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Abstract: A brain-computer interface (BCI) is a hardware and software communications 
system that permits cerebral activity alone to control computers or external devices. The 
immediate goal of BCI research is to provide communications capabilities to severely 
disabled people who are totally paralyzed or ‘locked in’ by neurological neuromuscular 
disorders, such as amyotrophic lateral sclerosis, brain stem stroke, or spinal cord injury. 
Here, we review the state-of-the-art of BCIs, looking at the different steps that form a 
standard BCI: signal acquisition, preprocessing or signal enhancement, feature extraction, 
classification and the control interface. We discuss their advantages, drawbacks, and latest 
advances, and we survey the numerous technologies reported in the scientific literature to 
design each step of a BCI. First, the review examines the neuroimaging modalities used in 
the signal acquisition step, each of which monitors a different functional brain activity such 
as electrical, magnetic or metabolic activity. Second, the review discusses different 
electrophysiological control signals that determine user intentions, which can be detected 
in brain activity. Third, the review includes some techniques used in the signal enhancement 
step to deal with the artifacts in the control signals and improve the performance. Fourth, 
the review studies some mathematic algorithms used in the feature extraction and 
classification steps which translate the information in the control signals into commands 
that operate a computer or other device. Finally, the review provides an overview of 
various BCI applications that control a range of devices. 

Keywords: brain-computer interface (BCI); electroencephalography (EEG); rehabilitation; 
artifact; neuroimaging; brain-machine interface; collaborative sensor system 
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1. Introduction 

A brain computer interface (BCI), also referred to as a brain machine interface (BMI), is a hardware 
and software communications system that enables humans to interact with their surroundings,  
without the involvement of peripheral nerves and muscles, by using control signals generated from 
electroencephalographic activity. BCI creates a new non-muscular channel for relaying a person’s 
intentions to external devices such as computers, speech synthesizers, assistive appliances, and neural 
prostheses. That is particularly attractive for individuals with severe motor disabilities. Such an interface 
would improve their quality of life and would, at the same time, reduce the cost of intensive care.  

A BCI is an artificial intelligence system that can recognize a certain set of patterns in brain signals 
following five consecutive stages: signal acquisition, preprocessing or signal enhancement, feature 
extraction, classification, and the control interface [1]. The signal acquisition stage captures the brain 
signals and may also perform noise reduction and artifact processing. The preprocessing stage  
prepares the signals in a suitable form for further processing. The feature extraction stage identifies 
discriminative information in the brain signals that have been recorded. Once measured, the signal is 
mapped onto a vector containing effective and discriminant features from the observed signals. The 
extraction of this interesting information is a very challenging task. Brain signals are mixed with other 
signals coming from a finite set of brain activities that overlap in both time and space. Moreover, the 
signal is not usually stationary and may also be distorted by artifacts such as electromyography (EMG) 
or electrooculography (EOG). The feature vector must also be of a low dimension, in order to reduce 
feature extraction stage complexity, but without relevant information loss. The classification stage 
classifies the signals taking the feature vectors into account. The choice of good discriminative features 
is therefore essential to achieve effective pattern recognition, in order to decipher the user’s intentions. 
Finally the control interface stage translates the classified signals into meaningful commands for any 
connected device, such as a wheelchair or a computer.  

BCI technology has traditionally been unattractive for serious scientific investigation. The idea of 
successfully deciphering thoughts or intentions by means of brain activity has often been rejected in 
the past as very strange and remote. Hence investigation in the field of brain activity has usually been 
limited to the analysis of neurological disorders in the clinic or to the exploration of brain functions in 
the laboratory. The BCI design was considered too complex, because of the limited resolution and 
reliability of information that was detectable in the brain and its high variability. Furthermore, BCI 
systems require real-time signal processing, and up until recently the requisite technology either did 
not exist or was extremely expensive [2].  

However, this context has undergone radical change over the last two decades. BCI research, which 
was confined to only three groups 20 years ago and only six to eight groups 10 years ago, is now a 
flourishing field with more than 100 active research groups all over the World studying the topic [3]. 
The number of articles published regarding neural interface technology has increased exponentially 
over the past decade [4]. Successful studies on brain signal phenomena have lent further weight to 
these advances. The development of more and more inexpensive computer hardware and software has 
allowed more sophisticated online analysis. Likewise, the chances of using BCIs as auxiliary 
technology that might serve severely disabled people has increased social acceptance in this field and 
the need to accelerate its progress. Interest in this technology is now found outside of the laboratory or 
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the clinic. Small specialized companies such as Emotiv [5] or Neurosky [6] have already developed 
some initial applications oriented towards the general public. Nevertheless, despite these advances, 
most BCI-based applications are still limited to the laboratory. Broader applicability of BCIs requires 
greater ease of use, which in turn means reducing time spent on preparation, training and calibration [7].  

BCI research is a relatively young multidisciplinary field integrating researchers from neuroscience, 
physiology, psychology, engineering, computer science, rehabilitation, and other technical and  
health-care disciplines. As a result, in spite of some notable advances, a common language has yet to 
emerge, and existing BCI technologies vary, which makes their comparison difficult and, in 
consequence, slows down the research. The community of BCI researchers has therefore stressed the 
need to establish a general framework for BCI design [8]. Mason et al. [9], for example, proposed a 
new functional model for BCI systems and taxonomy design. 

This review of the state-of-the-art of BCI systems is arranged as follows: Section 2 discusses 
existing neuroimaging approaches to BCIs and Section 3 describes the most commonly found control 
signals in BCI systems. Section 4 briefly explains certain types of BCIs. Sections 5, 6 and 7, 
respectively, cover the different signal processing methods used for feature extraction, artifact 
reduction and feature classification. Section 8 provides an overview of BCI applications and, finally, 
the conclusions are drawn in Section 9. 

2. Neuroimaging Approaches in BCIs  

BCIs use brain signals to gather information on user intentions. To that effect, BCIs rely on a recording 
stage that measures brain activity and translates the information into tractable electrical signals. Two 
types of brain activities may be monitored: (i) electrophysiological and (ii) hemodynamic.  

Electrophysiological activity is generated by electro-chemical transmitters exchanging information 
between the neurons. The neurons generate ionic currents which flow within and across neuronal 
assemblies. The large variety of current pathways can be simplified as a dipole conducting current 
from a source to a sink through the dendritic trunk. These intracellular currents are known as primary 
currents. Conservation of electric charges means that the primary currents are enclosed by extracellular 
current flows, which are known as secondary currents [10]. Electrophysiological activity is measured 
by electroencephalography, electrocorticography, magnetoencephalography, and electrical signal 
acquisition in single neurons.  

The hemodynamic response is a process in which the blood releases glucose to active neurons at a 
greater rate than in the area of inactive neurons. The glucose and oxygen delivered through the blood 
stream results in a surplus of oxyhemoglobin in the veins of the active area, and in a distinguishable 
change of the local ratio of oxyhemoglobin to deoxyhemoglobin [11]. These changes can be quantified 
by neuroimaging methods such as functional magnetic resonance and near infrared spectroscopy. 
These kinds of methods are categorized as indirect, because they measure the hemodynamic response, 
which, in contrast to electrophysiological activity, is not directly related to neuronal activity. 

Most current BCIs obtain the relevant information from the brain activity through 
electroencephalography. Electroencephalography is by far the most widely used neuroimaging 
modality, owing to its high temporal resolution, relative low cost, high portability, and few risks to the users. 
BCIs based on electroencephalography consist of a set of sensors that acquire electroencephalography signals 
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from different brain areas. However, the quality of electroencephalography signals is affected by scalp, 
skull, and many other layers as well as background noise. Noise is key to electroencephalography and 
to other neuroimaging methods, insofar as it reduces the SNR and therefore the ability to extract 
meaningful information from the recorded signals. 

Non-invasive approaches have successfully been used by severely and partially paralyzed patients 
to reacquire basic forms of communication and to control neuroprostheses and wheelchairs [12–14]. 
Despite the outstanding utility of non-invasive approaches in BCI applications, motor recovery has 
been limited, because of the need for brain signals with a higher resolution. Invasive recording 
methods such as electrocorticography or intracortical neuron recording were introduced, in an effort to 
improve the quality of brain signals monitored by BCIs. Most researchers agree that movement 
restoration through prostheses with multiples degrees of freedom can only be achieved through 
invasive approaches [15]. It is unlikely that the power of non-invasive modalities will be enhanced in 
the near future. Accordingly, it would appear that invasive modalities are indispensable for accurate 
neuroprostheses control. Nevertheless, this issue is not yet entirely clear and some opinions disagree 
with this conjecture. Contrary to established opinion, Wolpaw [3] suggested that performance in 
multidimensional control may be independent of the recording method. Further refinements of 
recording and analysis techniques will probably increase the performance of both invasive and  
non-invasive modalities. However, the latest studies in neuroprostheses control appear to indicate that 
invasive modalities have inherent advantages in neuroprosthesis control applications [4]. 

Invasive modalities need to implant microelectrode arrays inside the skull that involves significant 
health risks, which restricts their use to experimental settings. Two invasive modalities can be found in 
BCI research: electrocorticography, which places electrodes on the surface of the cortex, either outside 
the dura mater (epidural electrocorticography) or under the dura mater (subdural electrocorticography), 
and intracortical neuron recording which implants electrodes inside the cortex. Several issues had to be 
addressed, before they become suitable for long-term applications. First, tissue acceptance of the 
microelectrode has to be addressed, for which reason proposals exist for electrodes with neurotropic 
mediums that promote neuronal growth to improve biocompatibility [16]. Perhaps, the future of 
nanotechnologies that might develop nano-detectors to be implanted inertly in the brain, may provide a 
definite solution to the problems of long-term invasive applications. Second, a link between the 
microelectrode and external hardware that uses wireless technology is needed to reduce the risks of 
infection. Wireless transmission of neuronal signals has already been tested in animals [17]. And third, 
continuous stress caused by plugging and unplugging the recording system may lead to tissue damage 
or system failure. 

Each neuroimaging modality is explained below. Firstly, electrophysiological methods such as 
electroencephalography, electrocorticography, magnetoencephalography, and electrical signal acquisition 
in single neurons will be discussed. Secondly, metabolic methods such as functional magnetic 
resonance and near infrared spectroscopy will be described. Finally, functional imaging modalities are 
listed in Table 1, along with information related to activity measured, temporal and spatial resolutions, 
safety, and portability. 
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Table 1. Summary of neuroimaging methods. 

Neuroimaging 
method 

Activity 
measured

Direct/ 
Indirect 

Measurement

Temporal
resolution

Spatial 
resolution 

Risk Portability 

EEG Electrical Direct ~0.05 s  ~10 mm Non-invasive Portable 
MEG Magnetic Direct ~0.05 s  ~5 mm Non-invasive Non-portable
ECoG Electrical Direct ~0.003 s  ~1 mm Invasive Portable 

Intracortical  
neuron  

recording  
Electrical Direct ~0.003 s 

~0.5 mm (LFP)  
~0.1 mm (MUA) 
~0.05 mm (SUA)

Invasive Portable 

fMRI Metabolic Indirect ~1 s  ~1 mm Non-invasive Non-portable
NIRS Metabolic Indirect ~1 s  ~5 mm Non-invasive Portable 

2.1. Electroencephalography (EEG) 

EEG measures electric brain activity caused by the flow of electric currents during synaptic 
excitations of the dendrites in the neurons and is extremely sensitive to the effects of secondary 
currents [10]. EEG signals are easily recorded in a non-invasive manner through electrodes placed on 
the scalp, for which that reason it is by far the most widespread recording modality. However, it 
provides very poor quality signals as the signals have to cross the scalp, skull, and many other layers. 
This means that EEG signals in the electrodes are weak, hard to acquire and of poor quality. This 
technique is moreover severely affected by background noise generated either inside the brain or 
externally over the scalp. 

The EEG recording system consists of electrodes, amplifiers, A/D converter, and a recording 
device. The electrodes acquire the signal from the scalp, the amplifiers process the analog signal to 
enlarge the amplitude of the EEG signals so that the A/D converter can digitalize the signal in a more 
accurate way. Finally, the recording device, which may be a personal computer or similar, stores, and 
displays the data. 

The EEG signal is measured as the potential difference over time between signal or active electrode 
and reference electrode. An extra third electrode, known as the ground electrode, is used to measure 
the differential voltage between the active and the reference points. The minimal configuration for 
EEG measurement therefore consists of one active, one reference, and one ground electrode.  
Multi-channel configurations can comprise up to 128 or 256 active electrodes [18]. These electrodes 
are usually made of silver chloride (AgCl) [19]. Electrode-scalp contact impedance should be between 
1 kΩ and 10 kΩ to record an accurate signal [20]. The electrode-tissue interface is not only resistive 
but also capacitive and it therefore behaves as a low pass filter. The impedance depends on several 
factors such as the interface layer, electrode surface area, and temperature [20]. EEG gel creates a 
conductive path between the skin and each electrode that reduces the impedance. Use of the gel is 
cumbersome, however, as continued maintenance is required to assure a relatively good quality signal. 
Electrodes that do not need to use of gels, called ‘dry’ electrodes, have been made with other materials 
such as titanium and stainless-steel [21]. These kinds of electrodes may be ‘dry’ active electrodes, 
which have preamplification circuits for dealing with very high electrode/skin interfacial  
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impedances [21,22], or ‘dry’ passive electrodes, which have no active circuits, but are linked to EEG 
recording systems with ultra-high input impedance [23]. 

The amplitude of electrical bio-signals is in the order of microvolts. Consequently, the signal is very 
sensitive to electronic noise. External sources such power-lines may generate background noise and 
thermal, shot, flicker, and burst noises are generated by internal sources [24]. Design considerations 
should be addressed to reduce the effects of the noise, such as electromagnetic interference shielding 
or reduction for common mode signal, amongst others [20]. 

EEG comprises a set of signals which may be classified according to their frequency. Well-known 
frequency ranges have been defined according to distribution over the scalp or biological significance. 
These frequency bands are referred to as delta (δ), theta (θ), alpha (α), beta (β), and gamma (γ) from 
low to high, respectively. Relevant characteristics of these bands are detailed below. 

The delta band lies below 4 Hz, and the amplitude of delta signals detected in babies decreases as 
they age. Delta rhythms are usually only observed in adults in deep sleep state and are unusual in 
adults in an awake state. A large amount of delta activity in awake adults is abnormal and is related to 
neurological diseases [25]. Due to low frequency, it is easy to confuse delta waves with artifact signals, 
which are caused by the large muscles of the neck or jaw.  

Theta waves lie within the 4 to 7 Hz range. In a normal awake adult, only a small amount of theta 
frequencies can be recorded. A larger amount of theta frequencies can be seen in young children, older 
children, and adults in drowsy, meditative or sleep states [25]. Like delta waves, a large amount of 
theta activity in awake adults is related to neurological disease [25]. Theta band has been associated 
with meditative concentration [26,27] and a wide range of cognitive processes such as mental 
calculation [28], maze task demands [29], or conscious awareness [30]. 

Alpha rhythms are found over the occipital region in the brain [31]. These waves lie within the 8  
to 12 Hz range. Their amplitude increases when the eyes close and the body relaxes and they attenuate 
when the eyes open and mental effort is made [32]. These rhythms primarily reflect visual processing 
in the occipital brain region and may also be related to the memory brain function [33]. There is also 
evidence that alpha activity may be associated with mental effort. Increasing mental effort causes a 
suppression of alpha activity, particularly from the frontal areas [34]. Consequently, these rhythms 
might be useful signals to measure mental effort. Mu rhythms may be found in the same range as alpha 
rhythms, although there are important physiological differences between both. In contrast to alpha 
rhythms, mu rhythms are strongly connected to motor activities and, in some cases, appear to correlate 
with beta rhythms [31,35]. 

