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Objective: Research in seizure prediction from intracranial EEG has highlighted the usefulness of bivariate
measures of brainwave synchronization. Spatio-temporal bivariate features are very high-dimensional
and cannot be analyzed with conventional statistical methods. Hence, we propose state-of-the-art
machine learning methods that handle high-dimensional inputs.
Methods: We computed bivariate features of EEG synchronization (cross-correlation, nonlinear interde-
pendence, dynamical entrainment or wavelet synchrony) on the 21-patient Freiburg dataset. Features
from all channel pairs and frequencies were aggregated over consecutive time points, to form patterns.
Patient-specific machine learning-based classifiers (support vector machines, logistic regression or con-
volutional neural networks) were trained to discriminate interictal from preictal patterns of features. In
this explorative study, we evaluated out-of-sample seizure prediction performance, and compared each
combination of feature type and classifier.
Results: Among the evaluated methods, convolutional networks combined with wavelet coherence suc-
cessfully predicted all out-of-sample seizures, without false alarms, on 15 patients, yielding 71% sensitiv-
ity and 0 false positives.
Conclusions: Our best machine learning technique applied to spatio-temporal patterns of EEG synchroni-
zation outperformed previous seizure prediction methods on the Freiburg dataset.
Significance: By learning spatio-temporal dynamics of EEG synchronization, pattern recognition could
capture patient-specific seizure precursors. Further investigation on additional datasets should include
the seizure prediction horizon.
� 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction

Recent multi-center clinical studies showed evidence of pre-
monitory symptoms in 6.2% of 500 patients with epilepsy (Schu-
lze-Bonhage et al., 2006). Another interview-based study found
that 50% of 562 patients felt ‘‘auras” before seizures (Rajna et al.,
1997). Such clinical observations give an incentive to search for
premonitory changes on EEG recordings from the brain, and to
implement a device that would automatically forewarn the pa-
tient. However, and despite decades of research, research in sei-
zure prediction is still qualified as a ‘‘long and winding road”
(Mormann et al., 2007).
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Most current seizure prediction approaches (Arnhold et al.,
1999; Iasemidis et al., 2005; Lehnertz and Litt, 2005; Lehnertz
et al., 2007; Le Van Quyen et al., 2005; Litt and Echauz, 2002; Mor-
mann et al., 2006, 2007) can be summarized into (1) extracting
measurements from EEG over time and (2) classifying them into
a preictal or interictal state. The ictal and postictal states are dis-
carded from the classification, because the task is not to detect
undergoing seizures, but eventually to warn the patient about fu-
ture ones, so that the patient, the clinician, or an implanted device
can act accordingly.

The method described in this article follows a similar method-
ology: (1) feature extraction, followed by (2) binary classification
of patterns of features into preictal or interictal states. Section
1.1 of the Introduction overviews existing techniques for feature
extraction from EEG (1), while Section 2.2 and Appendix A detail
specific features used in the proposed method.

The breakthrough of our technique lies in the pattern recogni-
tion and machine learning-powered classification of features (2).
The proposed pattern-based classification is described in Sections
2.3 through 2.5. As can be seen in Section 1.2, the proposed method
ed by Elsevier Ireland Ltd. All rights reserved.
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takes advantage of decade of research in image processing and vi-
sion, but is also a novelty in the field of seizure prediction. More-
over, Section 3 shows that our method achieves superior seizure
prediction results on the Freiburg EEG dataset (described in Section
2.1). Finally, Section 4 discusses the limitations of the proposed
method.

1.1. Feature extraction from EEG

Seizure prediction methods have in common an initial building
block consisting of the extraction of EEG features. All EEG features
are computed over a short time window of a few seconds to a few
minutes. One can distinguish between univariate measures, com-
puted on each EEG channel separately, and bivariate (or multivar-
iate) measures, which quantify some relationship, such as
synchronization, between two or more EEG channels. Although a
plethora of univariate features has been investigated for seizure
prediction (Esteller et al., 2005; Harrison et al., 2005; Jerger et al.,
2005; Jouny et al., 2005), none of them has succeeded in that task,
as illustrated in an extensive study comparing most univariate and
bivariate techniques (Mormann et al., 2005), which also confirmed
the superiority of bivariate measurements for seizure prediction.

