=m+l 

am, = km 

ami = a(,-1)i + %ma(m-l)(m-i), for l<i<m-1 

Em = (l- k,!$&,-l 

emn = q,-l), + ammb(m-l)(n-l~, for l<n<N-m 

b mn = +,-1)(,+-l) + amme(m-l)n, for I<n<N-m 

Figure 5 The Burg algorithm 

additional step can also be included in the Burg 
algorithm that .reduces the computational com- 
plexity of equation (13) by calculating the 
denominator recursively? 

denP = dena- 1[1 - a$- l)(P- 1) 1 

- ?p- l)(N-p) - 4P- l)P’ 
where den,, = 2&Nfrom equations (12) and (13). 

ePn 

3. SPECTRAL ESTIMATION AND MODEL 
STABILITY 

By rearranging the expression for the forward pre- 
diction error in equation (2) the AR model can be 
viewed as an all-pole, or infinite-impulse-response 
(IIR) filter whose current output, s,, is a function 
of both the p most recent outputs, S, _ 1, s, - 2, . . ., 
% - p’ and the current input, e*: 

s, = S;, + epn = - 9 upis, - j + epn. (14) 
i= 1 

This is shown in Figure 6. For applications such as 
EEG analysis, where the output signal is the 
observed EEG, the input signal is inaccessible and 
hence unknown. However, if the assumption 
made at the beginning of the previous section is 
correct (i.e. that s, is predictable from a linearly 
weighted sum of S, - 1, h-2, * * * 9 S, - p.), then the 
predicted values, $, %, . . . , &, can be Interpreted 
as the true, underlying signal, while the actual 
values, sl, s,, . . . , s,, can be regarded as these pre- 
dicted values corrupted by additive white noise 
which, being uncorrelated and therefore unpre- 
dictable, gives rise to the prediction errors, 

Figure 6 The interpretation of an autoregressive model as an all- 
pole filter 

epl, ep2, . . -, epM The assumption just referred to 
can thus be rephrased with respect to Figure 6, in 
which it is assumed that the output sequence, 
Sl, $2, * * * , s,, is the result of using a pth-order AR 
model to filter a white noise input sequence, 
epl, ez,. . . , eN- 

d $ 
It follows that when fitting an AR 

mo el to a ata sequence, any departure of the 
prediction errors away from a white noise 
sequence can be used to indicate the goodness of 
fit of the model to the signal. 

Despite this observation, it is a commonly held 
misconception that the application of AR model- 
ling to EEG analysis is useful even if the prediction 
errors are correlated, since they can then be inter- 
preted as the underlying “input signal” which, 
when filtered by the AR model, produces the 
observed EEG. This physiological interpretation 
of the AR model-whereby both the filter charac- 
teristics and the input signal are simultaneously 
revealed-is clearly incorrect, however, since a 

6 



spaced or otherwise-in the interval, 0.0 5 /I 0.5 
(where f is normalized with respect to the sam- 
pling frequency). Conversely the periodogram is 
a discrete spectrum, evaluated only at the N uni- 
formly spaced (i.e. harmonically related) fre- 
quencies, f,, = n/N, where n = 0, 1, , N - 1. 
The spacing between these frequencies is there- 
fore determined by the sequence length, N, and 
if this spacing is large (i.e. the sequence length is 
short) the periodogram may fail to resolve spec- 
tral peaks that are close together. Application of 
the periodogram method to non-stationary signals 
such as the EEG thus involves a trade-off between 
the requirements of a short sequence length to 
ensure stationarity and a long sequence length to 
ensure good frequency resolution. The FFT 
additionally requires N to be a power of two 
(unlike the Levinson-Durbin and Burg 
algorithms), although this constraint is less of a 
problem in practice. 

For short sequence lengths, the sparseness of 
the frequencies, j;?, in the periodogram also makes 
the shape of the spectrum difficult to discern, 
particularly if these frequencies do not coincide 
with the dominant frequencies in the signal. Such 
ambiguity can be avoided by augmenting the N 
original data samples with extra zeros. The num- 
ber of zeros must be such that the extended 
sequence length is still a power of two, as required 
by the FFT, so typically iv, 3N, or 7N zeros are 
used. Zero padding smooths the spectrum by 
interpolating extra frequency values between the 
.V unpadded values, although it noes got improve 
the underlying frequency resolution I”. 

