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Abstract—Brain–computer interfaces (BCIs) involve two coupled
adapting systems—the human subject and the computer. In developing
our BCI, our goal was to minimize the need for subject training and to
impose the major learning load on the computer. To this end, we use
behavioral paradigms that exploit single-trial EEG potentials preceding
voluntary finger movements. Here, we report recent results on the basic
physiology of such premovement event-related potentials (ERP). 1) We
predict the laterality of imminent left- versus right-hand finger movements
in a natural keyboard typing condition and demonstrate that a single-trial
classification based on the lateralized Bereitschaftspotential (BP) achieves
good accuracies even at a pace as fast as 2 taps/s. Results for four out
of eight subjects reached a peak information transfer rate of more than
15 b/min; the four other subjects reached 6–10 b/min. 2) We detect cerebral
error potentials from single false-response trials in a forced-choice task,
reflecting the subject’s recognition of an erroneous response. Based on a
specifically tailored classification procedure that limits the rate of false
positives at, e.g., 2%, the algorithm manages to detect 85% of error trials
in seven out of eight subjects. Thus, concatenating a primary single-trial
BP-paradigm involving finger classification feedback with such secondary
error detection could serve as an efficient online confirmation/correction
tool for improvement of bit rates in a future BCI setting. As the present
variant of the Berlin BCI is designed to achieve fast classifications in
normally behaving subjects, it opens a new perspective for assistance of
action control in time-critical behavioral contexts; the potential transfer
to paralyzed patients will require further study.

Index Terms—Bereitschaftspotential (BP), brain–computer interface
(BCI), error potential, Fisher’s discriminant, linear classification, multi-
channel EEG, single-trial analysis.

I. INTRODUCTION

The aim of brain–computer interface (BCI) research is to build
a communication system that is capable of translating a subject’s
intention—reflected by suitable brain signals—into a control signal.
The required discrimination of different brain states may be based on
evoked potentials(like steady-state visual evoked potentials or P300)
or on endogenous brain signals(like movement-related potentials).
Exploited features are, e.g., slow potential variations, rhythmic features,
or indices of signal dynamics (see this Special Issue). In a first step,
a one-dimensional quantity (control signal) is commonly computed
from spontaneous EEG and then used for feedback purposes. Systems
based on slow cortical potentials use mainly self-regulation of cortical
negativity versus positivity for cursor controlwithout an explicit
setting that binds the cursor movement to a motor intention. Other
systems explicitly involving motor intentions use oscillatory features
like event-related desynchronization (ERD) of the�- and/or central
�-rhythm.
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In this contribution, we describe the following three aspects of our
Berlin BCI (BBCI) development program: 1) we exploit advanced ma-
chine learning and signal processing technology for single-trial EEG
evaluation requiringnoprior subject training; 2) we useslow premove-
ment potentialsas physiological signals; and c) we utilize a fast-paced
experimental paradigm.

II. OUR APPROACH

Concept: The leitmotiv of the BBCI development program is “let
the machines learn,” i.e., we want to minimize the need for the subject
to learn predefined brain commands for future BCI feedback. To this
end, the machine should learn to recognize the neuronal signatures of
the subject’s natural cerebral motor commands. Accordingly, we chose
a paradigm in which well-established competences, automatic in daily
life, are coupled to naturally related control effects. The basic working
example for this natural coupling is that the command preparation of a
left- (or right-) hand movement moves the cursor in the left (or right)
direction.

Paradigm: We let our subjects (all without neurological deficit)
make a binary (left-/right-hand) decision coupled to a motor output,
i.e., self-paced typewriting on a computer keyboard. Using multi-
channel scalp EEG recordings, we analyze the single-trial differential
potential distributions of the Bereitschaftspotential (BP) preceding vol-
untary (left- or right-hand) finger movements over the corresponding
(right/left) primary motor cortex. As we study brain signals from
healthy subjects executing real movements, our paradigm requires a
capability to predict the laterality of imminent hand movements prior
to any electromyogram (EMG) activity in order to exclude a possible
confound with afferent feedback from muscle and joint receptors
contingent upon an executed movement.

