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Abstract—Electroencephalographic (EEG) analysis has been 
widely adopted for the monitoring of cognitive state changes 
and sleep stages because abundant information in EEG 
recording reflects changes in drowsiness, arousal, sleep, and 
attention, etc. In this study, Micro-Electro-Mechanical Systems 
(MEMS) based silicon spiked electrode array, namely dry 
electrodes, are fabricated and characterized to bring EEG 
monitoring to the operational workplaces without requiring 
conductive paste or scalp preparation. An isotropic/anisotropic 
reactive ion etching with inductive coupled plasma (RIE-ICP) 
micromachining fabrication process was developed to 
manufacture the needle-like micro probes to pierce the stratum 
corneum of skin and obtain superior electrically conducting 
characteristics. This article reports a series of prosperity 
testing and evaluations of continuous EEG recordings. Our 
results suggest that the dry electrodes have advantages in 
electrode-skin interface impedance, signal intensity and size 
over the conventional (wet) electrodes. In addition, we also 
developed an EEG-based drowsiness estimation system that 
consists of the dry-electrode array, power spectrum estimation, 
Principal Component Analysis (PCA)-based EEG signal 
analysis, and multivariate linear regression to estimate driver’s 
drowsiness level in a virtual-reality-based dynamic driving 
simulator to demonstrate the potential applications of the 
MEMS electrodes in operational environments. 

Index Terms: Drowsiness Estimation, Dry Electrode, 
Electroencephalogram, Micro-electro-mechanical Systems, and 
Principle Component Analysis. 

I. INTRODUCTION

Electroencephalographic (EEG) signals are the 
differences of electrical potentials caused by summed 
postsynaptic graded potentials from pyramidal cells that 
create electrical dipoles between soma (body of neuron) and 
apical dendrites (neural branches) [1]. Biopotential 
electrodes for EEG-measurement transform the bio-signals 
from skin tissue to the amplifier circuit. Therefore, the most 
important characteristic of a biopotential electrode is low 
electrode-skin interface impedance to propagate signals 

without attenuation or production of noise [2]. When 
electrodes are placed on the skin of the forehead, an 
electrode-skin interface is constructed. Skin anatomy can 
simply be divided into three layers: epidermis, dermis and 
subcutaneous layer. The epidermis contains two layers: 
stratum corneum (SC) and stratum germinativum (SG). SC
consists of dead cells, thus, has electrical isolation 
characteristics. SG is composed of living cells, therefore, is 
electrically conductive. The dermis is the place where blood 
vessels and nerve exist [3]. To overcome the electrical 
isolation property of the SC, standard wet electrodes always 
need skin preparation (abrasion of SC) and the use of 
electrolytic. Improper skin preparation might cause skin 
irritation, pain, or even infection. Using electrolytic gel is 
uncomfortable and inconvenience; it can cause itchy feeling, 
and sometimes make skin red and swollen during long-term 
EEG-measurement. Furthermore, the conductivity of 
electrolytic gel will decrease gradually due to the hardened 
of the electrolytic gel, resulting in the degradation in the 
quality of data acquisition. 

In this paper, the fabricated dry electrode is designed to 
pierce the SC into the electrically conducting tissue layer SG,
but not reach the dermis layer so as to avoid pain or 
bleeding. Since the dry electrode is expected to circumvent 
the high impedance characteristics of the SC, thus, skin 
preparation and electrolytic gel application are not required. 
Note that the thickness of epidermis varies from 0.05 mm to 
1.5 mm for different human race and different part of skin, 
and the thickness of SC and SG are approximately 10-15µm 
and 50-100µm, respectively [3]. Thus, in order to pierce the 
SC and penetrate the SG, the length of the probe must be 
longer than 20 µm with a sharp tip to avoid damage during 
the penetration. To reduce the noise in the electrode-
electrolyte interface, the probes are coated with 
Titanium/Platinum for high conductivity and biomedical 
capability. The types of 20 × 20 probes dry electrode array 
with the size of 4 mm × 4 mm in detecting drowsiness 
application. Due to the limitation of our current MEMS 
technology, the heights of these probes are approximately 
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250 µm, not sufficient to penetrate human hairs to contact 
stratum germinativum or even stratum corneum. The hair 
elasticity also makes it difficult to fix the dry electrode on the 
scalp. Therefore, in the current study, the dry electrodes are 
placed at non-hairy sites, such as Fp1 and Fp2. In order to 
evaluate the performance of the developed dry electrodes for 
realistic applications, we designed an attention-demanding 
experiment in which we continuously estimate subject 
drowsiness level (task performance) based on the EEG 
signals measured by the dry electrodes. 