To illustrate these points, I;ig-l~r 7((c) shows the 
ideal spectrum of a data sequence consisting of 
three superimposed sinusoids at frequencies of 
0.10,0.20, and 0.21 times the sampling frequency, 
corrupted by wide-band coloured noise. I;igures 
7(h)-u) are estimates of this spectrum obtained 
from 64 samples of the data sequence. the values 
of which are tabulated elsewhere”‘. 

The periodogram in F@m 7(h) was generated 
using a 256-point FFT in which the original 64 
data samples were appended with 192 zeros. The 
periodogram has failed to resolve the two sinu- 
soids at 0.20 and 0.21, and is heavily distorted by 
sidelobe leakage. The latter effect 1s due to the 
inherent rectangular windowing of the data 
sequence by the FFT, which makes the unrealistic 
assumption that samples outside the sequence are 
zero. Indeed, the main lobe of the smaller spectral 
peak at 0.10 in I~‘QzuP 7(6) is almost obscured by 
sidelobe leakage from the larger peak at 0.20. 
Sidelobe leakage can be reduced by applyin a 
symmetric, tapered window - such as a Hamming 
or Hanning window’ ’ - to the data sequence prior 
to performing the FFT, although this unfortu- 
nately reduces the frequency resolution of the 
periodpgram still fL-ther. QWP 7(c) shows the 
2.56-pomt FFT obtained when a Hamming window 
is applied to the original 64 samples prior to 
zero padding. 

The spectra in &XWS i’(n)-(l) were obtained by 
fitting a 14th-order AR model to the data 
sequence. In Fipw 7(d) the I,evinson-Durbin 

correlated sequence of prediction errors simply 
reflects the poor fit of the model to the data. 

SpectraJ estimation 

The AR filter described by equation (14) can be 
specified in the frequency domain by taking the 
z-transform of the original expression in equation 
(2). If E(z) and S(z) are the z-transforms of 
;c,,l~J, . . . , Y,,,~ and s,, ,J~, . . . , .s\. respectively, 

b;(z) = A(z)S(z), where A(z) = 1 + i a,,,~ ’ 
,= I 

/L-I(~) = yj zz 1 1 + i u,,,z-’ . 
1 z 

,= I 

(15) 

A ‘(z) is the AR model’s transfer function, usually 
denoted by H(z). Its frequency response, H(o), is 
determined by evaluating H(z) along the unit cir- 
cle in the z-plane, where .z = eiW’ for a sampling 
period, 7: Furthermore, if E(z) is a white noise 
input sequence then its spectrum, E(o), will be 
flat and the spectrum of the output sequence, 
S(o) = H(w)& w), will be equal to H(w) scaled 
by the constant, E(o) = l$,T In practice, however, 
i”:(z) only approximates a white noise sequence 
and so S(o) can only be estimated. This estimate, 
s(w), is given by: 

The assumption on which the AR modelling tech- 
nique is based can now be rephrased in the fre- 
quency domain, where it is assumed that the flat 
spectrum of the white noise input sequence is 
“coloured” by the AR model to produce an output 
spectrum of the desired shape. Factorization of 
the denominator in equation (16) also reveals 
that depending on the values of the AR coef- 
ficients, the denominator may be zero 
(corresponding to infinite power) at certain, dis- 
crete frequencies. This makes AR modelling parti- 
cularly suited to the types of signal that occur in 
nature, such as speech, EEG, and seismic data, 
since these tend to be characterized by their domi- 
nant frequencies (i.e. sharply defined spectral 
peaks), rather than by the absence of power at 
certain frequencies (spectral notches) which can 
be shown to be better approximated by an MA 
model”. The more general ARMA model is appro- 
priate if the spectrum is thought to contain both 
peaks and notches, although this requires an 
additional set of coefficients to be estimated for 
the MA part and involves the solution of compli- 
cated non-linear equations”~“‘. 