Beta rhythms, within the 12 to 30 Hz range, are recorded in the frontal and central regions of the 
brain and are associated with motor activities. Beta rhythms are desynchronized during real movement 
or motor imagery [36]. Beta waves are characterized by their symmetrical distribution when there is no 
motor activity. However, in case of active movement, the beta waves attenuate, and their symmetrical 
distribution changes [36]. 

Gamma rhythms belong to the frequency range from 30 to 100 Hz. The presence of gamma waves 
in the brain activity of a healthy adult is related to certain motor functions or perceptions, among 
others [37]. Some experiments have revealed a relationship in normal humans between motor activities 
and gamma waves during maximal muscle contraction [38]. This gamma band coherence is replaced 
by a beta band coherence during weak contractions, suggesting a correlation between gamma or beta 
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cortical oscillatory activity and force [39]. Also, several studies have provided evidence for the role of 
gamma activity in the perception of both visual and auditory stimuli [37,40–42]. Gamma rhythms are 
less commonly used in EEG-based BCI systems, because artifacts such as electromyography (EMG) or 
electrooculography (EOG) are likely to affect them [43]. Nevertheless, this range is attracting growing 
attention in BCI research because, compared to traditional beta and alpha signals, gamma activity may 
increase the information transfer rate and offer higher spatial specifity [44,45]. 

As explained above, EEG is recorded by electrodes. The electrodes placed over the scalp are 
commonly based on the International 10–20 system [46], which has been standardized by the 
American Electroencephalographic Society. The 10–20 system uses two reference points in the head to 
define the electrode location. One of these reference points is the nasion, located at the top of the nose 
at the same level as the eyes. The other reference point is the inion, which is found in the bony lump at 
the base of the skull. The transverse and median planes divide the skull from these two points. The 
electrode locations are determined by marking these planes at intervals of 10% and 20% (Figure 1). 
The letters in each location corresponds to specific brain regions in such a way that A represents the 
ear lobe, C the central region, Pg the nasopharyngeal, P the parietal, F the frontal, Fp the frontal polar, 
and O the occipital area. 

Figure 1. Electrode placement over scalp. 

 

2.2. Magnetoencephalography (MEG) 

MEG is a non-invasive imaging technique that registers the brain’s magnetic activity by means of 
magnetic induction. MEG measures the intracellular currents flowing through dendrites which produce 
magnetic fields that are measurable outside of the head [47]. The neurophysiological processes that 
produce MEG signals are identical to those that produce EEG signals. Nevertheless, while EEG is 
extremely sensitive to secondary current sources, MEG is more sensitive to those of primary  
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currents [10]. The advantage of MEG is that magnetic fields are less distorted by the skull and scalp 
than electric fields [48].  

Magnetic fields are detected by superconducting quantum interferences devices, which are 
extremely sensitive to magnetic disturbances produced by neural activity [49]. The electronic 
equipment that measures magnetic brain activity is cooled to almost −273 degrees Celsius to facilitate 
sensor superconductivity. MEG requires effective shielding from electromagnetic interferences. The 
electronic equipment is installed inside a magnetically shielded room, which attenuates the effects of 
magnetic fields from external sources. 

MEG provides signals with higher spatiotemporal resolution than EEG, which reduces the training 
time needed to control a BCI and speeds up reliable communications [50]. MEG has also been 
successfully used to localize active regions inside the brain [51]. In spite of these advantageous 
features, MEG is not often used in BCI design because MEG technology is too bulky and expensive to 
become an acquisition modality suitable for everyday use. In 2005, Lal et al. [52] presented the first 
online MEG-based BCI. Although further studies have followed [53–57], MEG-based BCIs, as 
compared to EEG-based BCIs, are still at an early stage.  

2.3. Electrocorticography (ECoG) 

ECoG is a technique that measures electrical activity in the cerebral cortex by means of electrodes 
placed directly on the surface of the brain. Compared to EEG, ECoG provides higher temporal and 
spatial resolution as well as higher amplitudes and a lower vulnerability to artifacts such as blinks and 
eye movement [58]. However, ECoG is an invasive recording modality which requires a craniotomy to 
implant an electrode grid, entailing significant health hazards. For that reason, the first studies on 
ECoG were with animals. Early studies involving animals evaluated the long-term stability of the 
signals from the brain that ECoG could acquire [59–62]. The results showed that subdural electrodes 
could provide stable signals over several months. Nevertheless, the long-term stability of the signals 
acquired by ECoG is currently unclear. More recent experiments with monkeys have shown that ECoG 
can perform at a high level for months without any drift in accuracy or recalibration [63]. The hand 
positions and arm joint angles could be successfully decoded during asynchronous movements. These 
studies have also developed minimally invasive protocols to implant the ECoG probes [64]. 

In humans, ECoG has been used for the analysis of alpha and beta waves [65] or gamma waves [66,67] 
produced during voluntary motor action. With regard to the use of ECoG in BCIs systems,  
Levine et al. [68] designed a BCI which classified motor actions on the basis of the identification of 
the event-related potentials (ERP) using ECoG. Leuthardt et al. [69] showed for the first time that an 
ECoG-based BCI could provide information to control a one-dimensional cursor, as this information is 
more precise and more quickly acquired than by EEG-based BCIs. Some years later, Schalk et al. [70] 
presented a more advanced ECoG-based BCI which allowed the user to control a two-dimensional 
cursor. The results of all these studies might make it more feasible for people with severe motor 
disabilities to use ECoG-based BCIs for their communication and control needs. 
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2.4. Intracortical Neuron Recording 

Intracortical neuron recording is a neuroimaging technique that measures electrical activity inside 
the gray matter of the brain. It is an invasive recording modality that needs to implant microelectrode 
arrays inside the cortex to capture spike signals and local field potentials from neurons.  

Three signals can be obtained by intracortical neuron recording: single-unit activity (SUA),  
multi-unit activity (MUA), and local field potentials (LFPs) [47]. SUA is obtained by high-pass 
filtering (>300 Hz) of the signal of a single neuron. MUA is obtained in the same way, but the signals 
may come from multiple neurons. LFPs are extracted by low-pass filtering (<300 Hz) of the neuron 
activity in the vicinity of an electrode tip. LFPs are analog signals whereas SUA and MUA measure 
the spiking activity of single neurons and can be reduced to discrete events in time [47]. 

Intracortical neuron recording provides much higher spatial and temporal resolution than EEG 
recording. Hence the intracortical signals may be easier to use than EEG signals. However, signal quality 
may be affected by the reaction of cerebral tissue to the implanted recording microelectrode [71] and 
by changes in the sensitivity of the microelectrode, which may be progressively damaged over the 
course of days and years [72]. The user can naturally adapt to these slow changes in the relative 
sensitivity of the microelectrode, without the need for specific retraining. Nevertheless, periodic 
recalibrations of electrode sensitivity may be necessary [73]. 

The first attempts in the intracortical neuron recording field were made in animals. Multielectrode 
arrays have been used to record neural activity from the motor cortex in monkeys or rats during 
learned movements [74–76]. These initial studies have shown that intracortical neuron recordings can 
indicate the nature of a movement and its direction. These studies do not reveal whether the same 
patterns will be present when the real movements are not made. In that regard, Taylor and Schwartz [77] 
experimented with rhesus macaques, which made real and virtual arm movements in a computer. The 
results suggested that the same patterns persisted. The most recent studies with monkeys investigated 
the control of prosthetic devices for direct real-time interaction with the physical environment [78–81]. 

With regard to the application of intracortical neuron recording in BCI systems, microelectrode 
arrays such as the Utah Intracortical Electrode Array (UIEA) have been reported as a suitable means of 
providing simultaneous and proportional control of a large number of external devices [72]. Also, 
Kennedy et al. [82] employed cortical control signals to design a BCI that allowed users to control 
cursor movement and flexion of a cyber-digit finger on a virtual hand.  

2.5. Functional Magnetic Resonance Imaging (fMRI) 

fMRI is a non-invasive neuroimaging technique which detects changes in local cerebral blood 
volume, cerebral blood flow and oxygenation levels during neural activation by means of 
electromagnetic fields. fMRI is generally performed using MRI scanners which apply electromagnetic 
fields of strength in the order of 3T or 7T. The main advantage of the use of fMRI is high space 
resolution. For that reason, fMRI have been applied for localizing active regions inside the brain [83]. 
However, fMRI has a low temporal resolution of about 1 or 2 seconds. Additionally, the hemodynamic 
response introduces a physiological delay from 3 to 6 seconds [84]. fMRI appears unsuitable for rapid 
communication in BCI systems and is highly susceptible to head motion artifacts.  
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In BCI systems, fMRI is typically used to measure the Blood Oxygen Level Dependent (BOLD) 
during neuronal activation [85]. Although the BOLD signal is not directly related to neuronal activity, 
a correspondence between both does exist [86]. The use of fMRI in BCI technology is relatively 
recent. Before the emergence of real-time fMRI, brain activity recording by fMRI has traditionally 
taken a long time. The data acquired by fMRI techniques were processed offline and the results only 
became available after several hours or even days [87]. fMRI-based BCIs have been made possible, 
thanks to the development of real-time fMRI [84,88,89]. The information transfer rate in fMRI-based 
BCIs is between 0.60 and 1.20 bits/min [90]. Non-clinical fMRI applications are not expected because 
fMRI requires overly bulky and expensive hardware. 

2.6. Near Infrared Spectroscopy (NIRS) 

NIRS is an optical spectroscopy method that employs infrared light to characterize noninvasively 
acquired fluctuations in cerebral metabolism during neural activity. Infrared light penetrates the skull 
to a depth of approximately 1–3 cm below its surface, where the intensity of the attenuated light allows 
alterations in oxyhemoglobin and deoxyhemoglobin concentrations to be measured. Due to shallow 
light penetration in the brain, this optical neuroimaging technique is limited to the outer cortical layer. 
In a similar way to fMRI, one of the major limitations of NIRS is the nature of the hemodynamic 
response, because vascular changes occur a certain number of seconds after its associated neural 
activity [91]. The spatial resolution of NIRS is quite low, in the order of 1 cm [92]. Nevertheless, 
NIRS offers low cost, high portability, and an acceptable temporal resolution in the order of  
100 milliseconds [93].  

A NIRS system consists of a light source, a driving electronic device, a light detector, signal 
processing devices, and a recording device. The light source is an infrared emitting diode (IRED) 
placed in direct contact with the scalp. The driving electronic device is an electronic circuit that 
controls the IRED in order to modulate the light. The light detector is a photodiode placed right next to 
the light source. The signal processing devices are amplifiers and filters that process the electrical 
signal and reduce the noise due to ambient light. The recording device is a personal computer or any 
other device that digitalizes, stores, and displays the electrical signal. 

Ensuring good coupling light from the optical sources and detectors to and from the subject’s head 
is not a trivial issue. Head motions or hair obstruction can worsen performance and signal quality [91]. 
Good quality signals and noise reduction, especially background noise induced by head motions, are 
important requirements in real time BCI systems. Hair obstruction can be overcome by combing the 
hair out of the photons’ path by means of hair gel and hair clips [91]. Noise can be reduced partially by 
bandpass filtering, moving averaging, and Wiener filtering. These classes of algorithms usually fail to 
remove abrupt spike-like noise produced by head motion [94]. Head motion artifacts can be minimized 
by ensuring rigid optode positioning. Solutions have been introduced that are based on helmets, 
thermoplastic molded to the contours of each subject’s head, spring-loaded fibers attached to  
semi-rigid plastic forms, and fibers embedded in neoprene rubber forms [95]. Background noise effects 
can also be attenuated by exploiting the strong statistical association between oxygenated and 
deoxygenated hemoglobin dynamics [96]. 
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Although NIRS is relatively new measurement modality, NIRS promises to be a potent 
neuroimaging modality for future applicability to BCIs [91,97]. NIRS provides now a low information 
transfer rate of about 4 bits/min but it would be increased in the future [98]. This neuroimaging 
modality might be a good alternative to EEG, as neither conductive gel nor corrosive electrodes are 
required. Nevertheless, communication speeds in NIRS-based BCIs are limited due to the inherent 
delays of the hemodynamic response. Some studies have already demonstrated the feasibility of mental 
task detection through NIRS-derived optical responses [93,99,100]. 

3. Control Signal Types in BCIs  

The purpose of a BCI is to interpret user intentions by means of monitoring cerebral activity. Brain 
signals involve numerous simultaneous phenomena related to cognitive tasks. Most of them are still 
incomprehensible and their origins are unknown. However, the physiological phenomena of some 
brain signals have been decoded in such way that people may learn to modulate them at will, to enable 
the BCI systems to interpret their intentions. These signals are regarded as possible control signals  
in BCIs.  

Numerous studies have described a vast group of brain signals that might serve as control signals in 
BCI systems. Nevertheless, only those control signals employed in current BCI systems will be 
discussed below: visual evoked potentials, slow cortical potentials, P300 evoked potentials, and 
sensorimotor rhythms. All the signal controls are listed in Table 2, along with some of their main features. 

Table 2. Summary of control signals. 

Signal Physiological phenomena 
Number of 

choices 
Training 

Information 
transfer rate 

VEP Brain signal modulations in the visual cortex High  No 
60–100 
bits/min  

SCP Slow voltages shift in the brain signals 
Low (2 or 4, very 

difficult) 
Yes 5–12 bits/min 

P300 Positive peaks due to infrequent stimulus High No 
20–25 

bits/min 
Sensorimotor 

rhythms 
Modulations in sensorimotor rhythms 

synchronized to motor activities 
Low (2, 3, 4, 5) Yes 3–35 bits/min 

3.1. Visual Evoked Potentials (VEPs) 

VEPs are brain activity modulations that occur in the visual cortex after receiving a visual  
stimulus [101]. These modulations are relatively easy to detect since the amplitude of VEPs increases 
enormously as the stimulus is moved closer to the central visual field [102].  

VEPs may be classified according to three different criteria [103]: (i) by the morphology of the 
optical stimuli, (ii) by the frequency of visual stimulation; and (iii) by field stimulation. According to 
the first criterion, VEPs may be caused by using flash stimulation or using graphic patterns such as 
checkerboard lattice, gate, and random-dot map. According to the frequency, VEPs can also be 
classified as transient VEPs (TVEPs) and as steady-state VEPs (SSVEPs). TVEPs occur when the 
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frequency of visual stimulation is below 6 Hz, while SSVEPs occur in reaction to stimuli of a higher 
frequency [101,104]. Lastly, according to the third criterion, VEPs can be divided into whole field 
VEPs, half field VEPs, and part field VEPs depending on the area of on-screen stimulus. For instance, 
if only half of the screen displays graphics, the other half will not display any visual stimulation, and 
the person will look at the centre of the screen, which will induce a half field VEP. 

TVEPs can be elicited by any change in the visual field. Those used most frequently are TVEPs are: 
(i) flash TVEPs that are caused by flashing lights; (ii) pattern onset/offset TVEPs that are caused by 
letting a pattern appear abruptly on a diffuse background; and (iii) pattern reversal TVEPs that are 
caused by reversing the phase of a pattern i.e., a checkerboard lattice that changes the checks from 
black to white and from white to black abruptly [105].  

The evoked responses vary with the stimulus presented. Flash TVEPs present a series of negative 
and positive peaks. The most prominently peaks are negative (N2) and positive (P2) peaks at around 
90 ms and 120 ms respectively [105]. Pattern onset/offset TVEPs have three main peaks: C1 (positive, 
75 ms), C2 (negative, 125 ms), and C3 (positive, 150 ms) [105]. Pattern reversal TVEPs usually present 
one negative peak at 75 ms, one positive peak at 100 ms, and one negative peak at 135 ms [105].  

SSVEPs are elicited by the same visual stimulus. In this case, the stimulus changes at a frequency 
higher than 6 Hz. If the stimulus is a flash, SSVEP shows a sinusoidal-like waveform, the fundamental 
frequency of which is the same as the blinking frequency of the stimulus. If the stimulus is a pattern, 
the SSVEP occurs at the reversal rate and at their harmonics [106]. In contrast to TVEP, constituent 
discrete frequency components of SSVEPs remain closely constant in amplitude and phase over long 
periods of time [107]. SSVEPs are less susceptible than TVEPs to artifacts produced by blinks and eye 
movements [108] and to electromyographic noise contamination [109]. Indeed, TVEPs not are 
typically used for BCI.  