In parallel to comparative study (Mormann et al., 2005), and de-
spite the current lack of a complete neurological understanding of
the preictal brain state, researchers increasingly hypothesize that
brainwave synchronization patterns might differentiate interictal,
preictal and ictal states (Le Van Quyen et al., 2003). From clinical
observations on the synchronization of neural activity, it has been
suggested that interictal phases correspond to moderate synchro-
nization within the brain at large frequency bands, and that there
is a preictal decrease in the beta range synchronization between
the epileptic focus and other brain areas, followed by a subsequent
hyper-synchronization at the seizure onset. These considerations
motivated our choice of bivariate EEG features.

As described in Section 2.2 and Appendix A, this article evalu-
ates four kinds of EEG synchronization (bivariate) features: one
simple linear feature called Maximum Cross-Correlation (Mor-
mann et al., 2005; Appendix A.1) and three nonlinear features.
The first and popular nonlinear measure is Nonlinear Interdepen-
dence, which measures the distance, in state-space, between
time-delay embedded trajectories of two EEG channels (Arnhold
et al., 1999; Mormann et al., 2005) (see Appendix A.2). The second
measure, also called Dynamical Entrainment, is based on the mea-
sure of chaos in the EEG. It estimates from any two observed time
series, the difference of their largest Lyapunov exponents, i.e. the
exponential rates of growth of an initial perturbation (see Appen-
dix A.3). Finally, a third type of nonlinear bivariate measures that
takes advantage of the frequency content of EEG signals is phase
synchronization. First, two equivalent techniques can be employed
to extract the frequency-specific phase of EEG signal: band-pass fil-
tering followed by Hilbert transform or Wavelet transform (Le Van
Quyen et al., 2001). Then, statistics on the difference of phases be-
tween two channels (such as phase-locking synchrony) are com-
puted for specific combinations of channels and frequencies (Le
Van Quyen et al., 2005).

1.2. Feature classification for seizure prediction

Once univariate or bivariate, linear or nonlinear measurements
are derived from EEG, the most common approach for seizure pre-
diction is the simple binary classification of a single variable (Lehn-
ertz et al., 2007; Mormann et al., 2005). Their hypothesis is that
there should be a preictal increase or decrease in the values of an
EEG-derived feature. Statistical methods consist in an a-posteriori
and in-sample tuning of a binary classification threshold (e.g.
pre-ictal vs. interictal) on that unique measure extracted from EEG.
The usage of a simple binary threshold has limitations detailed
in Section 4.2. Essentially, it does not allow using high-dimensional
features. By contrast, machine learning theory (sometimes also
called statistical learning theory) easily handles high-dimensional
and spatio-temporal data, as illustrated in its countless applica-
tions such as video or sound recognition.

Most importantly, machine learning provides both with a meth-
odology for learning by example from data, and for quantifying the
efficiency of the learning process (Vapnik, 1995). The available data
set is divided into a training set (‘‘in-sample”) and a testing set
(‘‘out-of-sample”). Training consists in iteratively adjusting the
parameters of the machine in order to minimize the empirical er-
ror made on in-sample data, and a theoretical risk related to the
complexity of the machine (e.g. number of adjustable parameters).
The training set can be further subdivided into training and cross-
validation subsets, so that training is stopped before over-fitting
when the cross-validation error starts to increase.

As a paramount example of machine learning algorithms, feed-
forward Neural Networks (NN) can learn a mapping between
multi-dimensional inputs and corresponding targets. The archi-
tecture of a neural network is an ensemble of interconnected pro-
cessing units, organized in successive layers. Learning consists in
tuning the connection weights by back-propagating the gradient
of classification errors through the layers of the NN (Rumelhart
et al., 1986). Convolutional networks are a further specialized
architecture able to extract distortion-invariant patterns such as
for handwriting recognition. One such convolutional network
architecture, called LeNet5, is currently used in the verification
of handwriting on most bank checks in the United States (LeCun
et al., 1998a) and has been more recently shown to enable auton-
omous robot navigation from raw images coming from two (ste-
reoscopic) cameras (LeCun et al., 2005). This sophisticated
neural network successfully learnt a large collection of highly
noisy visual patterns and was capable of avoiding obstacles in un-
known terrain.

Another machine learning algorithm used for multi-dimen-
sional classification is called Support Vector Machines (SVM).
SVMs first compute a metric between all training examples, called
the kernel matrix, and then learn to associate the right target out-
put to a given input, by solving a quadratic programming problem
(Cortes and Vapnik, 1995; Vapnik, 1995).