Features of Brain Signals:We currently investigate nonoscillatory
event-related potentials (ERPs). Our choice of ERPs is based on two
concerns—one neurophysiological and one data analytical.

1) Most endogenous rhythmic brain activities reflectidling
rhythms. If a BCI command is defined as attenuation of an
idling rhythm, it implies that a prerequisite for evoking such
a BCI command is the stable presence of that rhythm. This
could become a problem when operating the BCI at a fast pace
as at least some pericentral idling rhythms will not be fully
recovered [1]. In contrast, we propose that slow premovement
ERP features can follow a fast command-pace.

2) From the perspective of data analysis, the important question
is how to classify the noisy and high-dimensional EEG data.
As will be argued below, the distribution of ERP features for
one condition is normal with the mean determined by task-
related brain activity and with the covariance matrix determined
by nontask-related components. This makes the problem of
discriminating trials from different tasks linear. Linear models
thus provide better classification generalization than do more
complex nonlinear models when the number of training samples
is limited as is typical in the case of BCI paradigms.

Preprocessing:To extract relevant spatio-temporal features of
slow brain potentials, we subsample signals from all or a subset of
all available channels and take them as high-dimensional feature
vectors. Here, subsampling is accomplished simply by calculating
means of consecutive, nonoverlapping intervals, i.e., given a trial
hxc(n) jn = 0; . . . ; N � 1i in one channelc, we calculate

x̂c(n) =
1

T
t<T

xc(nT + t); n = 0; . . . ;
N

T
� 1
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Fig. 1. This example shows the feature calculation in one channel of a
premovement trial [�1400�120 ms] with keypress att = 0ms. The passband
for the FT filtering is 0.4–3.5 Hz and the subsampling rate is 20 Hz. Features
are extracted only from the last 200 ms (shaded) where most information on
the upcoming movement is expected.

which isxc subsampled by an integer factorT . The concatenation of
thosex̂cs of all channels gives the full-feature vector, henceforth called
“ERP features.” It can be regarded either as a time series in multiple
channels or as a sequence of several scalp maps. This simple prepro-
cessing method gave very good results in our experiments when used
in conjunction with a well regularized classifier, see the following. We
apply special treatment to trials in which most information is expected
to appear at the end of the given interval, as it is naturally the case with
premovement trials. Starting points are epochs of 128 samples of raw
EEG data, as depicted in Fig. 1(a), for one channel. To emphasize the
late signal content, we first multiply the signal by a one-sided cosine
function, [Fig. 1(b)]

w(n) := 1� cos
n�

128
; for n = 0; . . . ; 127

before applying a Fourier transform (FT) filtering technique: from the
complex-valued FT coefficients all are discarded but the ones in the
passband (including the negative frequencies, which are not shown),
[Fig. 1(c)]. Transforming the selected bins back into the time domain
gives the smoothed signal of which the last 200 ms are subsampled at
20 Hz (explained previously) resulting in four feature components per
channel [Fig. 1(d)].

For the results presented here, we used the same settings (interval
length, passband, channels) for all subjects.

Distribution of ERP Features:The ERP features are superpositions
of task-related and many task-unrelated signal components. The mean
of the distribution across trials is the nonoscillatory task-related com-
ponent (ERP), ideally the same for all trials. The covariance matrix de-
pends only on task-unrelated components. Our analysis showed that the
distribution of ERP features is indeed normal, (Fig. 2). The covariance
matrices are calculated only from one “time slice” of the ERP features,
i.e., for a fixed time prior to a key stroket = �110 ms. Along each
axis of the matrices, EEG channels are sampled in lines from frontal to
occipital scalp, each line going from left to right hemisphere, thereby
causing the lattice structure of the covariance matrices. The important
observation here is that the covariance matrices of both classes look
very much alike. The minor differences probably reflect noise and are
ignored by linear classification, whereas they are a potential concern
for nonlinear classifiers.