SSVEP-based BCIs allow users to select a target by means of an eye-gaze. The user visually fixes 
attention on a target and the BCI identifies the target through SSVEP features analysis. Considering a 
BCI as a communications channel, SSVEP-based BCIs can be classified into three categories 
depending on the specific stimulus sequence modulation in use [110]: time modulated VEP (t-VEP) 
BCIs, frequency modulated VEP (f-VEP) BCIs, and pseudorandom code modulated VEP (c-VEP) 
BCIs. VEPs that react to different stimulus sequences should be orthogonal or near orthogonal to each 
other in some domain to ensure reliable identification of the target [110]. In a t-VEP BCI, the flash 
sequences of different targets are orthogonal in time. That is, the flash sequences for different targets 
are either strictly non-overlapping or stochastic. In an f-VEP BCI, each target is flashed at a unique 
frequency, generating a periodic sequence of evoked responses with the same fundamental frequency 
as its harmonics. In a c-VEP BCI, pseudo-random sequences are used. The duration of ON and OFF 
states of each target’s flash is determined by a pseudorandom sequence. Signal modulations can 
optimize the information transfer rate. Indeed, code modulation provides the highest communication 
speed. Table 3 summarizes the features of each modulation. 
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Table 3. Features of VEP modulations: t-VEP, f-VEP and, c-VEP. 

VEP modulation Features 

t-VEP 
− Relatively low information transfer rate (<30 bits/min) 
− Synchronous signal is necessary 
− No user training required 

f-VEP 

− High information transfer rate (30–60 bits/min) 
− Simple system configuration 
− No user training required 
− More suitable for application with few options 

c-VEP 

− Very high information transfer rate (>100 bits/min) 
− Synchronous signal is necessary 
− User training required 
− More suitable for application with many options 

The typical VEP-based BCI application displays flashing stimuli, such as digits or letters, on a 
screen to induce SSVEPs while the user stares at one of the symbols. The user can move their gaze to 
the flashing digits or letters, in order to communicate with the computer [111]. The advantage of this 
type of control signal is that very little training is required. However, it presents the drawback that the 
user has to watch the screen and keep his eyes fixed on one point. This type of control signal can only 
be used for exogenous BCIs (see Section 0). Therefore, VEPs are not suitable for patients in advanced 
stages of Amyotrophic Lateral Sclerosis (ALS) or with uncontrollable eye or neck movements. Some 
independent SSVEP-based BCIs that are controlled by the attention of the user have been introduced to 
overcome this drawback [112,113]. 

SSVEP are usually elicited through light-emitting diodes (LEDs), cathode-ray tube (CRT) monitors, 
or liquid crystal display (LCD). LEDs outperform LCD or CRT stimulators but they need more 
complex hardware. LCD and CRT monitors make the target presentation easier than LED stimulators, 
because both systems can easily be connected to a PC. However, LED stimulators may be preferable 
for a multiple target BCI, because the refresh rate of an LCD or CRT monitor can limit the number of 
targets. LED stimulators offer more versatility because the flickering frequency and phase of each 
LED can be controlled independently by a programmable logic device [114]. The stimulation decision 
can be made on the basis of the number of choices that the BCI offers [115]. LCD screens are optimal 
for low complexity BCI (less than 10 choices), because they induce less eye-tiredness than CRT 
screens. For medium complexity BCI (10–20 choices), LCD or CRT screens are optimal. For high 
complexity BCI (more than 20 commands), LED are preferred. 

3.2. Slow Cortical Potentials (SCPs)  

SCPs are slow voltage shifts in the EEG that last a second to several seconds. SCPs belong to the 
part of the EEG signals below 1 Hz [116]. SCPs are associated with changes in the level of cortical 
activity. Negative SCPs correlate with increased neuronal activity, whereas positive SCPs coincide 
with decreased activity in individual cells [116]. These brain signals can be self-regulated by both 
healthy users and paralyzed patients to control external devices by means of a BCI. SCP shifts can be 
used to move a cursor and select the targets presented on a computer screen [117]. 
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People can be trained to generate voluntary SCP changes using a thought-translation device [117]. 
The thought-translation device is a tool used for self-regulation SCP training, which shows  
visual-auditory marks so that the user can learn to shift the SCP. The thought-translation device 
typically comprises a cursor on a screen in such a way that the vertical position of the cursor constantly 
reflects the amplitude of SCP shifts. Although most thought-translation devices show continuous 
feedback, it is possible to train SCP self-modulation in the absence of continuous feedback [118]. 

Success in SCP self-regulation training depends on numerous factors, such as the patient’s 
psychological and physical state, motivation, social context, or the trainer-patient relationship [117]. It 
is known that the learning capability of the user drastically affects SCP modulation training.  
Self-regulation training is therefore strongly recommended for patients at the early stage of a 
progressive disease [117]. Furthermore, initial SCP modulation skills have an effect on future 
performance following training [119]. Therefore, the value of SCPs as a suitable control signal for each 
patient can only be determined on the basis of initial trials. Other factors, such as sleep quality, pain, 
and mood also have an influence on self-regulation performance [117]. Their effects are not identical 
for all patients and further investigation is certainly needed to establish general rules on this matter. 

Self-regulation of SCPs has been tested extensively with patients suffering from ALS [120–122]. 
Typical accuracy rates achieved for SCP classification are acceptable and vary between 70 and 80 per 
cent, but the rates of information provided by SCP-based BCI are relatively low. Besides, longer 
training is required to use SCP-based BCI and it is likely that users will need continuous practice for 
several months. 

3.3. P300 Evoked Potentials  

P300 evoked potentials are positive peaks in the EEG due to infrequent auditory, visual, or 
somatosensory stimuli. These endogenic P300 responses are elicited about 300 ms after attending to an 
oddball stimulus among several frequent stimuli [123,124]. Some studies have proven that the less 
probable the stimulus, the larger the amplitude of the response peak [125]. The use of P300-based 
BCIs does not require training. However, the performance may be reduced because the user gets used 
to the infrequent stimulus and consequently P300 amplitude is decreased [126].  

A typical application of a BCI based on visual P300 evoked potentials comprises a matrix of letters, 
numbers, or other symbols or commands [123,127,128]. The rows or columns of this matrix are 
flashed at random while the EEG is monitored. The user gazes at the desired symbol and counts how 
many times the row or column containing the desired choice flashes. P300 is elicited only when the 
desired row or column flashes. Thus, the BCI uses this effect to determine the target symbol. Due to 
the low signal-to-noise ratio in EEG signals, the detection of target symbols from a single trial is very 
difficult. The rows or columns must be flashed several times for each choice. The epochs corresponding to 
each row or column are averaged over the trials, in order to improve their accuracy. However, these 
repetitions decrease the number of choices per minute, e.g., with 15 repetitions, only two characters are 
spelled per minute [123]. Although most of the applications based on P300 evoked potentials employ 
visual stimuli, auditory stimuli have been used for people with visual impairment [129]. 

P300-based BCIs provide a very low rate of information transmission because the classifier based 
on an average is too simple, and the accuracy of P300 potential detection is too low [130]. 
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Consequently, too many trials are required to select a single symbol in the matrix. Accuracy of  
P300-based BCIs can be improved, while using a more complicated classifier than a simple average to 
ensure that the number of repetitions remain unaffected [130,131]. Other studies have proven that the 
detection accuracy of visual P300 evoked potentials also depends on the properties of the visual matrix 
such as the dimensions or colors of the symbols. Performance decreases when matrices with smaller 
symbols are used [132], and it is enhanced when a green and blue chromatic flicker matrix is used, 
rather than a gray and black one [133,134].  

Information transmission rates provided by P300-based BCI can be also improved by considering 
the BCI as a noisy transmission system. BCI can therefore benefit from the use of error correcting 
codes [135]. However, optimizing the code solely according to the maximal minimum-Hamming-distance 
implies an increase in target frequency of target stimuli which might violate physiological constraints 
leading to difficulties in classifying the individual ERPs, due to overlap and refractory effects. Further, 
overlap and refractory effects are generally the main error source in these kinds of BCIs [136]. Some 
recent novel approaches have tried to reduce them, by superimposing the targets on a checkerboard [137] 
or by using alternative stimulus type methods based on motion [136]. 

The P300 response is not markedly affected by whether or not the subject gazes directly at the 
target, in contrast to the VEP response, which is larger when the target is foveated [138]. This 
distinction is important for clinical applications, because eye movements are often impaired or lost in 
the target population. Nevertheless, the performance of a P300-based BCI is substantially improved 
when subjects gaze at the desired item [138]. Therefore, the performance of the visual P300-based 
BCIs depends not only on the P300-evoked potential, but also on the VEP response that, in turn, 
strongly depends on eye-gaze direction. 

3.4. Sensorimotor Rhythms (mu and beta rhythms)  

Sensorimotor rhythms comprise mu and beta rhythms, which are oscillations in the brain activity 
localized in the mu band (7–13 Hz), also known as the Rolandic band, and beta band (13–30 Hz), 
respectively. Both rhythms are associated in such a way that some beta rhythms are harmonic mu 
rhythms, although some beta rhythms may also be independent [139]. The amplitude of the 
sensorimotor rhythms varies when cerebral activity is related to any motor task although actual 
movement is not required to modulate the amplitude of sensorimotor rhythms [140,141]. Similar 
modulation patterns in the motor rhythms are produced as a result of mental rehearsal of a motor act 
without any overt motor output [140]. Sensorimotor rhythms have been used to control BCIs, because 
people can learn to generate these modulations voluntarily in the sensorimotor rhythms [36,142].  

Sensorimotor rhythms can endure two kinds of amplitude modulations known as event-related 
desynchronization (ERD) and event-related synchronization (ERS) that are generated sensory 
stimulation, motor behavior, and mental imagery [36]. ERD involves an amplitude suppression of the 
rhythm and ERS implies amplitude enhancement. Figure 2 (left panel) shows the temporal behavior of 
ERD and ERS during a voluntary movement experiment which involves brisk finger lifting [36]. The 
mu band ERD starts 2.5 s before movement on-set, reaches the maximal ERD shortly after  
movement-onset, and recovers its original level within a few seconds. In contrast, the beta rhythm 
shows a short ERD during the movement initiation of movement, followed by ERS that reaches the 
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maximum after movement execution. This ERS occurs while the mu rhythm is still attenuated.  
Figure 2 also shows the gamma oscillation (36–40 Hz), which is another rhythm related to motor tasks 
as well [36]. Gamma rhythms reveal an ERS shortly before movement-onset. Finally, the right panel of 
Figure 2 illustrates that simultaneous ERD and ERS are possible at different scalp locations [36]. 

Figure 2. Left panel: Superimposed band power time courses computed for three different 
frequency bands (10–12 Hz, 14–18 Hz, and 36–40 Hz) from EEG trials recorded from 
electrode position C3 during right index finger lifting. EEG data triggered with respect to 
movement-offset (vertical line at t = 0 s); Right panel: Examples of ongoing EEG 
recorded during right finger movement (adapted from [36]). 

 

Sensorimotor rhythms are related to motor imagery without any actual movement [141]. This makes 
it possible to use sensorimotor rhythms for the design of endogenous BCIs, which are more useful than 
exogenous BCIs. Nevertheless, self-control of sensorimotor rhythms is not easy, and most people have 
difficulties with motor imagery. People tend to imagine visual images of related real movements, 
which is not sufficiently useful for a BCI system, because the patterns of these sensorimotor rhythms 
differ from actual motor imagery. User training should emphasize kinesthetic experiences instead of 
visual representations of actions [143]. Motor imagery training is traditionally based on visual or 
auditory feedback [144]. This kind of training asks the users to perform a certain motor imagery task, 
and then the sensorimotor rhythms are extracted and classified by comparing them with a reference. 
Finally, visual or auditory feedback is provided to the participant according to the success of the result. 
This kind of training has been widely used although usually its effectiveness was not very high [145]. 
Hwang et al. [145] presented more effective motor imagery training based on a system that displayed 
real-time cortical activity as feedback, which allowed the users to watch their own cortical activity 
through a real-time monitoring system. 

Sensorimotor rhythms have been investigated extensively in BCI research. Well-known BCI 
systems such as Wadsworth [146], Berlin [147], or Graz [148] BCIs employ sensorimotor rhythms as 
control signals. The BCIs based on sensorimotor rhythms can operate in either synchronous or 
asynchronous mode. The latest advances in the field of BCIs based on sensorimotor rhythms have 
shown that it is possible to predict human voluntary movements before they occur based on the 
modulations in sensorimotor rhythms [149]. Furthermore, this prediction could be provided without 
the user making any movements at all. 
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4. Types of BCIs 

The BCIs can be categorized into (i) exogenous or endogenous and (ii) synchronous (cue-paced) or 
asynchronous (self-paced). Types of BCI are listed in Tables 4 and 5, along with information related to 
brain signals that can be modulated to convey information as well as advantages and disadvantages. 
Also, BCIs can be classified into dependent and independent [2]. This distinction will not be detailed 
in this review because it is very similar to exogenous and endogenous distinction. Advantages and 
disadvantages in both taxonomies are analogous. 

Table 4. Main differences between exogenous and endogenous BCI. 

Approach Brain signals Advantages Disadvantages 

Exogenous 
BCI 

− SSVEP 
− P300 

− Minimal training  
− Control signal set-up easily and 

quickly 
− High bit rate (60 bits/min) 
− Only one EEG channel required 

− Permanent attention to  
external stimuli 

− May cause tiredness in  
some users 

Endogenous 
BCI 

− SCPs 
− Sensorimotor 

rhythms 

− Independent of any stimulation 
− Can be operated at free will 
− Useful for users with sensory  

organs affected 
− Suitable for cursor control 

applications 

− Very time-consuming training 
(months or weeks) 

− Not all users are able to  
obtain control 

− Multichannel EEG recordings 
required for good performance 

− Lower bit rate (20–30 bits/min) 

Table 5. Main differences between synchronous and asynchronous BCIs. 

Approach Advantages Disadvantages 

Synchronous 
BCI 

− Simpler design and performance evaluation 
− The user can avoid generating artifacts since 

they can perform blinks and other eye 
movements when brain signals are not analyzed 

− Does not offer a more natural 
mode of interaction  

Asynchronous 
BCI 

− No requirement to wait for external cues 
− Offers a more natural mode of interaction 

− Much more complicate design 
− More difficult evaluation 

According to the nature of the signals used as input, BCI systems can be classified as either 
exogenous or endogenous. Exogenous BCI uses the neuron activity elicited in the brain by an external 
stimulus such as VEPs or auditory evoked potentials [150]. Exogenous systems do not require 
extensive training since their control signals, SSVEPs and P300, can be easily and quickly set-up. 
Besides, the signal controls can be realized with only one EEG channel and can achieve a high 
information transfer rate of up to 60 bits/min. On the other hand, endogenous BCI is based on  
self-regulation of brain rhythms and potentials without external stimuli [150]. Through neurofeedback 
training, the users learn to generate specific brain patterns which may be decoded by the BCI such as 
modulations in the sensorimotor rhythms [151] or the SCPs [117]. The advantage of an endogenous 
BCI is that the user can operate the BCI at free will and move a cursor to any point in a  
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two-dimensional space, while an exogenous BCI may constrain the user to the choices presented. Also, 
endogenous BCI are especially useful for users with advanced stages of ALS or whose sensory organs 
are affected. Table 4 summarizes the differences between exogenous and endogenous BCIs. 