II. FABRICATION OF DRY ELECTRODES

To fabricate needle-like probes on a silicon wafer with 
high aspect ratio, a microfabrication process that consisted of 
isotropic and anisotropic reactive ion etching with inductive 
coupled plasma (RIE-ICP) etching process and electroplating 
technology were developed and illustrated in Fig. 1. In this 
process, a thick photoresist film was patterned with circular 
dots to provide etching hard mask for the cylindrical probes. 
Since the etching selectivity between silicon and photoresist 
is approximately 1 to 60, thus, a 6 µm thick photoresist was 
chosen as a protection hard mask for the two-stage 
isotropic/anisotropic etching processes. Upon completing the 
isotropic etching process for the probe tip, we proceeded 
with the anisotropic etching process so that high aspect ratio 
probe shaft can be obtained. A wet-etching process is then 
used to release the hard mask at the probe tip. For electric 
conductivity, the probes were coated with Ti/Pt using DC-
sputtering technique. The diced dry electrodes were then 
mounted on flexible printed circuit board by using silver 
glue. Fig. 2 shows the scanning electron micrographs of the 
fabrication results of the dry electrode. Etch dry electrode 
consists of a 20×20 micro probe array, etch probe is 
approximately 250 µm in height and 35 µm in diameter. The 
block bulge is observed at the base of the probe with an 
altitude about 50 µm, which is caused by the isotropic 
etching shape in the second fabrication process. Thus the 
effective penetration length of the probe is about 200 µm. 

III. TESTING OF DRY ELECTRODES

We divided the testing of dry electrodes into two parts: 
the first part is dry electrodes in-vivo test and the second part 
is testing their applicability in realistic workplace. 

A. Prosperity Test 
To characterize the electrode-skin interface impedance 

effect, two electrodes were lined up on the forehead with a 
distance of 4 cm apart to perform the electrode-skin-
electrode impedance interface experiments. A circuit 
proposed by Griss et al. was used to determine electrode-
skin-electrode impedance (ESEI) and reduce the risk of 
harming the test person during biopotential recordings [4-5]. 
A total of 19 tests as shown in Table I were performed 
involving 5 different test patterns to evaluate the 
performance of 5 different types of electrodes. 

These electrodes consisted of two standard wet electrodes 
coated with AgCl and Au of the size 1 cm in diameter, and 
three fabricated dry electrodes with the size of 4 mm × 4 
mm, 3 mm × 3 mm, 2 mm × 2 mm, respectively.The 

impedance spectra between 4 mm × 4 mm dry electrode with 
no skin preparation and AgCl electrode with electrolytic gel 
or without skin preparation were put into comparison. 