Classification: A basic result from the theory of pattern-matching
[2] says that Fisher’s discriminant gives the classifier with minimum

Fig. 2. Histograms show the distribution of ERP features at channel C4 at
a fixed time point overlaid by a fitted normal distribution. The normalized
covariance matrices across channels for the two conditions (left- versus
right-hand finger movement preparation) have only minor differences most
probably induced by noise.

probability of misclassifications for known normal distributions with
equal covariance matrices. As was pointed out in the previous para-
graph, the classes of ERP features can be assumed to obey such distri-
butions. However, since the true distribution parameters are unknown,
the means and covariance matrices have to be estimated from training
data. With only a limited amount of training data at our disposal, this
approach is prone to error. To overcome this problem, we regularize the
estimation of the covariance matrix. In the mathematical programming
approach of [3], the following quadratic optimization has to be solved
in order to calculate the regularized Fisher discriminant (RFD)w from
dataxk and labelsyk 2 f�1; 1g (k = 1; . . . ; K):

min
w; b; �

1

2
kwk22 +

C

K
k�k22 subject to

yk w
>
xk + b = 1� �k; for k = 1; . . . ; K

wherek�k2 denotes thè2-norm (kwk22 = w>w),� are slack variables,
andC is a model parameter which has to be estimated from training
data. From this formulation, other variants can be derived. For example,
using thè 1-norm in the regularizing term enforces sparse discrimina-
tion vectors.

Other regularized discriminative classifiers like support vector ma-
chines (SVMs) or linear programming machines (LPMs) appear to be
equally suited for the task [4].

III. SUMMARY OF TWO STUDIES ON CLASSIFYING ERPS

A. Experimental Setup

We recorded brain activity from eight subjects with multichannel
EEG amplifiers using 32, 64, or 128 channels bandpass filtered be-
tween 0.05 and 200 Hz and sampled at 1000 Hz. For all results in this
paper, the signals were subsampled at 100 Hz. Additionally, surface
EMG at both forearms, as well as horizontal and vertical EOG signals,
were recorded. An important characteristic of our present analysis was
to refrain from any trial rejection because of eventual artifacts so as to
enforce robust classifications.

B. Prediction of Laterality in Fast Self-Paced Motor Commands

Experiment: In this experiment, the subject was sitting in normal
typing position at a computer keyboard pressing one of four keys, using
the index or little finger of the right or left hand, in a self-chosen order
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Fig. 3. Grand average at ERPs at Laplace filtered locations from a self-paced
typing experiment with 2 taps/s with keypress att = 0 ms. The lateralization
of the BP is clearly specific for left and right finger movements. The gray bar
�450 to�350 ms indicates the baseline interval. Potential maps show the scalp
topographies of the BP (positions C3/C4 are marked by a cross).

and timing. An approximate tapping pace was announced by the op-
erator before each 6-min recording session. Most subjects took part in
experiments with 0.5, 1, and 2 taps/s.

Objective: Our goal was to predict in single-trials the laterality of
imminent left- versus right-finger movements at a time-point prior to
the onset of EMG activity. The specific ERP feature that we use is the
lateralized BP. Neurophysiologically, the BP is well investigated and
described [5], [6]. New questions that arise in this context are 1) is the
BP observable also in fast motor sequences, and 2) can the lateralization
be discriminated on a single-trial basis?

Analysis: Our investigations provide positive answers to both ques-
tions. Fig. 3 shows the ERPs of left- and right-hand finger taps at a
pace of 2 taps/s. The investigation of the BP in fast motor sequences
performed by healthy subjects requires consideration of how afteref-
fects of one movement superimpose on the preparation of a consecutive
movement. For the present paradigm, the subjects were instructed to
balance the transition matrix for left-/right-hand movements sequences
so that, e.g., a right-hand movement was preceded by left-/right-hand
movements in equal proportions. Furthermore, the classification does
not involve the determination of a baseline.