According to the input data processing modality, BCI systems can be classified as synchronous or 
asynchronous. Synchronous BCIs analyze brain signals during predefined time windows. Any brain 
signal outside the predefined window is ignored. Therefore, the user is only allowed to send commands 
during specific periods determined by the BCI system. For example, the standard Graz BCI [148] 
represents a synchronous BCI system. The advantage of a synchronous BCI system is that the onset of 
mental activity is known in advance and associated with a specific cue [152]. Moreover, the patients 
may also perform blinks and other eye movements, which would generate artifacts, if the BCI did not 
analyze the brain signals to avoid their misleading effects. This simplifies the design and evaluation of 
synchronous BCI. Asynchronous BCIs continuously analyze brain signals no matter when the user 
acts. They offer a more natural mode of human-machine interaction than synchronous BCI. However, 
asynchronous BCIs are more computation demanding and complex. Table 5 summarizes the 
differences between synchronous and asynchronous BCIs. 

5. Features Extraction and Selection  

Different thinking activities result in different patterns of brain signals. BCI is seen as a pattern 
recognition system that classifies each pattern into a class according to its features. BCI extracts some 
features from brain signals that reflect similarities to a certain class as well as differences from the rest 
of the classes. The features are measured or derived from the properties of the signals which contain 
the discriminative information needed to distinguish their different types. 

The design of a suitable set of features is a challenging issue. The information of interest in brain 
signals is hidden in a highly noisy environment, and brain signals comprise a large number of 
simultaneous sources. A signal that may be of interest could be overlapped in time and space by 
multiple signals from different brain tasks. For that reason, in many cases, it is not enough to use 
simple methods such as a band pass filter to extract the desired band power.  

Brain signals can be measured through multiples channels. Not all information provided by the 
measured channels is generally relevant for understanding the underlying phenomena of interest. 
Dimension reduction techniques such as principal component analysis or independent component 
analysis can be applied to reduce the dimension of the original data, removing the irrelevant and 
redundant information. Computational costs are thereby reduced.  

Brain signals are inherently non-stationary. Time information about when a certain feature occurs 
should be obtained. Some approaches divide the signals into short segments and the parameters can be 
estimated from each segment. However, the segment length affects the accuracy of estimated features. 
FFT performs very poorly with short data segments [153]. Wavelet transform or adaptive autoregressive 
components are preferred to reveal the non-stationary time variations of brain signals. Also, a novel 
technique called stationary subspace analysis (SSA) has recently been introduced to deal with the  
non-stationarity of EEG signals [154]. SSA decomposes multivariate time series into stationary and 
non- stationary components. 
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Multiples features can be extracted from several channels and from several time segments before 
being concatenated into a single feature vector. One of the major difficulties in BCI design is choosing 
relevant features from the vast number of possible features. High dimensional feature vectors are not 
desirable due to the “curse of dimensionality” in training classification algorithms (see next section). 
The feature selection may be attempted examining all possible subsets of the features. However, the 
number of possibilities grows exponentially, making an exhaustive search impractical for even a 
moderate number of features. Some more efficient optimization algorithms can be applied with the aim 
of minimizing the number of features while maximizing the classification performance. 

This section discusses methods to obtain the relevant characteristics of brain signals as well as 
feature selection methods. Firstly, dimensional reduction methods, such as principal component 
analysis or independent component analysis are explained. Secondly, time and/or frequency methods, 
such as matched filtering or wavelet transform, and parametric modeling, such as autoregressive 
component, are also surveyed. Thirdly, an explanation is given of the common spatial pattern 
algorithm. This method designs a preprocessing spatial filter, by means of spatial covariance from input 
data and signal whitening, that enhances the difference between classes before the feature extraction 
stage. And, finally, feature selection methods such as genetic algorithms or sequential selection are 
included. All these methods, including feature extraction and feature selection methods, are listed 
respectively in Tables 6 and 7 along with information on their properties and BCI applications. 

Table 6. Summary of feature extraction methods. 

 Method Properties Applications 

Dimension 
reduction 

PCA 

− Linear transformation 
− Set of possibly correlated observations is transformed into a set of 

uncorrelated variables 
− Optimal representation of data in terms of minimal mean-square-error 
− No guarantees always a good classification 
− Valuable noise and dimension reduction method. PCA requires that 

artifacts are uncorrelated with the EEG signal 

[155,157,158] 

ICA 

− Splits a set of mixed signals into its sources 
− Mutual statistical independence of underlying sources is assumed 
− Powerful and robust tool for artifact removal. Artifacts are required 

to be independent from the EEG signal 
− May corrupt the power spectrum 

[160,161, 
164–168] 

Space CSP 

− Spatial filter designed for 2-class problems. Multiclass extensions exist 
− Good result for synchronous BCIs. Less effective for asynchronous 

BCIs 
− Its performance is affected by the spatial resolution. Some electrode 

locations offer more discriminative information for some specific 
brain activities than others 

− Improved versions of CSP: WCSP, CSSP, CSSSP 

[183–187] 

  



Sensors 2012, 12 1230 
 

Table 6. Cont. 

Time-
frequency 

AR 

− Spectrum model 
− High frequency resolution for short time segments 
− Not suitable for non-stationary signals 
− Adaptive version of AR: MVAAR 

[170,172] 

MF 

− Detects a specific pattern on the basis of its matches with 
predetermined known signals or templates 

− Suitable for detection of waveforms with consistent temporal 
characteristics 

[151,173] 

CWT 
− Provides both frequency and temporal information 
− Suitable for non-stationary signals 

[179,180] 

DWT 
− Provides both frequency and temporal information 
− Suitable for non-stationary signals 
− Reduces the redundancy and complexity of CWT 

[181,182] 

Table 7. Summary of feature extraction methods. 

 Method Properties Applications

Features 
selection 

GA 
− High resource consumption 
− Possible premature convergence 

[188,189] 

SFS/SBS − Suboptimal methods [191,192] 

SFFS/SBFS 
− Modified versions of SFS/SBS methods 
− Based on plus l-take away r algorithm 
− Partially overcome the deficiencies of SFS/SBS 

[194–196] 

5.1. Principal Component Analysis (PCA)  

PCA is a statistical features extraction method that uses a linear transformation to convert a set of 
observations possibly correlated into a set of uncorrelated variables called principal components. 
Linear transformation generates a set of components from the input data, sorted according to their 
variance in such a way that the first principal component has the highest possible variance. This 
variance allows PCA to separate the brain signal into different components. 

PCA projects the input data on a k-dimension eigenspace of k eigenvectors, which are calculated 
from the covariance matrix ∑ of the training data p = [p1 p2 

… pn] [155]. pi is i-th d-dimension training 
sample, and n is the number of samples.  

The covariance matrix ∑ is computed as: ∑ ൌ ሺ െ ݉ሻሺ െ ݉ሻ௧
ୀଵ  (1)

where, ݉ ൌ ଵ ∑ ୀଵ  is the mean vector of the training samples pi. 

The covariance matrix ∑ is a real and symmetric ݀ ݔ ݀ matrix, therefore ∑ has d different 
eigenvectors and eigenvalues. By means of the eigenvalues, it is possible to know which eigenvectors 
represent the most significant information contained in the dataset. The eigenvectors with the highest 
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eigenvalue represent the principal components of the training dataset p. PCA selects that k, with k < d, 
eigenvectors having the largest eigenvalues. These selected eigenvectors serve to build a projection 
matrix A that will be used to extract the feature vector from the test data q. The k eigenvectors are 
sorted into columns in Matrix A, such that the first column of A corresponds to the largest eigenvalue. 
Finally, PCA computes the feature vector v from the data in matrix A, by projecting the test data q onto 
the new subspace, such that: ݒ ൌ ݍ௧ሺܣ െ ݉ሻ  (2)

where, ݉ ൌ ଵ ∑ ୀଵ  represents the mean vector of training samples pi. 

PCA is also a procedure to reduce the dimension of the feature. Since the number of columns is less 
than the number of eigenvectors, the dimension of the output projected data is less than the dimension 
of the input data. This decrease in dimensionality can reduce the complexity of the subsequent 
classifying step in a BCI system.  

PCA does not always guarantee a good classification since the best discriminating components may 
not figure among the largest principal components [156]. PCA reduces data dimension by seeking a 
new optimal representation of data in terms of minimal mean-square-error between the representation 
and the original data. It will not guarantee that the discriminative features are optimal for classification. 
Despite this shortcoming, it has been proven that PCA is a reliable noise reduction method. 

With regard to the applications of PCA in BCI systems, PCA has been used to identify the 
artifactual components in a reasonably successful way in EEG signals and to reconstruct the signals 
without the artifactual components [157,158]. Nevertheless, the artifacts must not be correlated with 
the EEG signal for PCA to function in this way. PCA has also been employed, in order to reduce 
feature space dimensionality [155].  

5.2. Independent Component Analysis (ICA) 

ICA is a statistical procedure that splits a set of mixed signals into its sources with no previous 
information on the nature of the signal. The only assumption involved in ICA is that the unknown 
underlying sources are mutually independent in statistical terms. ICA assumes that the observed EEG 
signal is a mixture of several independent source signals coming from multiple cognitive activities or 
artifacts. ICA therefore expresses the resulting EEG signal x(t) in relation to their sources s(t) as: ࢞ሺݐሻ ൌ ሻሻݐሺ࢙ሺࢌ  ሻ (3)ݐሺ

where, f is any unknown mixer function, and n(t) is an additive random noisy vector. The dimension of 
the input vector s(t) depends on the number of sources. The dimension of output vector x(t) is equal to 
the number of measured data channels. The number of sources is usually assumed to be less than or 
equal to the number of channels although more generalized ICA methods are possible [159]. 

The whole ICA problem consists in the calculation of the unmixing function by inverting f and 
obtaining an estimation of s(t), by mapping x(t) to the source space. To solve the problem, ICA can fall 
into two different models on the basis of f, which may be either a linear or nonlinear function. The 
nonlinear assumption is suitable in those cases where the linear model might be too simple to describe 
the observed data x(t). However, the nonlinear problem is usually too complex and generally 
intractable due to its high number of indeterminations. The assumption of a linear mixing function 
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simplifies Equation (3). It is possible to rewrite it as a matrix multiplication where A is the mixing 
matrix. The Equation (4) gives the mathematical expression of the linear ICA model: ࢞ሺݐሻ ൌ ሻݐሺ࢙  ሻ (4)ݐሺ

Although the approximation given by Equation (4) can be considered too simple, it works 
reasonably well in brain signal processing applications. Furthermore, it is possible to remove the noise 
term n(t) from Equation (4), by assuming that the observed data is noiseless or that the noise is too 
weak for consideration [160,161]. Finally, s(t) and A are obtained from x(t) by means of certain 
algorithms, such as Infomax [162] or further modification of the Infomax [163]. 

ICA has traditionally been used as a preprocessing tool before the feature extraction step, in order to 
remove ocular artifacts in BCI systems [164–166]. Although ICA has been proven to be a powerful 
and robust tool for artifact removal in signal analysis, some studies have indicated that artifact 
suppression may also corrupt the power spectrum of the underlying neural activity [167]. In addition, 
ICA requires that the artifacts are independent in relation to the EEG signal. 

It is also possible to find authors that have employed ICA as a classifier. ICA can be modified to 
classify EEG signals by fitting the generative ICA model to each task and employing Bayes’ rule to 
create the classifier [168].  

5.3. AutoRegressive Components (AR)  

AR spectral estimation is a method for modeling signals. AR models the EEG signal as the output 
random signal of a linear time invariant filter, where the input is white noise with a mean of zero and a 
certain variance of σ2. The aim of the AR procedure is to obtain the filter coefficients, since it is 
assumed that different thinking activities will produce different filter coefficients. The filter 
coefficients will be used as the features of the signal.  

AR assumes that the transfer function of the filter will only contain poles in the denominator. The 
number of poles in the denominator corresponds to the order of the autoregressive model. The 
assumption of an all-pole filter makes the filter coefficients computation easier because it is only 
necessary to solve linear equations.  

Mathematically, the AR model of order p describes the EEG signal y(t) as: ݕሺݐሻ ൌ ܽଵݕሺݐ െ 1ሻ  ܽଶݕሺݐ െ 2ሻ  ܽଷݕሺݐ െ 3ሻ  ڮ  ܽݕሺݐ െ ሻ  ݊ሺݐሻ (5)

where, ai is the i-th filter coefficient, and n(t) is the noise. There are several methods that compute the 
filter coefficients such as the Yule-Walker, Burg, covariance, and forward-backward algorithms [169]. 
The resulting coefficients can be used to estimate the power spectrum of the EEG signal y(ω),  
such that: ݕሺ߱ሻ ൌ 1ห1 െ ∑ ܽ ݁ିఠୀଵ หଶ (6)

where, ak are the estimated filter coefficients, and p is the AR model order, in other words, the number 
of poles.  

In the AR model, the determination of an appropriate order p for a given input signal is a trade-off 
issue. If the order is too low to model the input signal, the result will not faithfully represent the signal 
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because the spectrum is too smooth. In contrast, if the order is too high, the spectrum may exhibit 
spurious peaks. 

AR spectral estimation is preferred to Fourier Transform, because of its superior resolution for short 
time segments [170]. Nevertheless, AR performs poorly when the signal is not stationary [171]. Due to 
the non-stationary nature of EEG signals, a multivariate adaptive AR (MVAAR) model has been 
proposed to design more effective on-line BCI systems. Jiang et al. [172] applied MVAAR for the 
classification of motor imagery, showing that MVAAR is a valuable adaptive method for feature 
extraction. The computation algorithm was very similar to the original AR model. In a BCI with m 
channels, the vector of m EEG values, at each point in time k, was represented as: ݕԦ ൌ ሾݕ,ଵ ,ଶݕ … ,ሿ் (7)ݕ

As in the AR case, the MVAAR model was expressed as: ݕԦ ൌ Ԧିଵݕଵܣ  Ԧିଶݕଶܣ  Ԧିଷݕଷܣ  ڮ  Ԧିݕܣ  ሬ݊Ԧ (8)

where, ሬ݊Ԧ was the vector of white noise values, ܣଵ    were the adaptive coefficients, and p was theܣ
model order. The Recursive Least Squares algorithm, a special variant of the Kalman Filter, were used 
to update coefficients ܣଵ   . at every point kܣ

5.4. Matched Filtering (MF) 

MF is a feature extraction method that attempts to detect a specific pattern on the basis of its 
matches with predetermined known signals or templates. The intention of the user is revealed by 
means of the correlation between the unknown EEG signals and the set of templates. Each template 
represents an intention of the user. A higher correlation would imply better matching between the 
template and the user’s intention. Each matched filter can simply be modeled as a sum of the 
harmonically related sinusoidal components [151]: 

ሺ݊ሻܨܯ ൌ  ܽcos ൬2݇ߨ ி݂௦݂ ݊  ൰ேߔ
ୀଵ  (9)

where, n is the template sample number, fs is the sampling frequency, fF is the fundamental frequency 
of the rhythm template, N-1 is the number of harmonics, and at and ߔare the amplitude and phase of 
the individual harmonics, respectively. The model parameters at and ߔ can be obtained from the FFT 
spectrum [151]. 

MF has been proven especially effective for the detection of waveforms with consistent temporal 
characteristics. Krusienski et al. [151] used MF for the identification of user intentions through µ-
rhythms and Brunner et al. [173] also used it for SSVEP feature extraction. 

5.5. Wavelet Transform (WT) 

WT is a mathematical tool widely used for extracting information from many different kinds of 
data, such as audio or image data, among others. WT is particularly suitable when signals are not 
stationary, because it provides a flexible way of representing the time-frequency of a signal [174].  
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Wavelets are functions of varying frequency and limited duration that allow simultaneous study of 
the signal in both the time and the frequency domain [175], in contrast to other modalities of signal 
analysis such as Fourier transform (FT). FT provides only an analysis of the signal activity in the 
frequency domain. FT gives information about the frequency content, but it is not accompanied by 
information on when those frequencies occur. Short-term Fourier Transform (STFT) was proposed to 
overcome this shortcoming of the Fourier analysis. The STFT divides the signal into successive time 
windows and applies the FT in each epoch of the signal in time. In this approach, the design of window 
length is a trade-off because smaller windows lead to higher temporal resolution but also to lower 
frequency resolution at the same time. The WT overcomes this drawback by decomposing the signal in 
both the time and the frequency domain at multiple resolutions, by using a modulated window that is 
shifted along the signal at various scales. 