Machine learning techniques have been applied, in a very lim-
ited scope, mostly to select subsets of features and corresponding
EEG channels for further statistical classification, but rarely to
the classification task itself. Examples of such algorithms for chan-
nel selection included Quadratic Programming (Iasemidis et al.,
2005), K-means (Iasemidis et al., 2005; Le Van Quyen et al.,
2005), and Genetic Optimization (D’Alessandro et al., 2003,
2005). An example of a more sophisticated machine learning pro-
cedure for seizure prediction (Petrosian et al., 2000) consisted in
feeding raw EEG time series and their wavelet transform coeffi-
cients into a Recurrent Neural Network (RNN), i.e. a neural network
that maintains a ‘‘memory” of previous inputs and thus learns tem-
poral dependencies between consecutive samples. The RNN was
trained to classify each EEG channel separately as being in an inter-
ictal or preictal state. That RNN however did not take advantage of
bivariate measurements from EEG. Most importantly, the dataset
was very short (minutes before a seizure) and the technique has
not been validated on large case studies.

Our article compares three types of machine learning classifi-
ers: logistic regression, SVMs and convolutional networks, all de-
scribed in Section 2.4. Instead of relying on one-dimensional
features, the classifiers were trained to handle high-dimensional
patterns (detailed in Section 2.3) and managed to select subsets
of features (channels and frequencies) during the learning process
(see Section 2.5).
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2. Methods

Our entire seizure prediction methodology can be decom-
posed as following: selection of training and testing data, as well
as EEG filtering (Section 2.1), computation of bivariate features of
EEG synchronization (Section 2.2), aggregation of features into
spatio-temporal, or spatio-temporal and frequency-based, pat-
terns (Section 2.3), machine learning-based optimization of a
classifier that inputs patterns of bivariate features and outputs
the preictal or interictal category (Section 2.4) and retrospective
sensitivity analysis to understand the importance of each EEG
channel and frequency band within the patterns of features (Sec-
tion 2.5).
2.1. Data and preprocessing

We developed and evaluated our seizure prediction methodol-
ogy on the publicly available EEG database at the Epilepsy Center
of the University Hospital of Freiburg, Germany (https://epi-
lepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-data
base/), containing invasive EEG recordings of 21 patients suffering
from medically intractable focal epilepsy. Previous analysis of
this dataset (Aschenbrenner-Scheibe et al., 2003; Maiwald et al.,
2004; Schelter et al., 2006a,b; Schulze-Bonhage et al., 2006)
yielded at best a seizure prediction performance of 42% sensitivity
and an average of 3 false positives per day. These EEG data
had been acquired from intracranial grid-, strip-, and depth-
electrodes at a 256 Hz sampling rate, and digitized to 16 bit by
an analogue-to-digital converter. In the source dataset, a certified
epileptologist had previously restricted the EEG dataset to 6
channels, from three focal electrodes (1–3) involved in early ictal
activity, and three electrodes (4–6) not involved during seizure
spread.

Each of the patients’ EEG recordings from the Freiburg database
contained between 2 and 6 seizures and at least 50 min of pre-ictal
data for most seizures, as well as approximately 24 h of EEG-
recordings without seizure activity and spanning the full wake-
sleep cycle. We set apart preictal samples preceding the last 1 or
2 seizures (depending on that patient’s total number of seizures)
and 33% of the interictal samples: these were testing (out-of-sam-
ple) data. The remaining samples were training (in-sample) data.
Further 10% or 20% of training data were randomly selected for
cross-validation. The training procedure (Section 2.4) would be
stopped either after a fixed number of iterations, or we would
use cross-validation data to select the best model (and stop the
training procedure prematurely). In summary, we trained the clas-
sifiers on the earlier seizures and on wake-sleep interictal data, and
evaluated these same classifiers on later seizures and on different
wake-sleep interictal data.

We further applied Infinite Impulse Response (IIR) elliptical fil-
ters, using code from EEGLab (Delorme and Makeig, 2004) to clean
some artifacts: a 49–51Hz band-reject 12th-order filter to remove
power line noise, a 120 Hz cutoff low-pass 1st-order filter, and a
0.5 Hz cutoff high-pass 5th-order filter to remove the dc component.
All data samples were scaled on a per patient basis, to either zero
mean and unit variance (for logistic regression and convolutional
networks) or between �1 and 1 (for support vector machines). At
this stage, let us denote xi(t) the time series representing the i-th
channel of the preprocessed EEG.
2.2. Extraction of bivariate features

A bivariate feature is a measure of a certain relationship be-
tween two signals. Bivariate features presented in this section
and used in this study have the following common points:
(a) Bivariate features are computed on 5 s windows (N = 1280
samples at 256 Hz) of any two EEG channels xa and xb.