It is important to keep in mind that our studies so far involve real
movements performed by healthy subjects. This makes it important to
verify that our EEG-based classification does not rely on information
from afferent nerves. One way to determine this is to compare EEG-
and EMG-based classification. Fig. 4 shows the time course of clas-
sification. Here, classification at a given time pointt means that each
single trial ERP feature was calculated from windows with endpointt.
Thus, the results are causal, i.e., data of each single trial received after
this time point (relative to keypress) do not enter preprocessing and
classification.

As shown in Fig. 4, we choset = �120 ms as the time-point for
classification. For each of our experiments, a suitable time point was
found between 130 and 100 ms prior to keypress. Preprocessing was
performed as described in Section II with passband 0.4–3.5 Hz and
subsampling at 20 Hz in the same manner as is shown in Fig. 1. All
channels in the rectangle FC5, FC6, CP6, CP5 plus P3, and P4 were
used.

Fig. 4. (left) Comparison of EEG- and EMG-based classification with respect
to the endpoint of the classification interval witht = 0 being the time point
of keypress. The vertical line marks the time point chosen for evaluating the
classification in terms of information transfer rates. These results come from an
experiment with an approximate average pace of 0.5 taps/s. (right) Bit-rates for
all subjects with tapping pace 0.5 and 2 taps/s. Results from the best subjectaa
were reproduced in a second experiment (marker�).

Results: One performance measure that can compare the ef-
ficiency of BCI systems with respect to classification accuracy,
command speed, and number of possible commands is the theo-
retical information transfer rate given by Shannon’s theorem, as
discussed in [7]. This rate in bits per minute is given by(60=pace)B,
where pace is the average intercommand interval in seconds and
B = log

2
N+p log

2
p+(1�p) log

2
((1�p)=(N�1)) is the number

of bits per selection fromN choices with probabilityp for correct
classification. Here, we use bit rates to measure the discrimination
performance of premovement trials.

For seven out of eight subjects, the fastest tap performance (2 taps/s)
worked efficiently, with bit rates about twice as high as in the 0.5 taps/s
experiment. For the eighth subject (marker� in Fig. 4), there was no
substantial improvement. The subject-specific peak bit rate, according
to the previously mentioned measure, was between 6 and 10 b/min for
four subjects and above 15 b/min for another four subjects.

C. Detection of Error Potentials

Objective: One additional (“second-pass”) strategy to enhance clas-
sification accuracy for a future BCI setting, in particular for subjects
who are facing a substantial fraction of “first-pass” BCI classification
errors, is a verification (of the first-pass classification) based on the de-
tection of a cerebralerror potential, as proposed in [8]. To assess how
our pattern-matching approach works on this problem, we analyzed
data from a variant of the d2-test of attention [9].

Experiment: Subjects were asked to respond to targets displayed
on a computer screen (the symbold with bars in two of four possible
positions) by pressing a key with the right index finger and to nontargets
with the left index finger. After the subject’s keystroke, the reaction
time was displayed on the screen, either in green if the response was
correct (target hit or correct rejection), or in red if it was erroneous
(target miss or false alarm). The next trial began 1.5� 0.25 s later. A
more detailed description and analysis of this experiment can be found
in [10].

Analysis: The averagemiss-minus-hitdifference potential in Fig. 5
shows two characteristic components: a negative wave called error neg-
ativity (NE ) with fronto-central maximum and a subsequent broader
positive peak labeled as error positivity (PE ) with centro-parietal max-
imum, [11]. According to recent studies,PE is connected to conscious
error detection [12], and thereby specific to errors, whereasNE seems
to reflect mainly a comparison process.NE occurs also in correct trials
but later and with smaller amplitude [13].

Preprocessing was performed as described in Section II (without FT
filtering) with subsampling at 20 Hz in the time interval 0–300 ms rel-
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Fig. 5. Grand average of miss-minus-hit EEG-traces at electrodes Cz, Fz
wheret = 0 ms is at keystroke response. Time windows ofN andP are
shaded and corresponding scalp maps are shown.