Continuous wavelet transform (CWT) is defined as the convolution of the signal ݔሺݐሻ with the 
wavelet function ߰௦,ఛሺݐሻ [175]: ݓሺݏ, ߬ሻ ൌ න כሻ߰௦,ఛݐሺݔ ሺݐሻ݀ݐஶ

ିஶ ,ݏሺݓ(10)  ߬ሻ is the wavelet coefficient that corresponds to the frequency associated with the scale s and the 
time τ of the wavelet function ߰௦,ఛሺݐሻ, and the symbol ‘*’ expresses the complex conjugation. The 
wavelet function ߰௦,ఛሺݐሻ is a dilated and shifted version of a mother wavelet ߰ሺݐሻ: ߰௦,ఛሺݐሻ ൌ ݏ√1 ߰ሺݐ െ ݏ߬ ሻ (11)

A mother wavelet can take multiples shapes, but it always satisfies the next condition: න ߰ሺݐሻ݀ݐ ൌ 0ஶ
ିஶ  (12)

The CWT defined in the Equation (10) is actually a kind of template matching, similar to a matched 
filter in which the cross variance between the signal and a predefined waveform is calculated [151]. 
The advantage of the CWT over classic template matching methods arises from the special properties 
of the wavelet template. The wavelets are suitable for transient signal analysis, in which the spectral 
properties of the signal vary over time [176]. 

WT is a powerful tool for the decomposition of transient brain signals into their constituent parts, 
based on a combination of criteria such as frequency and temporal position. Signals of identical 
frequency ranges can be distinguished by means of the temporal position. Likewise, it is possible to 
separate temporally overlapping processes thanks to the different frequency content. 

The CWT introduces a lot of redundancy and complexity since it involves the analysis of a signal at 
a very high number of frequencies using multiple dilations and shifting of the mother wavelet. Discrete 
wavelet transform (DWT) was introduced to reduce this redundancy and complexity. The DWT 
translates and dilates the mother wavelet in certain discrete values only [177]. Farina et al. [178] 
showed a pattern recognition approach for the classification of single trial movement-related cortical 
potentials, where the feature space is built from coefficients of a discrete wavelet transformation. 
Although DWT is less redundant and less complex than CWT, CWT is still employed to extract 
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features from P300 and SCP, because it can clarify subtle information that DWT is unable to  
extract [179]. 

The use of WT requires the selection of a mother wavelet. Many different mother wavelets can be 
found in BCI applications and the selection of any one depends on what types of features need to be 
extracted from the signal. The Mexican Hat wavelet is well localized in the time domain and is 
employed for the localization of ERP components in time [179]. The Morlet wavelet is well localized 
in the frequency domain and has been used for the analysis of gamma activity [180]. The bi-scale 
wavelet has been employed successfully for designing an asynchronous BCI based on detection of 
imaginary movement in the 1–4 Hz frequency range [181]. Also, the Daubechies wavelet, a very  
well-known mother wavelet, has been used for the classification of SCPs [182]. 

5.6. Common Spatial Pattern (CSP) 

CSP is a feature extraction method that projects multichannel EEG signals into a subspace, where 
the differences between classes are highlighted and the similarities are minimized. It aims to make the 
subsequent classification much more effective, by designing a spatial filter that transforms the input 
data into output data with an optimal variance for the subsequent discrimination [183]. CSP has been 
designed for the analysis of multichannel data belonging to 2-class problems. Nevertheless, some 
extensions for multiclass BCIs have also been proposed [184].  

CSP calculates the normalized spatial covariance C from the input data E, which represents the raw 
data of a single trial, by means of: ܥ ൌ ᇱሻ (13)ܧܧሺ݁ܿܽݎݐԢܧܧ

where, E is an ܰ ݔ ܶ matrix, in which T is the number of channels, i.e., recording electrodes, and N the 
number of samples per channel. The apostrophe Ԣ denotes the transpose operator, while trace(x) is the 
sum of the diagonal elements of x. 

Assuming CSP is used to classify two classes, e.g., left and right motor imagery, CSP calculates the 
spatial covariances ܥഥ  and ܥҧ for each of the two classes by averaging the covariances over the 
successive training trials of each class over time. The composite spatial covariance ܥ is computed as: ܥ ൌ ഥܥ  ҧ (14)ܥ

Since ܥ is real and symmetric, it can be factored as ܥ ൌ ܷߣ ܷᇱ, where ܷ is the matrix of 
eigenvectors, and ߣ is the diagonal matrix of eigenvalues.  

By means of the whitening transform: ܲ ൌ ඥߣି ଵ ܷᇱ (15)

the variances are equalized in the space spanned by ܷᇱ and all eigenvalues of ܲܥҧܲԢ are equal to one. If ܥҧ and ܥҧ are transformed as: ܵ ൌ ҧܲԢ (16)ܵܥܲ ൌ ҧܲԢܥܲ (17)

then, ܵ and ܵ will share common eigenvectors. If ܵ ൌ Ԣ, then ܵܤߣܤ ൌ ߣ Ԣ, andܤߣܤ  ߣ ൌ  ,ܫ
where ܫ is the identity matrix. As a result of the sum of two corresponding eigenvalues being always 
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one, the eigenvectors with the largest eigenvalues for ܵ correspond to the smallest eigenvalue for ܵ, 
and vice versa. This property is very useful for subsequent classification, because the variance of the 
signal is maximized for one class while minimized for the other class. 

Finally, the feature vector Z is obtained from the trial E as:  ܼ ൌ (18) ܧܹ

where, ܹ ൌ ሺܤᇱܲሻԢ is the spatial filter matrix built by the CSP procedure. 
CSP increases the accuracy of synchronous BCIs where it is allowed to send signals only during 

certain predefined time periods. However, CSP does not offer the same improvement in asynchronous 
BCIs. This is mainly due to the nonstationary properties of EEG signals [185]. Also, the performance 
of CSP is affected by the spatial resolution, and it has been proven that some electrode locations offer 
more discriminative information for some specific brain activities than others. For these reasons, 
several methods improving the original CSP method have been proposed to increase the performance: 
Wavelet Common Spatial Pattern (WCSP) [185], Common Spatio-Spectral Pattern (CSSP) [186], and 
Common Sparse Spectral Spatial Pattern (CSSSP) [187]. 

5.7. Genetic Algorithm (GA)  

GA is an optimization procedure to establish whether a certain set of features is the most efficient. 
GA has been used in very diverse fields to solve optimization problems. In BCI research, GA has been 
used as an automatic method to extract an optimal set of relevant features [188,189]. 

The baseline of the algorithm is a population of candidate solutions called individuals, creatures, or 
phenotypes which are encoded by strings named chromosomes or the genotype of the genome. These 
strings are coded either by binary information or no binary information. The standard steps of the GA 
can be explained briefly as follows (Figure 3). GA begins with an initial population which is randomly 
generated unless the algorithm has previous of the final solution. In the case of having initial 
information, the initial population may be directed towards areas where optimal solutions are more 
likely to reduce the number of iterations. The fitness of every individual population is evaluated. 
According to their fitness, some representatives of the population may be discarded to vacate space for 
newly generated individuals. Other individuals may be selected as parents in order to breed new 
individuals. Also, some individuals may be stochastically selected to keep diversity in the population 
preventing premature convergence. After the selection step, the individuals are crossed with each 
other. In the crossover step, mating is performed among the selected parents to generate one or more 
offspring. To keep a fixed population size, the number of offspring is usually the same as the number 
of discarded individuals. The parents’ genes are split into pieces and then combined to form new 
offspring. Following the crossover step, mutations are introduced to alter the population in order to 
avoid converging towards a local suboptimum solution before exploring the entire search space. As a 
result of the mutation, it is possible to discover areas that cannot be explored by crossover. Finally, the 
fitness of the new population is evaluated. When an acceptable solution is reached or the maximum 
number of generations has been produced, the algorithm is terminated. Otherwise, another iteration of 
the algorithm is produced. 
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Figure 3. Genetic algorithm. 

 

5.8. Sequential Selection 

Sequential selection is an optimization approach that aims at finding the optimal subset of features 
by adding or removing features sequentially. There are two algorithms that perform sequential 
selection: sequential forward selection and sequential backward selection. 

Sequential forward selection (SFS) [190] is a bottom up algorithm. Firstly, the best individual 
feature is found as the first feature in the subset. Next, for each subsequent step, the algorithm chooses 
the feature from the remaining set, which in combination with the previously selected features, yields 
the best subset of features. Finally, the algorithm finishes when the required number of features is 
reached. The shortcoming of this algorithm is that the superfluous features are not removed once other 
features are added. Sequential backward selection (SBS) [190], in contrast to SFS, is a top down 
process. The process starts with the entire set of features and removes step by step features in such a 
way that the error is as low as possible. This algorithm is also suboptimal, because it discards some 
features that may be helpful after discarding other features. SFS has been used with success in the field 
of BCIs [191,192]. 

Another refined method is introduced to partially overcome the aforementioned deficiencies. This 
method, known as plus l take away r method (l > r), adds l features, and remove r features that is not 
working well with other selected features. Sequential forward floating search (SFFS) or sequential 
backward floating search (SBFS) are based on the plus l-take away r method [193]. SFFS starts with a 
null feature set and, for each step, the r best features are included in the current feature set. In other 
words, r steps of SFS are performed. Next, the algorithm verifies the possibility that some feature may 
be excluded. Then, l worst features are eliminated from the set; in other words, l steps of SBS. SFFS 
increases and decreases the number of features until the desired number of features is reached. SBFS 
works analogously, but starting with the full feature set and performing the search until the desired 
dimension is reached, using SBS and SFS steps.  

In BCI research, SFFS has been used to reduce the dimensionality of the feature space to an 
appropriate size for the available training data [194–196]. 
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6. Artifacts in BCIs 

Artifacts are undesirable signals that contaminate brain activity and are mostly of non-cerebral 
origin. Since the shape of neurological phenomenon is affected, artifacts may reduce the performance 
of BCI-based systems. Artifacts may be classified into two major categories: physiological artifacts 
and non-physiological or technical artifacts. 

Physiological artifacts are usually due to muscular, ocular and heart activity, known as 
electromyography (EMG), electrooculography (EOG), and electrocardiography (ECG) artifacts 
respectively [197]. EMG artifacts, which imply typically large disturbances in brain signals, come 
from electrical activity caused by muscle contractions, which occur when patients are talking, chewing 
or swallowing. EOG artifacts are produced by blinking and other eye movements. Blinking makes 
generally high-amplitude patterns over brain signals in contrast to eye movements which produce  
low-frequency patterns. These electrical patterns are due to the potential difference between the cornea 
and the retina, as their respective charges are positive and negative. For that reason, the electric field 
around the eye changes when this dipole moves. EOG artifacts mostly affect the frontal area, because 
they are approximately attenuated according to the square of the distance [198]. Finally, ECG artifacts, 
which reflect heart activity, introduce a rhythmic signal into brain activity [197]. 

Technical artifacts are mainly attributed to power-line noises or changes in electrode impedances, 
which can usually be avoided by proper filtering or shielding [197]. Therefore, the BCI community 
focuses principally on physiological artifacts, given that their reduction during brain activity 
acquisition is a much more challenging issue than non-physiological artifact handling. 

Several ways of handling physiological artifacts can be found in the literature. Artifacts may be 
avoided, rejected or removed from recordings of brain signals. Artifact avoidance involves asking 
patients to avoid blinking or moving their body during the experiments [199]. This approach to artifact 
handling is very simple, because it does not require any computation as brain signals are not assumed 
to have artifacts. However, this assumption is not always feasible given that some artifacts -
involuntary heart beats, eye and bodily twitches- are not easily avoidable during data recording, 
especially in cases of strong neurological disorders [199]. Artifact rejection approaches suggest 
discarding the epochs contaminated by the artifacts. Manual artifact rejection is an option to remove 
artifacts in brain signals and an expert could identify and eliminate all artifact-contaminated epochs. 
The main disadvantage in using manual rejection is that it requires intensive human labor, so this 
approach is not suitable for on-line BCI systems. Nevertheless, this task can be performed 
automatically by EMG and EOG artifact detection. If EMG and EOG signals are monitored, the brain 
signal samples may be removed whenever ocular or muscular activity of the arms is detected [200]. 
Automatic rejection is an effective way of artifact handling, but it may fail when EOG amplitudes are 
too small. Besides, rejection methodology means that the user loses device control when artifact 
contaminated signals are discarded. Instead of rejecting samples, the artifact removal approach 
attempts to identify and remove artifacts while keeping the neurological phenomenon intact. Common 
methods for removing artifacts in EEG are linear filtering, linear combination and regression, BSS and 
PCA [197]; some of which were discussed in Section 0. 

Instead of avoided, rejected or removed artifacts from recordings of brain signals, some systems 
acquire and process artifacts to offer a communication path that either disabled or healthy people can 
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use in many tasks and in different environments. This kind of system is not considered a BCI, because 
communication is not independent of peripheral nerves and muscles. EMG computer interface [201], 
human-computer interface (HCI) [202], EMG-based human-computer interface [203], EMG-Based 
Human-Machine Interface [204], EMG-based human-robot interface [205], muscle-computer interface 
(MuCI) [206], man-machine interface (MMI) [207], and biocontroller interface [208] are different 
terms used to name communication interfaces in the scientific literature that can employ artifact 
signals, among others. These systems usually have greater reliability than BCIs, but they cannot be 
used by severely disabled people with strong constraints in voluntary movements. 

7. Classification Algorithms 

The aim of the classification step in a BCI system is recognition of a user’s intentions on the basis 
of a feature vector that characterizes the brain activity provided by the feature step. Either regression or 
classification algorithms can be used to achieve this goal, but using classification algorithms is 
currently the most popular approach [209]. 

Regression algorithms employ the features extracted from EEG signals as independent variables to 
predict user intentions. In contrast, classification algorithms use the features extracted as independent 
variables to define boundaries between the different targets in feature space. McFarland et al. [210] 
illustrated the differences between the two alternatives. For a two-target case, both the regression 
approach and the classification approach require the parameters of a single function to be determined. 
In a four-target case, assuming that the targets are distributed linearly, the regression approach still 
requires only a single function. In contrast, the classification approach requires the determination of 
three functions, one for each of the three boundaries between the four targets. Therefore, the 
classification approach might be more useful for two-target applications and the regression approach 
may be preferable for greater numbers of targets, when these targets can be ordered along one or more 
dimensions. Moreover, the regression approach is better for continuous feedback e.g., applications 
which involve continuous control of cursor movement. Figure 4 illustrates the differences between 
classification and regression approaches.  

Figure 4. Classification and regression approaches to BCI control of two-targets (adapted 
from [210]). The regression algorithms employ the features extracted from EEG signals as 
independent variables to predict user intentions. In contrast, the classification approach 
uses the features extracted as independent variables to define boundaries between the 
different targets in feature space. 

 Classification Regression
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Classification algorithms can be developed via either offline, online or both kinds of sessions. The 
offline session involves the examination of data sets, such as BCI competitions data sets [211], which 
are collected from an adaptive or closed-loop system. The statistics of the data may be estimated from 
observations across entire sessions and long-term computations may be performed. The results can be 
reviewed by the analyst with the aim of fine-tuning the algorithms. Offline data analysis is valuable, 
but it does not address real-time issues. In contrast, online sessions provide a means of BCI system 
evaluation in a real-world environment. The data are processed in a causal manner and the algorithms 
are tested in an environment in which the users change over the time as a result of e.g., changes in 
motivation or fatigue. Although some researchers test new algorithms with only offline data, both 
offline simulation and online experiments are necessary for effective algorithm design in closed-loop 
systems. In other words, offline simulation and cross-validation can be valuable methods to develop 
and test new algorithms, but only online analysis can yield solid evidence of BCI system  
performance [137,212,213]. 