AR spectral estimation often gives a very sig- 
nificant improvement in frequency resolution 
compared to the traditional periodogram method 
as im lemented 

P 
by the fast Fourier transform 

(FFT) ‘. The estimated AR spectrum of a data 
sequence, ,s,, ,s?, . . . , ,s,\, is a continuous function 
of frequency and can thus be evaluated numeri- 
cally at any number of frequencies-uniforml!, 
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(a) ideal spectrum (b) periodogram method 

(d) autocorrelation method 

(c) periodogram method 
with Hamming window 

(e) autocorrelation method 
with Hamming window 

(f) maximum entropy method 

Figure 7 A comparison of spectral estimation methods 

algorithm was used to estimate the AR para- 
meters, but since the autocorrelation method 
makes the same zero-valued assumption for data 
samples outside the sequence as the periodogram 
method, the spectrum is smeared and the sinu- 
soids at 0.20 and 0.21 are not resolved. The 
absence of sidelobe leakage from the spectrum is 
in contrast to the periodogram method, however, 
and this can be shown to be due to the implied, 
non-zero extrapolation of the estimate-d autocor- 
relation function beyond the values of &, RI, . . . , 
Rp used in the Yule-Walker equations”. Applying 
a Hamming window to the data sequence prior to 
using the Levinson-Durbin algorithm enables all 
three sinusoids to be resolved, as shown in Figure 
7(e). In Figure 7v) the Burg algorithm was used to 
estimate the AR parameters. This not only yields 
the best spectral estimate but also removes the 
need for windowing, since the maximum entropy 
method makes no assumptions about samples out- 
side the data sequence. 

A less obvious advantage of AR spectral esti- 
mation over the periodogram method is that very 
few cycles or even fractions of a cycle-with a 
wavelength longer than the sequence length-can 
often be reliably detectedlO. Also the inclusion of 
a noise term, ePn, in the AR model means that the 
estimated spectrum is smooth, since its shape 
depends only on the values of uPi, uPn, . . . , uPP 
used to model the signal. The absence of a noise 
term in the periodogram method means that both 
the signal and noise are fitted, so that to smooth 
out random fluctuations in the raw periodograms 
due to noise, some form of averaging (e.g. over 
consecutive, usually overlapping segments) must 
be used. The main advantage of the FFT over AR 
spectral estimation is its computational efficiency. 
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Stability 

The interpretation of an AR model as an IIR filter 
raises the question of its potential instability. This 
depends on the values of uPi, uPZ, . . . , up,, gener- 
ated by the Levinson-Durbm or Burg algorithm, 
and although both algorithms are guaranteed to 
yield algebraically stable models, numerical insta- 
bility can still arise due to the accumulation of 
round-off errors in finite word length compu- 
tations. The condition for the stability of an AR 
model is the same as for an IIR filter, namely that 
the poles of H(z) in (15)-which correspond to 
the roots of the polynomial, A(z), in its denomi- 
nator-all lie on or inside the z-plane’s unit circle. 
Whether this condition is met can be established 
using a standard numerical technique, such as 
Laguerre’s method6, to solve the transfer func- 
tion’s characteristic equation: 

1 + i up’%-L = 0, (17) 
i= 1 

but this is computationally expensive. It can be 
shown, however, that an alternative condition for 
an AR model’s stability is that the magnitude of 
each reflection coefficient is less than or equal 
to unity”: 

IrZJ 51, for 1 I ml p. (18) 

Inspection of the algorithms in Figures 3 and 5 
reveals that an equivalent condition for stability is 
that the prediction error power is non-negative: 

Em 2 0, for 1 5 m 5 p. (1% 

The stability of the model can thus be monitored 
during the execution of the Levinson-Durbin or 



Burg algorithm at no extra cost. An unstable 
model can then be made stable by finding the 
roots of equation (17) and either moving the 
unstable roots onto the unit circle or reflecting 
them across it, before finally reconstructing the 
modified AR coefficients. An unstable root, z,, is 
moved onto the unit circle using z, - z,//z,, or 
reflected across the unit circle using z, - l/z*,, 
where z*, is the complex conjugate of z* The latter 
solution has the admntdge that the magnitude of 
the frequency response, as given by equation (1 ci), 
remains the same. 