Fig. 6. Rate of false negatives (FN) for error detection at 300 ms with false
positive rate fixed at 1, 2, or 3% for eight subjectsaa–ah. White bars show the
corresponding FN-rates for the amplitude criterion, as suggested earlier in [8].

ative to the motor response. All channels in the vicinity of the vertex
were used, i.e., the ones within the rectangle F3, F4, P4, and P3.

For the classification of the error potential in single trials, we can,
in principle, use the same approach as before. However, we introduced
one small but psychologically crucial modification: our response veri-
fication algorithm set strict boundaries on the rate of detection of false
positives (FP-rate) of first-pass errors. We did so because repeated false
second-pass rejections of BCI trials, which had been correctly classi-
fied in the first-pass, would be detrimental.

We have previously shown [10] that, under the assumption that the
classes of correct and erroneous ERP features have known normal dis-
tributions with equal covariance matrices, the Bayes optimal classi-
fier realizing a predefined FP-bound uses Fisher’s discriminant with
adapted bias.

Results: Based on this approach, more than 85% of errors at a pre-
defined rate of false positives as low as 2% could be detected within
300 ms after the response in seven out of eight subjects. Fig. 6 shows
the results for all subjects at FP-rates of 1%, 2%, and 3%. The applica-
tion of the amplitude threshold criterion, as proposed in [8] under the
constraint of a given FP-rate led considerably higher rates of false neg-
ative classifications as indicated by white bars in Fig. 6.

Accordingly, this approach can be expected to provide a valuable
add-on tool for improving BCI bit rates by an online EEG-based detec-
tion of first-pass classification errors.

IV. CONCLUSION

A characteristic feature of the present paradigm is the exploitation
of slow pre-movement BPs. We could confirm our hypothesis that
these BPs could be used efficiently for single-trial classifications also
at motor command rates as fast as two finger tappings per second,
i.e., at a motor command rate of 120 binary decisions (left/right
hand) per minute. This value defines a substantial margin for possible
algorithmic improvements, e.g., by introducing artifact handling
which can be integrated easily in the present procedures. Here, it
appears of interest that the one subject with prior experience in
EEG-recordings and a low incidence of artifacts, achieved the highest
bit rate (>50 b/min).

The data, as reported here, were from time windows defined by the
keystrokes, i.e., they were identifiedpost hocand not prospectively
from the arriving data stream. Presently, ongoing studies on analyses
of continuously arriving data streams show that BPs can be identified
even without any trigger being available, albeit at a lower hit rate, cf.
[4]. Interestingly, the discrimination performance could be boosted po-
tentially by adding to a first-pass single-trial classification of motor
commands a second-pass detection of error potentials generated by the
subjects observing a feedback of the first-pass classification.

We like to emphasize that the paradigm is shaped presently for
fast classifications in normally behaving subjects and, thus, could
open interesting perspectives for a BCI assistance of action control in
time-critical behavioral contexts. Notably, also, a possible transfer to
BCI control by paralyzed patients appears worthwhile to be studied
further because these patients were shown to retain the capability
to generate BPs with partially modified scalp topographies [14].

Our paradigm is one variant of several noninvasive approaches to
BCI, which all are designed to respect the integrity of an intact brain.
These scalp-EEG approaches presumably will predominate in BCI-ap-
plications for healthy subjects. Their future for applications in patients
will be influenced by the outcome of studies evaluating the short- and
long-term consequences of invasive approaches in animal models. For
the time being, the ease of surface EEG applications in human subjects,
along with the minimal learning effort on part of the subjects, justify
explorative studies in paralyzed patients.
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The Use of EEG Modifications Due to Motor Imagery for
Brain–Computer Interfaces

Febo Cincotti, Donatella Mattia, Claudio Babiloni, Filippo Carducci,
Serenella Salinari, Luigi Bianchi, Maria Grazia Marciani, and

Fabio Babiloni

Abstract—The opening of a communication channel between brain and
computer [brain–computer interface (BCI)] is possible by using changes in
electroencephalogram (EEG) power spectra related to the imagination of
movements. In this paper, we present results obtained by recording EEG
during an upper limb motor imagery task in a total of 18 subjects by using
low-resolution surface Laplacian, different linear and quadratic classifiers,
as well as a variable number of scalp electrodes, from 2 to 26. The results
(variable correct classification rate of mental imagery between 75% and
95%) suggest that it is possible to recognize quite reliably ongoing mental
movement imagery for BCI applications.