Classification algorithms have traditionally been calibrated by users through supervised learning 
using a labeled data set. It is assumed that the classifier is able to detect the patterns of the brain signal 
recorded in online sessions with feedback. However, this assumption results in a reduction in the 
performance of BCI systems, because the brain signals are inherently non-stationary. In this regard, 
Shenoy et al. [214] described two main sources of non-stationarity. On the one hand, the patterns 
observed in the experimental samples during calibration sessions may be different from those recorded 
during the online session. On the other hand, progressive mental training of the users or even  
changes in concentration, attentiveness, or motivation may affect the brain signals. Therefore, adaptive 
algorithms are essential for improving BCI accuracy. Adaptation to non-stationary signals is 
particularly necessary in asynchronous and non-invasive BCIs [215,216]. 

Apart from the fact that supervised learning is not optimal for non-stationary signals classification, 
large data sets and, thus, long initial calibration sessions are usually required to achieve acceptable 
accuracy. Semi-supervised learning has been suggested to reduce training time and to update the 
classifier in the online session on a continuous basis [217]. In semi-supervised learning, the classifier is 
initially trained using a small labeled data set, after which the classifier is updated with on-line test data.  

In a realistic BCI scenario, the signal associated with the subject’s intentions is not usually known 
and the labels are not available. Either unsupervised learning or reinforcement learning can be applied 
for BCI adaptation when the labeled data set is not available. Unsupervised methods attempt to find 
hidden structures in unlabeled data, in order to classify them. Some unsupervised methods rely on 
techniques for co-adaptive learning of user and machine [218,219] or covariate shift adaptation [220]. 
Reinforcement learning methods are based on the fact that distinguishing EEG potentials are elicited 
when a subject is aware of an erroneous decision. These potentials are used as learning signals to 
prevent that error from being repeated in the future [221]. 

The adaptation generally results in enhanced performance. Nevertheless, it is worth highlighting 
that inherent risks exist in an adaptive BCI. A BCI that learns too fast may confuse the user, because 
training will take place in a changing environment [222]. In addition, adaptive procedures can hide 
some relevant signal features. Accordingly, there is a tradeoff between highly sensitive adaptation and 
feature extraction. 
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Classifiers also have to face two main problems related to the pattern recognition task: the curse of 
dimensionality and the bias-variance tradeoff. The curse of dimensionality means that the number of 
training data needed to offer good results increases exponentially with the dimensionality of the feature 
vector [223]. Unfortunately, the available training sets are usually small in BCI research, because 
training process takes a long time and is a tiring process for users. The bias-variance tradeoff 
represents the natural trend of the classifiers towards a high bias with low variance and vice versa. 
Stable classifiers are characterized by high bias with low variance, while unstable classifiers show high 
variance with low bias. To achieve the lowest classification error, bias and variance should be low 
simultaneously. A set of stabilization techniques such as the combination of classifiers or regularization 
can be used to reduce the variance. 

The design of the classification step involves the choice of one or several classification algorithms 
from many alternatives. Several classification algorithms have been proposed such as k-nearest 
neighbor classifiers, linear classifiers, support vector machines, and neural networks, among others. 
The general trend prefers simple algorithms to complex alternatives. Simple algorithms have an 
inherent advantage because their adaptation to the features of the brain signal is inherently simpler and 
more effective than for more complex algorithms. Nevertheless, simple algorithms, whenever 
outperformed in online and offline evaluations, should be replaced by more complex alternatives [213].  

Table 8. Summary of classification methods. 

 Approach Properties Applications 

Generative 
model 

Bayesian 
analysis 

− Assigns the observed feature vector to the labeled class to which it has 
the highest probability of belonging 

− Produces nonlinear decision boundaries 
− Not very popular in the BCI systems 

[245–248] 

Linear 

LDA 

− Simple classifier with acceptable accuracy 
− Low computation requirements 
− Fails in the presence of outliers or strong noise. Regularization required 
− Usually two class. Extended multiclass version exits. 
− Improved LDA versions: BLDA, FLDA 

[179,230,231,
233–235] 

SVM 

− Linear and non-linear (Gaussian) modalities 
− Binary or multiclass method 
− Maximizes the distance between the nearest training samples and the 

hyperplanes 
− Fails in the presence of outliers or strong noise. Regularization required 
− Speedy classifier 

[131,228,230,
237,239–244] 

Non-linear k-NNC 

− Uses metric distances between the test feature and their neighbors  
− Multiclass 
− Efficient with low dimensional feature vectors. Very sensitive to the 

dimensionality of the feature vectors 

[227–229] 

ANN 
− Very flexible classifier 
− Multiclass 
− Multiple architectures (PNN, Fuzzy ARTMAP ANN, FIRNN, PeGNC) 

[200,215, 
249–256] 
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Finally, certain inherent dangers of classification algorithm usage should be pointed out. Although 
classification algorithms have clearly helped to characterize task relevant brain states, several pitfalls 
may occur when these algorithms are used by non-experts. Bias and variance of the estimated error of 
the algorithms, and their overfitting are the main source of difficulties [224]. If a classifier is 
overfitted, then it will only be able to classify the training data or similar data. Overfitting can be 
avoided by restricting the complexity of the classification procedure [224]. Classification error is 
estimated by means of cross validation. Once a classification algorithm is trained, the algorithm is 
validated on a validation data set, which should be independent of the training data set. This procedure 
is usually repeated several times, using different partitions of the sample data. The resulting validation 
errors are averaged across multiple rounds. This approach presents some inherent dangers that must be 
prevented, because some elements of the partition may not be independent of each other or may not be 
identically distributed, among other reasons [224].Next, this section presents the properties of a set of 
classifiers, in order to make it easier to choose an appropriate classifier for a given type of BCI. All 
classifier methods are listed in Table 8, along with their main properties. 

7.1. K-Nearest Neighbor Classifier (k-NNC) 

K-nearest neighbor classifiers (k-NNC) are based on the principle that the features corresponding to 
the different classes will usually form separate clusters in the feature space, while the close neighbors 
belong to the same class. This classifier takes k metric distances into account between the test samples 
features and those of the nearest classes, in order to classify a test feature vector. The metric distances 
are a measure of the similarities between the features of the test vector and the features of each class. 
The advantage of taking k neighbors into account in the classification is that error probability in the 
decision is decreased. Some training samples may be affected by noise and artifacts, which may 
seriously influence the classification results. If a decision involving several neighbors is made, then it 
is less likely that an error will occur, because the probability of several simultaneous erroneous datum 
is much lower [225]. 

Rather than only the closest sample, if several k closest classes are considered, then a voting scheme 
is required to decide between competing choices. Since there are no reasons to assume that the 
distributions of those neighbors are homogenous, it is clear to see that the k-NNC has to assign 
different ranks to the nearest neighbors, according to their distances from the test example. Therefore, 
k-NNC needs to define a weighting function, which varies with the distance in such a way that the 
output value decreases as the distance between the test feature vector and the neighbor increases. The 
function defined by Equation (19) [226] meets this requirement: 

ሺሻݓ ൌ ቐ݀ሺሻ െ ݀ሺሻ݀ሺሻ െ ݀ሺଵሻ ݂݅ ݀ሺሻ ് ݀ሺଵሻ1 ݂݅ ݀ሺሻ ൌ ݀ሺଵሻ (19)

where, ݀ሺሻ denotes the distance of the i-th nearest neighbor from a test example. That is, ݀ሺଵሻ 
corresponds to the nearest neighbor and ݀ሺሻ to the furthest. The decision rule of k-NNC assigns the 
unknown examples to the class with the greatest sum of weights among its k nearest neighbors. 

k-NNC is not very common in BCI research, because this classifier is very sensitive to the 
dimensionality of the feature vector [227]. Nevertheless, k-NNC has been proven to be efficient with 



Sensors 2012, 12 1243 
 
low dimension feature vectors. Also, k-NNC has been tested in a multiclass environment [228] and 
applied to cursor movements on a vertical axis, when classifying SCPs [229]. 

7.2. Linear Discriminant Analysis (LDA) 

LDA is a very simple classifier that provides acceptable accuracy without high computation 
requirements. LDA is very common in the BCI community and is a good choice for designing online 
BCI systems with a rapid response, but limited computational resources. LDA provides relatively 
acceptable accuracy and has been used successfully in numerous BCI systems, such as P300  
speller [179], multiclass [230], or synchronous [231] BCIs. Nevertheless, it can lead to completely 
erroneous classifications in the presence of outliers or strong noise [232]. LDA is usually applied to 
classify patterns into two classes, although it is possible to extend the method to multiples classes [230]. 

For a two-class problem, LDA assumes that the two classes are linearly separable. According to this 
assumption, LDA defines a linear discrimination function which represents a hyperplane in the feature 
space in order to distinguish the classes. The class to which the feature vector belongs will depend on 
the side of the plane where the vector is found (Figure 5). In the case of an N-class problem (N > 2), 
several hyperplanes are used. The decision plane can be represented mathematically as: ݃ሺ࢞ሻ ൌ ்࢞ݓ   (20)ݓ

where, w is known as the weight vector, x is the input feature vector and w0 is a threshold. The input 
feature vector is assigned to one class or the other on the basis of the sign of ݃ሺ࢞ሻ. 

Figure 5. Linear classifier and margins. The decision boundary is the thick line. (adapted from [232]). 

 

There are many methods to compute w. For example, w may be calculated as [233]: ݓ ൌ ିߑ ଵሺμଶ െ μଵሻ (21)

where, μi is the estimated mean of class i and ߑ ൌ ଵଶ(ߑଵ   ଶሻ is the estimated common covarianceߑ 

matrix; the average of the two class empirical covariance matrices. The estimators of the covariance 
matrix and of the mean are calculated as:  ߑ ൌ 1݊ െ 1 ሺݔ െ μሻሺݔ െ μሻ்

ୀଵ  (22)
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 μ ൌ 1݊  ݔ

ୀଵ  (23)

where, ࢞ is a matrix containing n feature vectors ݔଵ, ,ଶݔ … , ݔ א  Թௗ. 

Figure 6. Eigenvalue spectrum of a given covariance matrix (bold line) and eigenvalue 
spectra of covariance matrices estimated from a finite number of samples (N = 50, 100, 200, 
500). Note that accuracy increases as the number of trials increase (adapted from [233]). 

 

The estimation of the covariance defined in Equation (22) is unbiased and has good properties 
under usual conditions. Nevertheless, it may become imprecise in some cases where the dimensionality 
of the features is too high compared to the number of available trials. The estimated covariance matrix 
is different from the true covariance matrix, because the large eigenvalues of the original covariance 
matrix are over estimated and the small eigenvalues are under estimated (Figure 6). It leads to a 
systematic error which degrades LDA performance [233]. 

For this reason, a new procedure has been proposed to estimate the covariance, improving the 
standard estimator defined in the Equation (22). The new standard estimator of the covariance matrix 
is given by: ߑሺߛሻ ൌ ሺ1 െ ߑሻߛ  (24) ܫߥߛ

The γ value is referred to as a shrinkage parameter and is tunable between 0 and 1. ν is defined as ݁ܿܽݎݐሺߑሻ/݀ with d being the dimensionality of the features space. The selection of a shrinkage 
parameter implies a trade-off and is estimated on the basis of the input data [234].  

Some improved algorithms have been introduced based on LDA such as Fisher LDA (FLDA) and 
Bayesian LDA (BLDA) [235]. In the first example, performance was improved by projecting the data 
to a lower dimensional space, in order to achieve larger intervals between the projected classes and, 
simultaneously, to reduce the variability of the data in each class. However, FLDA does not work well 
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when the number of features becomes too large in relation to the number of training examples. This is 
known as the small sample size problem [235].  

The second modification can be seen as an extension of FLDA. BLDA solves the small sample size 
problem by introducing a statistical method known as regularization. The regularization is estimated 
through Bayesian analysis of training data and is used to prevent overfitting of high dimensional and 
possibly noisy datasets. Overfitting means the classifier has lost generality and is therefore undesirable 
in a classifier. If a classifier is overfitted, then it is only able to classify the training data or similar data. 
In comparison to FLDA, the BLDA algorithm provides higher classification accuracy and bitrates, 
especially in those cases where the number of features is large [235]. Additionally, BLDA requires 
only slightly more computation time, which is a crucial requirement in real BCI systems. 

7.3. Support Vector Machine (SVM) 

SVM is a classifier that, in a similar way to LDA classifiers, constructs a hyperplane or set of 
hyperplanes, in order to separate the feature vectors into several classes. However, in contrast to LDA, 
SVM selects the hyperplanes that maximize the margins, that is, the distance between the nearest 
training samples and the hyperplanes [236]. The basis of SVM is to map data into a high dimensional 
space and find a separating hyperplane with the maximal margin [237] according to Cover’s theorem 
on the separability of patterns [238]. Cover’s theorem states that a complex classification problem cast 
in a high-dimensional nonlinear space is more likely to be linearly separable than in a low-dimensional 
nonlinear space. Also, as for linear analysis classifier, an SVM uses regularization, in order to prevent 
the classifier from accommodating possibly noisy datasets. 

SVM has been used to classify feature vectors for binary [239,240] and multiclass problems [228,230]. 
It has also been successfully used in a large number of synchronous BCIs [131,230,240]. Such a 
classifier is regarded as a linear classifier, since it uses one or several hyperplanes. Nevertheless, it is 
also possible to create a SVM with non-linear decision boundary by means of a kernel function K(x, y). 
Non-linear SVM leads to a more flexible decision boundary in the data space, which may increase 
classification accuracy. The kernel that is usually used in the BCI field is the Gaussian or Radial Basis 
Function (RBF): ܭሺݔ, ሻݕ ൌ exp ቆെԡݔ െ ଶߪԡଶ2ݕ ቇ (25)

The Gaussian SVM has been applied in BCIs to classify P300 evoked potentials [241–243]. 
SVM has been widely used in BCI, because it is a simple classifier that performs well and is robust 

with regard to the curse of dimensionality, which means a large training set is not required for good 
results, even with very high dimensional feature vectors [228]. These advantages come at the expense 
of execution speed. Nevertheless, SVM is speedy enough for real-time BCIs [243,244]. 

7.4. Bayesian Statistical Classifier 

Bayesian statistical classifier is a classifier which aims to assign, with the highest probability, an 
observed feature vector x from its class y. The Bayes’ rule is used to obtain the a posteriori probability ܲሺݔ|ݕሻ that a feature vector has of belonging to a given class. Assuming, for example, two classes L 
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and R corresponding to imaginary left and right movements of the hand, the a posteriori probabilities 
of each class are computed using the Bayes’ rule as: ܲሺݔ|ݕሻ ൌ ܲሺݕሻܲሺݕ|ݔሻܲሺݔሻ ൌ ܲሺݕሻܲሺݕ|ݔሻܲሺܮ|ݔሻܲሺܮሻ  ܲሺݔ|ܴሻܲሺܴሻ ൌ ܲሺݕ|ݔሻܲሺܮ|ݔሻ  ܲሺݔ|ܴሻ (26)

Typically, it is assumed that the a priori probabilities are equal, P(y) = P(L) = P(R) = 0.5, since it 
is supposed the user has no predilection for any movement. In order to calculate the probabilities ܲሺݔ|ݕሻ, it is usually supposed that a Gaussian statistical distribution applies to the features for each 
class, although it may also be assumed that the distribution is a weighted mixture of Gaussian 
distributions [245]: 

ܲሺݕ|ݔሻ ൌ  ெݓ
ୀଵ ܲሺݔ|ܿሻ (27)

where, wi is the weight of each Gaussian prototype and M is the number of prototypes. Two ways are 
feasible to estimate the Gaussian prototypes mixture [245]. The first is to divide the feature space in 
several equally sized regions and calculate the mean and variance of the Gaussian prototypes in each 
area from training data. The set of Gaussian prototypes is equally weighted and the weights wi are 
equal to ଵெ. The second uses a Gaussian mixture models (GMM). The different weights wi and the 

mean, variance, and covariance matrices that define each Gaussian prototype, are calculated by the 
expectation maximization (EM) algorithm. EM algorithm is an iterative procedure which guarantees 
the maximum likelihood or maximum a posteriori (MAP) estimates of the parameters in the statistical 
model. Lui et al. [246] made GMM adaptive to significant changes in the statistical distribution of the 
data during long-term use. In these improvements, the initial mean, variance and covariance of each 
class is updated over time using a specific number of recent trials. 