(b) For EEG data consisting of M channels, one computes fea-
tures on M � ðM � 1Þ=2 pairs of channels (e.g. 15 pairs for
M = 6 in the Freiburg EEG dataset).

Some features are also specific to a frequency range.
We investigated in our study six types of bivariate features

known in the literature, and which we explain in details in Appendix
A. The simplest feature was cross-correlation C, a linear measure of
dependence between two signals (Mormann et al., 2005) that also
allows fixed delays between two spatially distant EEG signals to
accommodate potential signal propagation. The second feature
was nonlinear interdependence S (Arnhold et al., 1999), which mea-
sures the distance in state-space between the trajectories of two
EEG channels. The third feature was dynamical entrainment DSTL
(Iasemidis et al., 2005) i.e. the difference of short-term Lyapunov
exponents, based on a common measure of the chaotic nature of a
signal. Finally, the last three features that we investigated were
based on phase synchrony (Le Van Quyen et al., 2001, 2005). First,
frequency-specific and time-dependent phase ua,f(t) and ub,f(t) were
extracted from the two respective EEG signals xa(t) and xb(t) using
Wavelet Transform. Then, three types of statistics on the difference
of phases between two channels were made: phase-locking syn-
chrony SPLV, entropy H of the phase difference and coherence Coh.

2.3. Aggregation of bivariate features into spatio-temporal patterns

We define in this article a pattern as a structured collection of
features described in previous section. A pattern groups features
along the spatial, time and frequency dimensions. A simplistic
analogy is that a feature is like the color of a pixel at a specific loca-
tion in an image. In this article, we formed 2D patterns by aggre-
gating features from all 15 pairs of channels (across rows) and
over several consecutive time frames (across columns). Specifi-
cally, we formed 1 or 5 min-long patterns of 12 or 60 frames,
respectively. In the case of frequency-based features, we also
stacked patterns, row-wise and from all frequency ranges into
one pattern. The dimensionality of the feature patterns ranged
from 180 (e.g. cross-correlation on 1 min windows, Fig. 1), to
6300 (e.g. wavelet phase-locking synchrony on 5 min windows).
As mentioned in Section 3.1 and 5 min-long patterns achieved
superior results to 1 min-long patterns, and the article therefore
reports seizure prediction results on 5 min-long patterns only.

Throughout the article, we denote as yt a pattern at time t (i.e. a
sample of bivariate features), and zt the associated label (�1 for
preictal, 1 for interictal). yt can either be one long vector or a ma-
trix indexed by time and by channel pair and frequency band.

2.4. Machine learning classification of patterns of bivariate features

Bivariate patterns yt described in previous sections and repre-
senting a ‘‘snapshot” of EEG synchronization around time t were
input into a decision system that would classify them as preictal
or interictal. The parameters of that classifier were learned on
the training subset of the dataset using machine learning. Let us
note zt the label of pattern yt (�1 for preictal, 1 for interictal)
and �zt the output of the classifier. Although we used three different
types of classifiers, with their respective machine learning algo-
rithms, all training algorithms had in common minimizing, for
every training sample yt, the error between output �zt and target
zt. The error between the output and the target is one term of
the loss function: we explain in Section 2.5 the second term (reg-
ularization). Finally, and most importantly, test data were set apart
during the training phase: in other words, we validated the perfor-
mance of the classifiers on out-of-sample data.

https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database/
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database/
https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database/
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Fig. 1. Examples of two 1-min EEG recordings (upper panels) and corresponding patterns of cross-correlation features (lower panels) for interictal (left panels) and preictal
(right panels) recordings from patient 012. EEG was acquired on M = 6 channels. Cross-correlation features were computed on 5 s windows and on p = M � (M � 1)/2 = 15
pairs of channels. Each pattern contains 12 frames of bivariate features (1 min). Please note that channel TLB3 shows a strong, time-limited artifact; however, the patterns of
features that we use for classification are less sensitive to single time-limited artifacts than to longer duration or repeated phenomena.
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The first classifier that we tried was logistic regression, i.e. a lin-
ear classifier parameterized by weights w and bias b, and opti-
mized by minimizing a loss function with stochastic gradient
descent (Rumelhart et al., 1986; LeCun et al., 1998b). In a nutshell,
this linear classifier performs a dot product between pattern yt and
weight vector w, and adds the bias term b (see Appendix B.1). In
the loss function, an additional L1-norm penalty on the weight vec-
tor helps selecting a sparse subset of weights and enables feature
selection (see Sections 2.5 and 3.4).