4. MODEL ORDER ESTIMATION 

An issue that is of central importance to the suc- 
cessful application of AR modelling is the selec- 
tion of an appropriate value for the model order, 
p. This depends upon both the subsequent appli- 
cation and the complexity of the signal from one 
segment to the next. In spectral estimation, for 
example, the accuracy of the estimated spectrum 
is critically dependent upon the model order that 
is chosen. Enough poles must be used to resolve 
all of the peaks in the spectrum (two poles per 
sinusoid) with additional poles added to provide 
general spectral shaping and to approximate any, 
notches in the spectrum. Too high a value of 
model order over-fits the signal and introduces 
spurious detail such as false peaks into the spec- 
trum, whereas too low a value produces a spec- 
trum that is over-smoothed. Alternatively, the 
model order required for dimensionality 
reduction in pattern classification problems 
depends upon such factors as the distance in 
input space between the pthdimensional patterns 
for each class and their degree of overlap. 

Although the correct model order for a given 
data sequence is not known in advance, it is desir- 
able to minimise the model’s computational com- 
plexity by choosing the minimum value of p that 
adequately represents the signal being modelled. 
Determining this value is often based upon a 
goodness-of-fit term such as the prediction error 
power, K,,. In this respect, the recursive nature of 
the Levinson-Durbin and Burg algorithms is a 
particularly useful property, as either algorithm 
can be used to generate progressively hjghel 
order models until the curve defined by I:,, &, 
. . . ) fi,, either flattens out or reduces to an accept- 
able value. Since the fit of the model improves as 
the model order increases, however, the curve of 
prediction error power is a non-increasivg func- 
tion of p and the optimum model order 1s rarelv 
apparent from inspection of the error value’s 
alone. For this reason more objective methods for 
model order estimation have been proposed that 
combine a goodness-of-fit term with a cost func- 
tion that penalizes some measure of the model’s 
complexity, i.e. some function of p. Such methods 
include criteria based on predictive performance 
such as the Akaike information criterion (AIC) “, 
the criterion autoregressive transfer function 
(CAT)“’ and the final prediction error (FPE) cri- 
terion”‘. The latter, for example, is defined as: 

(20) 

where the cost function in parentheses is a mono- 
tonically increasing function of p that penalizes 
higher order (i.e. more complex) models. The 
optimum model order is then the value of p for 
which FPE@) is minimized. 

Criteria based on stochastic complexity such as 
the minimum description length (MDI,) cri- 
terion’.;’ and the predictive least-squares (PLS) cri- 
terion’ti, have also been proposed, along with 
others based on singular value decomposition 
(ND)!‘.” and Bayesian inference’“. A good review 
of these criteria is given elsewhere’“. 

The use of the FPE criterion is illustrated in I;is- 
NW 8 for an automated sleep analysis system’“,g’ in 
which the coefficients of an AR model form the 
input features to a neural network. Sections of 
EEG which were unanimously classified by three 
human experts as either wakefulness, rapid-eye- 
movement (REM) sleep, or deep sleep were div- 
ided into l-s segments and an AR model was fitted 
to each segment. In total, 4800 s of each class were 
collected and the corresponding sets of AR coef- 
ficients were used to train and test the neural net- 
work. 

To determine a suitable value for the AR model 
order, the Levinson-Durbin algorithm was used 
to calculate values of El, K2, . . . , b&, fi)r each of 
the 4800 s from each class. The mean values are 
plotted for each class as the three solid lines in 
Fi~gzm K, and it is noticeable that all three curves 
start to flatten out after about p = 5. 

The corresponding values of the FPE are plot- 
ted as circles in Z@UW 8 and give optimum model 
orders, as indicated by the arrows, of 6 for wake- 
fillness, 5 for REM, and 3 for deep sleep. These 
values should not be considered definitive, how- 
ever, since calculating the FPE on a second-by- 
second basis gives the distributions of optimum 
model order shown in the histograms of I;i~r~ 9. 
These indicate the number of seconds out kf 4800 
fi)r which p = 1, 2. . . , 30 is the optimum model 
order, and demonstrate that if the values sug- 
gested by I;iguru 8 are used then much of’ the wake- 
fi’lness and REM data will he either o\,cr-fitted or 
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Figure 9 The distribution of optimum model order on a second- 
by-second basis 

under-fitted (this is not true of deep sleep, how- 
ever, since its histogram is sharply peaked). It may 
thus be more appropriate to use those values that 
either optimally fit the most data-corresponding 
to the modes of the distributions in fipre 9-or 
over-fit as much data as they under-fit, corre- 
sponding to the medians of the distributions. 