Bayesian statistical classifiers are not very popular in the BCI community. Nevertheless, they have 
been used for classifying motor imagery [247] or visual P300 evoked potentials [248]. 

7.5. Artificial Neural Network (ANN) 

ANNs are non-linear classifiers that have been used in many applications, in a wide variety of 
disciplines such as computer science, physics, and neuroscience. The idea of ANNs is inspired in how 
the brain processes the information. The purpose is to mimic brain activity that immediately solves 
certain problems, which a conventional computer program processes poorly. For example, ANNs are 
widely used in pattern recognition, because they are capable of learning from training data. The ability 
to learn from examples is one of most important properties of ANNs. Once trained, the ANNs are 
capable of recognizing a set of training data-related patterns. ANNs are therefore associated with BCI 
applications, since pattern recognition is performed to ascertain user intentions.  

An ANN comprises a set of nodes and connections that are modified during the training process. 
The ANN is fed on a set of training examples and the output is observed. If the output is incorrect, then 
the internal weights are modified by the training algorithm to minimize the difference between desired 
and actual output. This training continues until the network reaches a steady state, where no further 
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significant improvement is achieved. In this state, not only should the ANN produce correct outputs for 
all examples of the training set, but also for inputs that were not encountered during training. 

From a mathematical point of view, ANNs define a mapping from an input space to an output 
space, that can be described as a vector-valued function ࢟ ൌ  ሻ, where both x and y may be of any࢞ሺࢌ
dimensionality. The mapping function f is a combination of mappings, which are individually 
performed by single nodes or neurons. Each neuron processes the information non-linearly and the 
resulting mapping is therefore non-linear. This property is important, especially in those cases where 
the physical mechanism that generates the input signal is non-lineal. 

One of the most well-known ANN structures is the multilayer perceptron (MLP) introduced by 
Rumelhart and McClelland in 1986. MLPs are very flexible classifiers that can classify any number of 
classes and adapt to numerous kinds of problems. In the field of BCIs, MLP have been applied to 
classify two [249], three [200], and five [250] different tasks, and to design synchronous [251] and 
asynchronous [215] BCIs. Moreover, MLP has been used for preprocessing EEG signals before the 
feature extraction step rather than the classification step, in order to improve the separability of EEG 
features [252].  

Besides MLP, different types of ANN architecture have been used in the design of BCI systems 
such as Probabilistic Neural Networks (PNN) [253, 254], Fuzzy ARTMAP Neural Networks [255], 
Finite Impulse Response Neural Networks (FIRNN) [251] or Probability estimating Guarded Neural 
Classifiers (PeGNC) [256]. 

8. BCI Applications  

BCIs offer their users new communication and control channels without any intervention of 
peripheral nerves and muscles. Hence, many researchers focus on building BCI applications, in the 
hope that this technology could be helpful for those with severe motor disabilities. Various BCI 
applications have very recently been developed thanks to significant advances in the field of  
EEG-based BCI. EEG signals are used by most BCI applications, because they offer an acceptable 
signal quality that combines low cost and easy-to-use equipment. Thanks to BCI applications, it is 
hoped that the quality of life of severely disabled people can be improved. Likewise, the attention 
given by caregivers will be less intensive, reducing its costs and making the life of relatives less 
onerous. Moreover, BCI applications potentially represent a powerful tool for revealing hidden 
information in the user’s brain that cannot be expressed. 

The main target populations for BCI applications fall into three classes. The first group includes 
Complete Locked-In State (CLIS) patients who have lost all motor control, because they may be at a 
terminal stage of ALS or suffer severe cerebral palsy. The second group comprises Locked-In State 
(LIS) patients who are almost completely paralyzed, but with residual voluntary movement, such as 
eye movement, eye blinks, or twitches with the lip. The third group of potential BCI users includes 
abled bodied people and those with substantial neuromuscular control, particularly speech and/or hand 
control. BCI have little to offer to the third group, because they can send the same information much 
more quickly and easily via other interfaces, rather than a BCI. Despite this, BCIs are increasingly 
used by healthy people in neuromarketing and video games as a tool to reveal affective information of 
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the users, which cannot be so easily reported through conventional interfaces. Likewise, BCI can be 
used for some people that suffer from neurological disorders such as schizophrenia or depression.  

The level of impairment of the potential target population is related to the performance of a BCI 
system. Kübler et al. [257] reported a strong correlation between physical impairment and BCI 
performance. CLIS patients were unable to control a BCI. Voluntary brain regulation for communication 
was only possible in LIS patients. However, considering only LIS patients, this relationship between 
physical impairment and BCI performance disappeared. Figure 7 shows the relationship between BCI 
application areas and BCI information transfer rates and user capabilities. 

Figure 7. Relationship between BCI application areas, BCI information transfer rates and 
user capabilities. Horizontal axis: information transfer rate that would make the application 
controllable. Vertical axis: the degree of capability. 

 

It is currently unclear whether BCI technology will ever outperform other established technologies 
that include eye or muscle-based devices. Currently the latter devices tend to be easier to use and offer 
better benefit/cost ratios [258,259]. For example, the detection of eye movement is quicker, easier, and 
more accurate than the detection of ERP modulations. A spelling rate of 10 words per minute can be 
obtained with unimpaired eye movement, by means of an eyetracker [260]. In that regard, hybrid BCI 
systems have been proposed to improve performance. They are the combination of two different kinds 
of BCIs or the combination a BCI with other existing assistive technology [261]. Unless the 
performance of BCI systems improves considerably, BCI as assistive technology may only be 
especially attractive for severely disabled people, when other technologies are unsuitable.  

At present, LIS patients and those likely to develop CLIS constitute the principal candidates for 
BCI. Despite the low information transfer rates provided by BCI, the high grade of disability among 
LIS patients force them to use a BCI rather than more reliable conventional interfaces, such as muscle 
or eye-gaze based system. Eye-gaze control constraints in some LIS patients are an important issue, 
because they are obliged to use BCIs that does not depend on eye-gaze control [262,263]. Also,  
eye-gaze control constraints make some BCI applications more difficult, such as steering a wheelchair.  

Nowadays, there are a vast number of very different BCI applications, such as word processors, 
adapted web browsers, brain control of a wheelchair or neuroprostheses, and games, among others. 
However, most applications have solely been designed for training or demonstration purposes. Despite 
the most recent significant advances in BCI technology, there are still many challenges to employing 
BCI control for real-world tasks [264]: (i) the information transfer rate provided by BCIs is too low for 
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natural interactive conversation, even for experienced subjects and well-tuned BCI systems; (ii) the 
high error rate further complicates the interaction; (iii) BCI systems cannot be used autonomously by 
disabled people, because BCI systems require assistants to apply electrodes or signal-receiving devices 
before the disabled person can communicate; (iv) a BCI user may be able to turn the BCI system off by 
means of brain activity as input, but usually cannot turn it back on again, which is termed the “Midas 
touch” problem; and (v) handling BCI applications demands a high cognitive load that can usually be 
achieved by users in quiet laboratory environment, but not in the real world. Nevertheless, despite all 
these challenging difficulties, the first steps on the path to long-term independent home use of BCIs 
have already been taken [12]. 

Before describing the practical usage of BCI applications, it is worth considering the distinction 
between BCIs and their applications [8]. As a tool that executes a specific function, particular BCI 
specifications correspond to the way it performs that function. These specifications can therefore be 
applied to wide variety of applications, even though the function remains unchanged. The important 
thing in BCI evaluation is its performance when executing its specific function. In contrast, 
applications are described in terms of the tools they employ and the purposes they serve. Therefore, 
BCI evaluation focuses on how well it performs its purpose. In other words, the term BCI refers to the 
system that records, analyses, and translates the input into commands and the term application denotes 
the environment in which the BCI estimated output commands are applied. Consequently, the 
evaluation procedures for BCI systems and their applications differ in each case. The following  
sub-sections briefly describe BCI applications, classified into five main areas: communication, motor 
restoration, environmental control, locomotion and entertainment. 

8.1. Communication 

BCI applications for communication deal with severe communication disabilities resulting from 
neurological diseases. This kind of application probably represents the most pressing research in the 
field of BCI, because communication activity is essential for humans. Applications for communication 
purposes outline an operation that typically displays a virtual keyboard on screen, where the user 
selects a letter from the alphabet by means of a BCI. The distinguishing element in each approach is 
usually the BCI and the type of control signal. 

Voluntary control of SCPs may be used for letter selection. With extensive training, completely 
paralyzed patients are able to produce positive and negative changes in their SCP to drive the vertical 
movement of a cursor [117]. Based on this kind of control signal, Birbaumer et al. [265] developed a 
spelling device with an on-screen display, which used a cursor to select letters of the alphabet. Trials 
involving two patients at advanced stages of ALS showed that they achieved a rate of about  
2 characters per minute when writing text messages. Other types of control signals, such as detection 
of eye blinks [266], which normally represent an artifact in EEG signals, or classification of three 
mental tasks [215], are also used to select the blocks or characters in a virtual keyboard. Both 
approaches are nearly the same apart from the control signal. In both cases, the virtual keyboard 
consisted of a total of 27 symbols, 26 English letters plus the space to separate words, organized in a 
three row by nine column matrix. Likewise, both applications were based on the same protocol of 
writing a single letter, which required three steps. Firstly, the whole keyboard was divided into three 
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blocks, each with nine letters each. Then, the user could select a set of nine letters by producing a 
single, two or three eye blinks [266] or imagining one of three available tasks [215] depending on the 
case. After the first selection, the set of nine letters was distributed into three subsets, each with three 
letters, and once again the user again selected one of them. Finally, at the third level, the user chose a 
single letter amongst the three remaining symbols. The correct spelling rate of each speller was one 
character per minute using blinks [266] and 2.73 characters per minute for three mental tasks [215]. 

Obermaier et al. [267] also designed a letter spelling based on standard Graz-BCI which also 
included a virtual keyboard. The letter selection protocol is very similar to the approaches discussed 
above, except that the entire alphabet consisted of 32 letters and was divided into two halves at each 
step. In this case, the user chooses either subset of letters by EEG modulation through mental hand and 
leg motor imagery. The spelling rate achieved by three healthy users varied between 0.5 and 0.85 letters 
per minute. This is a lower rate than in previous cases, nevertheless, it appears easy to increase the 
number of letters spelled per minute just by expanding the number of classes to more than two. 

P300 event-related brain potentials are also very popular in BCI letter spelling applications.  
P300-based BCIs have been proven sufficiently suitable for ALS patients in the early and middle 
stages of the disease [268]. Besides, this kind of BCI is very handy because the P300 response occurs 
spontaneously and consequently does not require substantial training. Furthermore, recent progress 
with P300-based spellers have allowed the development of commercial applications available to the 
general public [269]. One of the best-known P300 spellers was designed by Farwell and Donchin in 
1988 [123]. In this speller, the 26 letters of the alphabet, together with several other symbols and 
commands, are displayed on-screen in a 6 × 6 matrix (Figure 8) with randomly flashing rows and 
columns. Then, the user focuses attention on the screen and concentrates successively on the characters 
to be written, while the EEG response is monitored. Two P300 are elicited for each looked-for element 
on the matrix, when the desired row or column flashed, thereby allowing the system to identify the 
desired symbol. The results of the Farwell-Donchin speller trials involving 4 healthy people yielded an 
acceptable spelling rate of about 2 characters per minute. 

Figure 8. Original P300 speller. Matrix of symbols displayed on a screen computer which 
serves as the keyboard or prosthetic device (adapted from [123]). 

 

The Farwell-Donchin speller provides a relatively high rate and accuracy, but its precision can be 
improved by reducing perceptual errors in the Farwell-Donchin paradigm [270]. Perceptual error 
happens when a P300 response is elicited due to flashing rows or columns adjacent to the target 
symbol, an issue which is its major source of error. Hence, a new letter distribution was presented to 
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overcome this problem (Figure 9) [270]. The idea is to have several regions flashing instead of using 
rows and columns. The characters are placed into a two-level distribution. At the first level, the 
characters are distributed into seven groups, each with seven characters, which are also flashing 
randomly. The group containing the target character is found by P300 detection. At the second level, 
the characters in the detected group are repositioned and the level one procedure is repeated, and so on 
until the target character is finally selected.  

Figure 9. The proposed region-based paradigm for the improved P300 speller: (a) The first 
level of intensification where each group contains up to seven characters; and (b) One 
region is expanded at the second level (adapted from [270]). 

(a) (b) 

Townsend et al. [137] presented a newly enhanced BCI based on a checkerboard paradigm instead 
of the standard row/column paradigm introduced by Farwell and Donchin. In this new approach, the 
standard matrix containing the targets was superimposed on a checkerboard. Trials with advanced ALS 
patients and healthy people showed a significantly higher mean accuracy for the checkerboard 
paradigm than for the row/column paradigm. Ahi et al. [271] also recently improved the  
Farwell-Donchin P300 speller by introducing a dictionary to decrease the number of misclassifications 
in the spelling. The dictionary was used for checking the candidate word proposed by the classifier of 
P300 responses. In case of misspelling, the dictionary gave a certain number of suggestions from 
which the system could select. Additionally, in order to reduce the probability of misspelling due to 
perceptual errors, the usual letter position in the matrix was changed according to the analysis of word 
similarities in the constructed dictionary.  

All previous P300 spellers are based on the recording of visual event-related brain potentials. 
However, there is no sense in using visual stimuli in cases of severely paralyzed patients with impaired 
vision or poor control over eye movements. In these cases, auditory stimulation is used in order to 
make P300 spellers suitable for this group of patients [129,272–274]. 

Other important applications of communication-related BCIs are Internet browsers adapted to users 
with severe disabilities because, over the last decade, the Internet has become a very important part of 
daily life. In this area, “Descartes” is one of the first EEG-controlled web browsers which can be 
operated by SCPs [275]. Its browser interface is based on arranging the links alphabetically in a 
dichotomous decision tree, where the user selects or rejects each item, producing positive or negative 
SCP shifts. “Descartes” presents the shortcoming that only a limited number of web pages can be 
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browsed, because the user receives a number of predefined links arranged in a tree at the start of the 
web surfing. Besides, graphical links cannot be chosen since the textual label is used to identify the 
link. A more advanced prototype, called “Nessi”, overcomes these shortcomings thanks to a better user 
interface [276]. Colored frames are placed around links or selectable items on the web page instead of 
arranging the links in a tree. More recently, evoked potentials are also used to enhance browser 
functionality. Mugler et al. [128] built an Internet browser with P300 control where the options are all 
presented as icons in an 8x8 matrix. Jinghai et al. [103] developed a browser based on VEPs. One of 
the advantages of ERPs is that they occur quickly and can lead to relatively high web surfing speeds. 