The second classifier that we tried was built on convolutional
networks (LeCun et al., 1998a). Convolutional networks are train-
able, multi-layer, nonlinear systems that are specifically designed
to extract and classify high-dimensional patterns from images or
multivariate time series. They can be seen as multi-layer neural
networks in which each layer is a bank of finite-impulse response
filters followed by point-wise sigmoid squashing functions. One
could make a parallel between convolutional networks and an ex-
tremely simplified model of the V1 visual cortex, because each
layer processes locally inputs from the previous layer, and because
this processing is replicated over the input pattern. All the layers
are trained simultaneously using a version of the back-propagation
learning algorithm. They can learn low-level features and high-le-
vel representations in an integrated manner. Their main advantage
is that they can learn optimal time-invariant local feature detectors
from input matrix yt (which is indexed by time) and thus build rep-
resentations that are robust to time shifts of specific feature motifs.
This technique has already been applied to raw EEG data (Mirowski
et al., 2007).

We used a specific convolutional network architecture similar
to LeNet5 (LeCun et al., 1998a) (Fig. 2) consisting in a stack of five
layers of neural network connections (also called weight layers).
Weight layers 1, 3 and 5 were convolutional layers, and layers 2
and 4 were mere subsampling layers. Each layer would compute
a weighted sum over a ‘‘local” subset of inputs. Let p be the number
of pairs of channels (15) times the number of frequency bands (1 or
7). Then, 12-frame patterns (i.e. 1 min-long) were processed in the
following way: the 1st layer would perform five different 5-point
convolutions over the time dimension; the 3rd layer would per-
form five different 3-point convolutions over time and p-point con-
volutions over all channels and frequency bands; and the 5th layer
was fully connected between all its inputs (i.e. the outputs the 4th
layer) and the 2 output nodes (one for ‘‘preictal” and one for ‘‘inter-
ictal”). The 2nd and 4th layer merely averaged two consecutive
time points (i.e. subsampled in time). 60-frame patterns (i.e.
5 min-long) were processed slightly differently: the 1st layer
would perform five different 13-point convolutions over the time
dimension; and the 3rd layer would perform five different 9-point
convolutions over time and p-point convolutions over all channels
and frequency bands. As mentioned in Section 3.1, 5 min-long pat-
terns achieved superior seizure prediction results to 1 min-long
patterns, and the latter 5 min-long architecture is the one for
which we report seizure prediction results. As a side remark, we
chose to have two output nodes because it enabled an asymmetric
learning that penalized more false positives (false preictal alarms)
than false negatives (missed preictal alarms).

Finally, we compared the two neural network architectures (lo-
gistic regression, linear, and convolutional networks, highly non-
linear) with a third type of classifiers, called Support Vector
Machines (SVM) (Cortes and Vapnik, 1995). SVM are pattern
matching-based classifiers that compare any input pattern yt to a
set of support vectors ys. We used in this study standard SVMs with
Gaussian kernels, and optimized the Gaussian standard deviation
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Fig. 2. Convolutional network used for the classification of patterns of bivariate features containing 60 consecutive frames (5 min) of p simultaneous features. Convolutional
networks are a deep neural network architecture with a small number of parameters (weights) that are replicated over large patterns. Convolutional networks behave like
successive arrays of small convolution filters. Inputs to hidden layers 1, 3 and 5 result from convolutions and inputs to hidden layers 2 and 4 are result from subsampling.
Computations done between hidden layer 5 and the output layer of the convolutional networks correspond to a low-dimensional linear classifier. Thanks to alternated
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the original input pattern. For the specific problem of seizure prediction, convolutions are done only across time, with the exception of layer 3, which convolves input from all
pairs of channels and all frequencies. Layer 1 can be seen as a simple short time pattern extractor, while layers 3 and 5 perform highly nonlinear spatio-temporal pattern
recognition. For M = 6 EEG channels, p = M � (M � 1)/2 = 15 for non-frequency-based features and p = M � (M�1)/2 � 7 = 105 for wavelet synchrony-based features
computed on seven frequency bands.
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hyper-parameter c and regularization hyper-parameter C selected
by cross-validation over a grid of values (see Appendix B.2). SVMs
were implemented using the LibSVM library (Chang and Lin, 2001).