Index Terms—Brain–computer interface (BCI), event-related desyn-
chronizations/synchronization (ERD/ERS), high-resolution electroen-
cephalogram (EEG), motor imagery.

I. INTRODUCTION

The opening of a communication channel between brain and
computer [brain–computer interface (BCI)] is possible by using
changes in electroencephalogram (EEG) power spectra related to
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the imagining of movements (see [1] for a review). These EEG
variations are specifically detected over centro-parietal scalp areas
and can be recognized online by means of linear and nonlinear
classifiers [1]–[3], [5]. Scalp potential distribution of EEG power
spectra can also be spatially enhanced by using the surface Laplacian
(SL) operator [4]. However, a practical desire to use as few scalp
electrodes as possible prompted us to investigate low-resolution SL
operators in BCI operation. We also explored whether left- and
right-motor imagery could be efficiently detected in EEG features
gathered from a minimal number of scalp electrodes (two or four)
with linear and quadratic classifiers, in a group of normal subjects.

II. M ETHODOLOGY

A. Experimental Design

At the beginning of a recording session, subjects remained in a
resting state—relaxed with eyes opened—for 60 s. The EEG activity
of this period was used as a baseline for subsequent analysis of the
mental tasks. Subjects were asked to perform two mental tasks, which
consisted of imagining the repetitive movement of the right middle
finger [right imagination (RI)] as well as that of the left middle finger
[left imagination (LI)]. Subjects started the task immediately after the
operator instructed them to do so, and they maintained the given task
for more than 10 s. During the recording session, the task was executed
several times with a resting period of at least 10 s between tasks. After
removal of those time segments contaminated by EMG signals (used
to monitor arm movements), we retained no less than 180 s of EEG for
each task in every subject. This EEG length corresponds on average
to the execution of at least 45 trials in each subject recorded. No
feedback was furnished to the subjects during the execution of mental
tasks. Binary classification between right- and left-motor imagery was
used (50% equals to the chance level).

B. EEG Recordings

The EEG potentials were recorded with an extension of the 10/20
international system (26 electrodes). Depending on the study, different
subsets of the recording scalp montage were used to select the features
to be classified, as described in the following. The EEG sampling rate
was 128 Hz. The main operation in the temporal domain was spatial
filtering SL, whereby filtered potentials should better represent the cor-
tical activity due only to local sources below the electrodes. We used
the Welch periodogram algorithm [6] to estimate the power spectrum
of each signal (EEG features). Epochs were 0.5 s long, which gave
a frequency resolution of 2 Hz. Only the values inside the frequency
band 8–30 Hz were considered for further processing. Thus, an EEG
features’ sample was represented by 12n features, where 12 were the
spectral components (bins) for each of then channels used. The peri-
odogram, and, hence, an EEG features’ sample, was computed every
0.5 s.

C. Low-Resolution SL

We carried out a simulation study in which simulated potential dis-
tributions were generated on a spherical surface by a configuration of
current dipoles and sampled with 26 electrodes. We used both theoret-
ical values of the SL, computed analytically as generated by current
dipoles, and two estimates of the SL that were obtained by using either
all the 26 electrodes (SL) or only nine electrodes (SL9). The compu-
tations were performed using the spherical splines estimators [8]. The
variable analyzed was the correlation coefficient between the estimated
SL distributions (SL and SL9) and the potential distribution (P) on the
different electrodes used (10–20 international system).
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