8.2. Motor Restoration 

Spinal cord injury (SCI) or other neurological diseases with associated loss of sensory and motor 
functions dramatically decrease the patient’s quality of life and create life-long dependency on home 
care services. Motor restoration may alleviate their psychological and social suffering. Restoring 
movement, such as grasping, is feasible in quadriplegic patients through neuroprostheses guided by 
functional electrical stimulation (FES). FES compensates for the loss of voluntary functions by 
eliciting artificial muscle contractions. Electrical currents generate artificial action potential by 
depolarizing intact peripheral motor nerves that innervate the targeted muscle and cause a muscle 
contraction (see [277] for a review). EEG-based BCI can be used to generate a control signal for the 
operation of FES, because EEG signals are unaffected by electrical activation of upper extremity 
muscles [278]. Thanks to their merging of BCI and FES, Pfurtscheller et al. [279] developed an 
application where a tetraplegic patient, suffering from a traumatic spinal cord injury, was able to 
control paralyzed hands to grasp a cylinder. In that application, the patient generated beta oscillations 
in the EEG by foot movement imagery. Then, the BCI analyzed and classified the beta burst and the 
output signal was used to control the FES device that activated the extremity. Also, FES has been used 
for rehabilitation training after a stroke. Hu et al. [280] developed a combined FES-robot system which 
was continuously driven by the user’s residual electromyography on the affected side for wrist joint 
training after a stroke, in order to involve the user’s own neuromuscular effort during the training. 

FES has been proven to be an effective way to restore movement. Nevertheless, FES requires the 
use of residual movements, which are not possible in severely injured patients. For this reason, some 
groups have started to explore approaches that couple neuroprostheses and BCI without FES 
intervention. Pfurtscheller et al. [281] demonstrated that a tetraplegic patient, whose residual  
upper-limb muscle activity was restricted to the left biceps, due to an upper spinal cord injury, could 
effectively control a hand orthosis using changes in Rolandic oscillations, which were produced by 
motor imagery. A lengthy training period was required to use this application. However, the patient 
was finally able to open and close the hand orthosis almost without any errors. Some years later, the 
same group validated the coupling of EEG-based BCIs and an implanted neuroprosthesis giving 
further evidence that BCI is a feasible option for the control of a neuroprostheses [282]. In this study, 
BCI classified distinctive EEG-patterns that involved power decreases in certain specific frequency 
bands. These patterns were generated by the user from mental imagery of his paralyzed left hand in motion.  

More recently, ERPs are also used to provide motor restoration. Muller et al. [13] presented a novel 
neuroprosthetic device for the restoration of the grasp function for people spinal cord injuries. This 
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neuroprosthetic device consisted of a dual-axis electrical hand prosthesis controlled by BCI based on 
four-class SSVEPs. Hence, it is possible to select only four movements according to the four LEDs 
flickering in different frequencies. The user’s gaze shifted between the different LEDs in order to 
select a movement. One light on the finger index flickering at 6 Hz and another light on the pinky 
finger flickering at 7 Hz served to turn the hand in supination or pronation. The two remaining lights 
on the wrist flickering at 8 Hz and 13 Hz represented the orders to open and close each hand. 

Within the field of BCI application in motor restoration, BCI systems have been also applied for 
movement reconstruction in patients with severe post-stroke motor disability. BCI training is 
hypothesized to provide feedback to sensorimotor cortex and, by doing so, movement is restored as 
cerebral pathways reorganize to link up motor commands with motor movements. Buch et al. [283] 
developed a BCI system that used MEG activity evoked by patient intent to move a completely 
paralyzed hand, in order to control grasping motions of a mechanical orthosis attached to the affected 
hand. Thanks to the hand prosthesis attached to the paralyzed hand and using visual feedback, the 
patient could learn to open a hand by increasing SMR over the injured hemisphere and to close the 
hand by decreasing it. MEG provides a much larger and more localized SMR response, which means 
that even a digit finger may be controlled [284]. 

MEG-based BCI is too expensive for widespread applications. For that reason, Broetz et al. [285] 
proposed a combination of MEG and EEG-based BCIs. Initially, the MEG-based BCI was used to 
boost rehabilitation training success. Later, the user continued rehabilitation training with an EEG-based 
BCI; a more affordable technology than MEG. Finally, the patient practiced physiotherapy training. 
The results of this study suggest that the combination of BCI training with goal-directed active 
physical therapy improves the motor abilities of chronic stroke patients. In similar experiments,  
Caria et al. [286] reaffirmed the success of a combination of BCI training and physiotherapy. This 
study encourages further research on the role of BCIs in brain plasticity and post-stroke recovery. 

8.3. Environmental Control 

One of the main goals of BCI-based applications is to achieve maximum independence for the 
patient, despite any motor disability. People who suffer severe motor disabilities are often homebound 
and for this reason, environmental control applications focus on the control of domestic devices such 
as TV, lights or ambient temperatures. Apart from improving the quality of life of severely disabled 
people, assistive devices mean that the tasks of the caregiver are less intensive, costs are reduced, and 
the life of relatives is less onerous.  

Cincotti et al. [14] presented a pilot study dealing with the integration of BCI technology into the 
domestic environment. In this study, fourteen patients with severe motor disabilities, due to 
progressive neurodegenerative disorders, tested a device that provided environmental control through 
an interface designed to support different levels of motor capacities for each user. Typical peripherals 
such as keyboard, mouse or joystick were offered to allow the device control through upper limb 
residual motor abilities. Head trackers and microphones for voice recognition were also available in 
cases of people with impaired limbs but intact neck muscles and comprehensive speech. Lastly, in 
cases of totally disabled people, the system could be controlled by voluntary modulations of 
sensorimotor rhythms recorded by the EEG-based BCI. Thereby, the application offered the patient 
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different access modalities that matched their gradual loss of motor abilities due to progressive 
neurodegenerative diseases. As output devices, the system allowed the use of a basic group of 
domestic appliances such as lights, TV and stereo sets, a motorized bed, an acoustic alarm, a front door 
opener, and a telephone, as well as wireless cameras to monitor the surrounding environment.  

Invasive techniques have also been proposed in environmental control applications. Hochberg et al. [287] 
implanted BrainGate sensors in the primary motor cortex of a tetraplegic patient to control a cursor. 
The initial trials yielded promising results, where the patient could handle e-mail applications or 
operate devices such as a television by imagining limb motions, even while conversing. 

8.4. Locomotion  

BCI applications that allow disabled people to control a means of transportation represent an 
important field in their use. Thanks to these applications, people suffering from paraplegia or with 
other physical impairments can autonomously drive a wheelchair, making them more autonomous and 
improving their life quality. Portability is a necessity for these kinds of applications. Hence the use of a 
BCI based on EEG recording is enforced. EEG signals are typically very noisy and are highly variable, 
which means a relatively long time between commands that will be of high uncertainty. Therefore, the 
main challenge is to achieve sufficient accuracy in driving as well as reaching real-time control, in 
spite of the ultra-low information transfer rates provided by BCI. For this reason, some studies on 
BCIs proposed invasive techniques to record EEG signals, because they achieved more spatial 
resolution and reduced noise. Serruya et al. [288] experimented with monkeys implanting an electrode 
array in the motor cortex. These initial experiments showed that the monkeys were able to move a 
computer cursor to any position, opening up new human applications.  

However, the risks related to invasive BCIs lead research towards building non-invasive 
applications for human use. Some pilot experiments concerned with locomotion illustrate the 
feasibility of using EEG signals for continuous control of a mobile robot in an indoor environment 
with several rooms, corridors, and doorways [215,289]. The results of these experiments opened the 
possibility for physically disabled people to use a portable EEG-based BCI for controlling wheelchairs. 
To the best of our knowledge, in 2005, Tanaka et al. [127] presented the first application of wheelchair 
control using only EEG. In this study, the surrounding floor was divided into squares between which 
the user decided to move by imagining left or right-limb movements. Driven by user decisions, the 
wheelchair therefore moved from one square to another. Tests with six healthy subjects were quite 
encouraging and demonstrated the viability of wheelchairs control solely through the use of EEG signals. 

In wheelchair control by BCI-based systems, the usual problems are the infrequent control signal 
and the low information transfer rate and accuracy provided by a BCI. In that respect, some 
improvements have been presented over the past few years. Synchronous P300-based BCIs have been 
introduced in order to assure better accuracy. Likewise, to overcome the usual low bit rate in BCIs, the 
systems have been endowed with certain autonomy, decreasing the number of interactions required. 
Rebsamen et al. [290] designed a simplified wheelchair control by constraining the movements to 
guidepaths defined by the patient or a helper. These guidepaths were attached to a specific point in the 
environment and stored by the system. The user selected the destination through a P300-based BCI and 
the wheelchair automatically followed the path. The user only had to decide when the wheelchair 
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would stop. For path guidance, the system steering the wheelchair had to be kept informed of its 
localization uninterruptedly. To that effect, the wheelchair relied on an odometer and a bar-code 
scanner to read bar-code patterns previously placed on the floor along the paths. Some years later, the 
system was improved to ensure safer control. Two faster BCIs based on P300 and the µ/β rhythm were 
employed, allowing the user to stop the wheelchair more quickly [291]. Both applications were tested 
with healthy people.  

The main disadvantage found in the preceding approaches is that the control assistance has little 
flexibility and is not capable of dealing with unknown and populated scenarios. Iturrate et al. [292] 
overcame this shortcoming by making the system create a dynamic reconstruction of the surrounding 
scenario. Other studies suggested that help should only be available in those cases where the user 
experienced more difficulties driving the wheelchair e.g., in a narrow corridor [216,293,294]. Three 
levels of assistance may be possible in the shared control: collision avoidance, obstacle avoidance and 
orientation recovery, which are only activated as required by the user [293]. Before executing the 
user’s steering commands, the share control evaluates the situation from the data provided by a set of 
laser scanners. Scanners inspect the environment and detect potential obstacles or walls. 

8.5. Entertainment 

Entertainment-orientated BCI applications have typically had a lower priority in this field. Until 
now, research into BCI technology has usually focused on assistive applications, such as spelling 
devices, wheelchair control or neuroprostheses rather than applications with entertainment purposes. 
However, interest in entertainment applications has arisen over the recent years due to the significant 
advances in this technology. In fact, improvements in its performance have opened the way to 
extending BCI use to non-disabled people. BCIs create a new interaction modality which may turn 
video games into even more challenging and attractive experiences. Additionally, BCI may provide a 
way of accessing knowledge on the user’s experiences, thereby improving games through information 
from brain activity. BCIs can report when the gamer is bored, anxious or frustrated with the aim of 
using this knowledge for designing future games [295]. 

Figure 10. Pacman game. The gamer has to move through the maze to reach the exit in the 
right wall. The shortest path is marked with gray track marks, but the gamer can decide to 
run the rest of maze to receive additional credits (adapted from [296]). 
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neuroheadset (Figure 11(b)) with software applications that can respond to user brainwaves or mental 
states. Likewise, it provides a set of software tools for developers. Also, large software companies such 
as Microsoft have shown interest in BCI research, exploring the development of pilot novel 
applications that use BCIs [301].  

8.6. Other BCI Applications 

BCI systems have also been used in a broad variety of applications beyond the traditional areas of 
communication, motor restoration, environmental control, locomotion, and entertainment. The ability 
of BCI feedback to induce cortical plasticity may be the basis for medical applications. Users can 
acquire selective control over certain brain areas by means of neurofeedback, with the aim of inducing 
behavioral changes in the brain. Neurofeedback provided by a BCI system may improve cognitive 
performance [302,303], speech skills [304], affection [305], and pain management [306], and has been 
used in the treatment of mental disorders, such as epilepsy [307,308], attention deficit [309], 
schizophrenia [310], depression [311], alcohol dependence [312], or paedophilia [313]. On the other 
hand, brain signal recordings can be used in an assessment of brain functions to evaluate their status in 
health and disease [314]. 

The opportunity to examine brain signals can also be commercially exploited. Neuromarketing is a 
relatively young field of research that applies neuroscientific methods to marketing research. To date, 
few neuromarketing studies have been conducted, although some evidence has been found to suggest 
that neuroimaging could have a role in several areas of marketing [315–318]. Neuromarketing may 
provide a more efficient trade-off between costs and benefits. Product concepts could be tested by 
means of neuromarketing, removing those that are not promising at the start of the manufacturing 
process. This would lead to a more efficient distribution of sources, because only the more promising 
products would be developed [319]. In addition, neuromarketing may be a source of more accurate 
information on the underlying preferences of the users, rather than data from standard market research 
studies [319]. Neuroimaging may reveal hidden information on consumers’ true preferences that 
cannot be explicitly expressed. The brain’s response to advertisements could be measured and the 
effectiveness of advertising campaigns could therefore be quantified. 

Despite it being an emerging field, several companies such as Neurofocus [320], Neuroconsult [321], 
Neuro Insight [322] or EmSense [323], among others, currently offer neuromarketing services. It is 
also attracting increasing attention among researchers. The field has raised some ethical issues 
concerning this technology, in as much as it may be able to manipulate the brain and consumer 
behavior [324]. 

9. Conclusions 

This article has reviewed the state-of-the-art of BCI systems, discussing fundamental aspects of BCI 
system design. The most significant goals that have driven BCI research over the last 20 years have 
been presented. It has been noted that many breakthroughs were achieved in BCI research. Different 
neuroimaging approaches have been successfully applied in BCI: (i) EEG, which provides acceptable 
quality signals with high portability and is by far the most usual modality in BCI; (ii) fMRI and MEG, 
which are proven and effective methods for localizing active regions inside the brain; (iii) NIRS, 
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which is a very promising neuroimaging method in BCI; and (iv) invasive modalities, which have been 
presented as valuable methods to provide the high quality signals required in some multidimensional 
control applications e.g., neuroprostheses control.  

A wide variety of signal features and classification algorithms have been tested in the BCI design. 
Although BCI research is relatively young, many advances have been achieved in a little over two 
decades, because many of these methods are based on previous signal processing and pattern 
recognition research. Many studies have demonstrated the valuable accuracy of BCIs and provided 
acceptable information bit rate, despite the inherent major difficulties in brain signal processing. 
Accordingly, user training time has been significantly reduced, which has led to more widespread BCI 
applications in the daily life of disabled people, such as word processing, browsers, email, wheelchair 
control, simple environmental control or neuroprostheses among others.  

In spite of the recent important advances in the BCI field, some issues still need to be solved. First, 
the relative advantages and disadvantages of the different signal acquisition methods are still unclear. 
Their clarification will require further human and animal studies. Second, invasive methods need 
further investigation to deal with tissue damage, risk of infection, and long-term stability concerns. 
Electrodes that contain neurotropic mediums that promote neuronal growth and wireless transmission 
of neuronal signals recorded have already been proposed. Third, the electrophysiological and 
metabolic signals that are best able to encode user intent should be better identified and characterized. 
The majority of BCI studies have treated time, frequency, and spatial dimensions of brain signals 
independently. These signal dimension interdependencies may lead to significant improvement in BCI 
performance. Fourth, information bit rate provided by current BCIs is low for effective human-
machine interaction in some applications. Exogenous-based BCI may provide much higher throughput. 
Fifth, the unsupervised adaptation is a key challenge for BCI deployment outside the lab. Some 
moderately successful adaptive classification algorithms have already been proposed. And finally, 
most BCI applications are at the research stage and they are not ready to be introduced into people’s 
homes for continuous use in their daily life. In addition to their low information transfer rates and 
variable reliability, most current BCI systems are uncomfortable, because the electrodes need to be 
moistened, the software may require initiation, and the electrode contacts need continuous correction. 
An easy-to-use P300-based BCI with remote monitoring using a high-speed internet connection has 
already been proposed to reduce dependence on technical experts. 

The latest advances in BCI research suggest that innovative developments may be forthcoming in 
the near future. These achievements and the potential for new BCI applications have obviously given a 
significant boost to BCI research involving multidisciplinary scientists e.g., neuroscientists, engineers, 
mathematicians, and clinical rehabilitation specialists, among others. Interest in the BCI field is 
expected to increase and BCI design and development will in all probability continue to bring benefits 
to the daily lives of disabled people. Furthermore, recent commercial interest within certain companies 
suggests that BCI systems may find useful applications in the general population, and not just for 
people living with severe disabilities. In the near future, BCI systems may therefore become a new 
mode of human-machine interaction with levels of everyday use that are similar to other current interfaces. 
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