2.5. Feature selection

Training algorithms for neural network classifiers such as logis-
tic regression and convolutional networks enable to easily add a
regularization term on the weights (parameters) w. Typically, reg-
ularization consists in minimizing the norm of vector w. Specifi-
cally, we added an L1-norm (sum of absolute values)
regularization term to the loss function (Eq. 2) that is minimized
during gradient descent. We typically used values of 0.001 for
lambda. This L1 term uniformly pulls the weights towards zero
during gradient-based optimization. As a consequence, only a sub-
set {wi} of these weights ‘‘survive”, and the final solution w* con-
tains a minimal set of weights that simultaneously minimizes
the error on the training dataset. This L1-norm weight selection
is also called the ‘‘LASSO” algorithm (Tibshirani, 1996). We used
it as a task-specific way to select features, as opposed to a task-
agnostic selection of features prior to the training algorithm. In
other words, the only non-zero (or non-negligible) features are
the ones that specifically discriminate between interictal and pre-
ictal patterns of that given patient.

After training the neural network, a sensitivity analysis on the
inputs was performed to see which features were important for
the discrimination. In the case of Logistic Regression, we simply
looked at individual weights wi.

For convolutional networks, we back-propagated the gradients
obtained for each testing sample onto the inputs, and then
summed the squares of these gradients on inputs.

3. Results

This section shows how high-dimensional spatio-temporal pat-
terns of bivariate features allow for better separation between
interictal and preictal recordings (Section 3.1). We then report re-
sults obtained with machine learning-trained classifiers: for each
patient, we could find at least one combination of methods that
would predict all the test seizures of the given patient without
false alarm; one specific combination (convolutional networks
with wavelet coherence) worked for 15 patients out of 21 and
achieved 71% sensitivity and 0 false positives (Sections 3.2 and
3.3). We explain how neural network-based classifiers enable a-
posteriori selection of channels and frequency bands relevant for
seizure prediction (Section 3.4). Finally, we investigated whether
there was a link between seizure prediction performance and the
patient’s condition (Section 3.5).
3.1. Increased separability of patterns instead of individual features

First, we tried to compare the discriminative power of patterns
of features as opposed to individual features. As defined in Section
2.3, a pattern aggregates features across successive time frames
and over all pairs of channels. We believed that there was no need
to prove the utility of considering information from all pairs of EEG
channels, instead of taking into account only one single pair of
channels or just an average value across all channels, as in (Mor-
mann et al., 2005). An image processing analogy of the latter meth-
ods would be to try to detect faces on an image by looking at the
average color of all the pixels in the image or by looking at the col-
or of a few pixels only. By consequence, we limited our analysis to
a comparison between patterns across channels vs. patterns across
time and channels, and this way we assessed the benefit of adding
the time dimension to patterns.

We performed a Principal Component Analysis (PCA) of pat-
terns of bivariate features with different lengths of aggregation
across time. Namely, we investigated purely spatial patterns (1 sin-
gle time-frame, where features had been computed on a 5 s win-
dow), short spatio-temporal patterns (12 time-frames covering
1 min) and long spatio-temporal patterns (60 time-frames cover-
ing 5 min). To account for the variability between patients, we per-
formed this PCA individually for each patient and for each type of
feature (cross-correlation, nonlinear interdependence, difference
of Lyapunov exponents, phase-locking value, wavelet coherence
and entropy of phase difference). We visually inspected the projec-
tions of all the interictal, preictal and ictal/postictal patterns along
their first two principal components. These top PCA components
corresponded to the directions of highest variability of the feature
values. We observed that the 2D projections of preictal and inter-
ictal 1-frame patterns overlapped considerably, more than the pro-
jections of 12-frame or 60-frame patterns. An illustration of this
phenomenon is given on Fig. 3, which shows the PCA projection
of patterns of phase-locking values for patient 1: whereas it is dif-
ficult to see a boundary between the interictal and preictal clusters
of 1-frame patterns (without time aggregation), the boundary be-
comes more apparent for time-aggregated 12-frame patterns,
and even more apparent for 60-frame patterns.