B. Dry Electrodes Used for Acquiring EEG Data in a 
Realistic Driving Task 
The growing number of traffic accidents has become a 

serious concern to the society in recent years. Accidents 
caused by driver’s drowsiness behind the steering wheel 
have a high fatality rate because of the marked decline in the 
driver’s abilities of perception, recognition and vehicle 
control abilities while sleepy. Preventing these accidents 
caused by drowsiness is highly desirable but requires 
techniques for continuously detecting, estimating, and 
predicting the level of alertness of drivers and delivering 
effective feedbacks to maintain their maximum performance 
[6-7]. Recently, we [8-9] proposed an EEG-based drowsiness 
estimation system that continuously estimates driver’s 
drowsiness level in a virtual-reality-based driving simulator. 
Here, we use the same method to estimate subject drowsiness 
level, except we employ MEMS dry electrodes rather than 
conventional wet ones to acquire continuous EEG data. EEG 
power spectrum estimation, PCA-based EEG signal analysis 
and multivariate linear regression are applied to estimate 
driver’s drowsiness level in a virtual-reality-based dynamic 
driving simulator to demonstrate the potential uses of the dry 
electrodes during long and routine recordings in operational 
environments. 

1). Virtual-Reality (VR)-based Driving Environment:
A VR-based dynamic driving simulation environment is 

designed and built for interactive driving experiments. It 

Fig. 2. SEM of the Fabricated Dry Electrodes 

(a) (b) (c) (d) (e) 
Fig. 1. Fabrication Process: (a) Pattern photoresist to provide etching 
masks. (b) Perform isotropic etching for probe tip. (c) Perform 
anisotropic etching for probe shaft. (d) Release the hard mask on the 
probe tip. (e) Coat the probes with Ti/Pt using DC-sputtering 
technique.

Table I. Test patterns for ESEI measurement 

a = AgCl without skin preparation d = 3mm2 without skin preparation 
b = AgCl with skin preparation e = 2mm2 without skin preparation 
c = 4mm2 without skin preparation f = Au without skin preparation 
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includes four major parts as shown in Fig. 3: (1) the 3D 
highway driving scene based on the virtual reality 
technology, (2) the driving cabin simulator mounted on a 6-
DOF dynamic Stewart motion platform, (3) the EEG 
measurement system with 13-channel sensors, and (4) the 
PCA-based EEG signal analysis approach, power spectral 
density analysis, and linear regression model. The main 
purpose of this environment is to make a lifelike driving 
simulation in real situation. The detailed development of the 
VR-based scene was shown in [8-9]. 

2). Comparison of EEG signals obtained by dry and wet 
electrodes 

Figure 4(a) shows the placements of five dry/wet 
electrode pairs at the frontal locations. The dry electrodes 1 
and 5 are placed at Fp1 and Fp2 according to the 
international 10-20 electrode placement system [10]. 
Corresponding wet electrodes were placed 1cm above the 
dry electrodes (cf. Fig. 4(b)). All experimental setups are 
followed the standard of procedures (SOP) that were 
described in detail in [8-9]. 

Figure 5 plots the raw EEG data obtained by dry and wet 
electrode pairs, wet/dry 1 and 5. The detailed description of 
the EEG-based drowsiness level estimation system will 
introduce in the next section. As can be seen in Fig. 7, the 
EEG signals recorded by dry sensors are extremely 
comparable to those obtained by corresponding wet 
electrodes. 

Figure 6 plots the EEG power spectra of dry1/wet1 and 
dry5/wet5 electrode pair. As can been seen, they are 
extremely similar, indicating that the signals obtained by dry 
sensors can match the quality of the EEG recorded by 
conventional electrodes. 

3). Drowsiness Estimation Performance
In order to demonstrate the potential applications of the 

MEMS electrodes during long and routine recording in 
operational environments, we investigate the quality of the 
EEG signals recorded by the dry electrodes placed at Fp1
and Fp2 for estimating subjects’ drowsiness in an attention-
demanding driving experiment. The EEG signals were 