Figure 10 shows a human-scored hypnogram for 
a whole night’s sleep recording. This divides the 
recording into 30-s epochs and then assigns each 
epoch to one of seven classes using a set of stan- 
dardized sleep-scoring ruleP. These classes corre- 
spond to wakefulness, movement (when the EEG 
is too corrupted to be reliably scored), REM, and 
four stages of progressively deeper sleep. The vari- 
ation in optimum model order on a second-by- 
second basis is plotted below the hypnogram, and 
shows both the drop in model order associated 
with the initial descent from wakefulness into 

hypnogram 

Figure 10 The variation of optimum model order with sleep stage 
for a 7.5 h EEG recording 

deep sleep, and the subsequent rise and fall in 
model order in phase with the regular modulation 
of REM and deep sleep. 

The above example demonstrates the non-triv- 
ial nature of the model order selection problem. 
Moreover, since the number of inputs to a neural 
network must remain fixed, the model order used 
for feature extraction must also be fixed, regard- 
less of the non-stationarity of the EEG and of the 
associated variations in optimum model order 
with time. A compromise can be found, however, 
by choosing the value of p that minimizes a cri- 
terion appropriate for quantifying the neural net- 
work’s performance: for example, the classifi- 
cation error rate on a cross-validation data set. 

5. DISCUSSION 

The purpose of this review has been to provide 
an intuitive and usable introduction to the very 
popular technique of autoregressive modelling, 
and to locate this within the wider framework of 
parametric modelling techniques in general. The 
two most popular and well-established methods 
for AR parameter estimation are the autocorre- 
lation method, in which the Yule-Walker equa- 
tions are solved using the Levinson-Durbin algor- 
ithm, and the maximum entropy method, as 
implemented by the Burg algorithm. The corre- 
spondence between AR modelling and IIR fil- 
tering highlights the need to monitor the model’s 
stability, and also leads to an understanding of its 
use in spectral estimation. Indeed, the advantages 
of AR spectral estimation over the FFT are mani- 
fold, particularly when using the Burg algorithm 
and when analysing short data sequences 
demanded by non-stationary signals. 

A variation on the Burg algorithm can be 
obtained by removing the constraint that the AR 
coefficients are updated using the Levinson 
recursion and minimizing the expression for the 
mean of the forward and backward prediction 
error powers in equation (12) with respect to all 
of the coefficients, uPr, uPZ, . . . , a 

f 
rather than 

just c+,. Algorithms which follow t 1s strategyN2”,24 
tend to yield marginally better spectral estimates 
than the Burg algorithm, but their solutions are 
computationally more expensive and are not 
guaranteed to be algebraically stable. 

To track non-stationarities in the signal on a 
time scale shorter than the segment size, consecu- 
tive segments can be made to overlap, typically by 
half their length. However, in such situations it is 
often better to use an adaptive model such as the 
Kalman filter,3 in which the values of the AR coef- 
ficients are updated on a sample-by-sample basis, 
with the update being proportional to the differ- 
ence between the actual value of the current sam- 
ple and its predicted value using the present set 
of coefficients. The advantage of adaptive model- 
ling is that it can be applied to non-stationary sig- 
nals without segmentation, although the disadvan- 
tages are that it is computationally more expensive 
than non-adaptive modelling. Adaptive models 
also produce more data than they consume (i.e. 
p coefficients per sample compared to p coef- 
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ficients per N samples for non-adaptive models) 
so that for some applications the sets of AR coef- 
ficients may need to be averaged. 
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APPENDIX 

Derivation of the recursive relationships 
between q,,, and b,,, 

From equation (2) : 

Q,, 
-4 = .A,, - - I$,, 5 I, I 

= ,., 3- ‘c /I,,,.!,, , + (‘/‘/J,! , 

$1 i’ : 
= 5,s + - “ii’ I ,,‘,, / + qqh, i’ + s (I, I, I #,/ ,,.(,, (1 t I , 

/’ ’ 
~ Q/, I, ,, + “/‘/A ),, ,i + c (I,,, I ,‘,’ ,,‘,, II 

However: 
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