recorded by 5 dry electrodes and processed by an EEG-
based drowsiness estimation system [8] as shown in Fig. 7. 
The EEG data recorded by 5 dry (or wet) electrode pairs 
were first preprocessed using a simple low-pass filter with a 
cut-off frequency of 50 Hz to remove the line noise and 
other high-frequency noise [11]. After moving-average 
power spectral analysis, we obtained EEG log power 
spectrum time series of the 5 dry (or wet) electrode pairs 
and the frequency range is from 1 to 40 Hz. Then, we 
applied Karhunen-Loeve Principal Component Analysis 
(PCA) to the resultant EEG log spectrum to extract the 
directions of largest variance for each session. Projections 
(PCA components) of the EEG log spectral data on the 
subspace formed by the eigenvectors corresponding to the 
largest 50 eigenvalues were used as inputs to a multiple 
linear regression model [12] for each individual subject to 
estimate the time course of his/her driving error [13]. Each 
model was trained using the features only extracted from the 
training session and tested on a separate testing session. 

Figs. 8 (a) and (b) show the estimated driving error of 
subject 1 in session 1 estimate session 2 and session 2 
estimate session 1, respectively. 

Fig. 3. The dynamic VR-based driving simulation environment 
integrated with the EEG-based physiological measurement system.

(a) (b)

Fig. 4. (a) Positions of Wet electrodes and dry ones. (b) Distance 
between wet electrodes and dry ones.

Fig. 5. Raw EEG Data Recording of Dry and Wet Electrodes 

                     (a)                                          (b)
Fig. 6. The EEG power spectra of dry1/wet1 (a) and dry5/wet5 (b) 

electrode pairs
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The estimators were trained with the EEG signals from 
former session (red lines) to estimate the driving error of 
latter session (blue lines). Similarly, Figs. 9 (a) and (b) show 
estimated and actual errors made by subject 2. Table II 
shows the comparison of correlation coefficient between the 
actual and estimated driving error time series. As can be 
seen, the estimated driving errors matched well with the 
actual errors, consistent with our recent report in the same 
driving tasks using whole-head 32-channel EEG [8-9]. The 
results demonstrate the feasibility of accurately estimating 
subject drowsiness level based on EEG signals collected 
from the frontal non-hairy sites. Furthermore, the estimation 
accuracy based on the EEG collected by dry electrodes is 
comparable to that based on the signals collected by 
conventional wet electrodes, indicating the feasibility of 
using dry electrodes to acquire quality EEG signals without 
requiring skin preparation or conductive pastes in operational 
environments. 

IV. CONCLUSIONS

In this paper, MEMS dry electrodes are fabricated and 
characterized to bring EEG monitoring to the operational 
environment without requiring scalp gel or other scalp 
preparation. Our results demonstrated that the dry electrodes 
have advantages in electrode-skin interface impedance, 
signal intensity and size over the conventional (wet) 
electrodes. Furthermore, we employed the dry electrodes to 
collect continuous EEG signals in realistic 1-hour attention-
demanding experiments to test the feasibility in VR-based 
dynamic driving simulator environments. The subject 
drowsiness level (task performance) based on the EEG 
signals measured by the dry electrodes and parameters 
derived from the pilot data from the same subject.  Our 
results showed that the dry electrodes perform comparably to 
conventional electrodes placed adjacently, suggesting the 
practical uses of MEMS dry electrodes in operational 
environments where skin preparation and messy conductive 
paste are not feasible or undesirable. 
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                           (a)                                                 (b) 
Fig. 9. Estimated (red traces) and actual driving error (blue traces) of subject 2 using 
the EEG signals (a) session 1 estimate session 2 and (b) session 2 estimate session 1
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Fig. 7. Flowchart for processing the EEG signals.

Table II. Test patterns for ESEI measurement

Session 1 estimates 
Session 2 

Session 2 estimates 
Session 1 

Using 
Features 

Dry 
electrode 

Using 
Features 

Dry 
electrode 

Subject 1 14 0.86 27 0.74 
Subject 2 6 0.83 34 0.69 

                           (a)                                                 (b) 
Fig. 8. Estimated (red traces) and actual driving error (blue traces) of subject 1 using 
the EEG signals (a) session 1 estimate session 2 and (b) session 2 estimate session 1
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