This intuitive observation about spatio-temporal patterns was
later empirically confirmed, since seizure prediction performance
was superior for 5 min-long patterns than for 1min-long patterns.
More precisely, 1 min-long patterns of features could predict sei-
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Fig. 3. 2D projections of all the interictal, preictal and ictal patterns for patient 001, into the subspace defined by their first two principal components. Principal Component
Analysis (PCA) was performed on (a) 1-frame (5 s), (b) 12-frame (1 min) and (c) 60-frame (5 min) patterns of wavelet synchrony SPLV features. Patterns a) are vectors
containing 15 � 7 = 105 elements (15 pairs of channels times seven frequency bands). Patterns (b) are (15 � 7) � 12 matrices containing 1260 elements. Patterns (c) are
(15 � 7) � 60 matrices containing 6300 elements. As the duration (number of frames) of patterns increases, the separation between the preictal and interictal patterns
becomes more apparent; this explains why a simple linear classifier (logistic regression) obtained good seizure prediction results on 60-frame patterns.
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zures without false positives only in 8 patients out of 21 (i.e. that
there was at least one such combination of 1 min-long pattern fea-
ture and classifier for each patient), and the best combination
(1 min-long pattern of wavelet coherence with SVM classifier) pre-
dicted seizures perfectly only in 4 patients out of 21. For this rea-
son, the next section reports only results obtained with 5 min-long
patterns.

3.2. Classification results

As introduced earlier, we investigated in this seizure prediction
study different combinations of one type of feature patterns (cross-
correlation C, nonlinear interdependence S, difference of Lyapunov
exponents DSTL, phase-locking synchrony SPLV, entropy of phase
difference H and distribution or wavelet coherence Coh) and one
type of classifier (Logistic Regression log reg, convolutional net-
works conv-net or SVM). For each patient, there were 18 possible
combinations of six types of features and three types of classifiers;
Table 1
Number of patients with perfect seizure prediction results (no false positives, all seizures

Perfect seizure
prediction
(test set)

C S DSTL

log reg conv net svm log reg conv net svm svm log

4 9 4 3 10 5 1 1
19% 43% 19% 14% 48% 24% 5% 4

Bold values highlight the best results for each category.

Table 2
Number of patients with perfect seizure prediction results on the test dataset, as a functi

Perfect seizure
prediction
(test set)

No frequency information

C S
11 19

Bold values highlight the best results for each category.
however, because the DSTL feature did not yield good results with
SVM classifiers, we discontinued evaluating the DSTL feature with
the two other classifiers, and for this reason report results for only
16 combinations in Tables 1 and 4.

Because the goal of seizure prediction is the epileptic patient’s
quality of life, we report the following classification performance
results in terms of false alarms per hour and sensitivity, i.e. number
of seizures where at least one preictal sample is classified as such.

For each patient, at least one of our combined methods could
predict all the test seizures, on average 60 min before the onset
and with no false alarm. On the other hand, not all combinations
of feature and classifier yielded perfect prediction: to the contrary,
many combinations of feature and classifier failed the seizure pre-
diction task either because there were more than 0.25 false posi-
tives per hour (i.e. more than three false positives per day) or
because the seizure was not predicted. The main limitation of
our patient-specific multiple-method approach lies in the lack of
a criterion for choosing the best combination of methods for each
predicted) on the test dataset, for each combination of feature type and classifier.

SPLV H Coh

reg conv net svm log reg conv net svm log reg conv net svm

0 13 7 9 11 7 11 15 8
8% 62% 33% 43% 52% 33% 52% 71% 38%

on of the type of EEG feature.

Type of bivariate features

Frequency-based

DSTL SPLV H Coh
2 14 11 13



Table 3
Number of patients with perfect seizure prediction results on the test dataset, as a
function of the type of classifier.

Perfect seizure
prediction
(test set)

Type of classifier

log reg conv net svm
14 20 11

Bold values highlight the best results for each category.
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patient, other than cross-validating each method on long EEG
recordings.

The best results were obtained using patterns of wavelet coher-
ence Coh features classified using convolutional networks (zero
false positive and all test seizures predicted on 15 patients out of
21, i.e. 71% sensitivity), then patterns of phase-locking synchrony
SPLV using a similar classifier (13 patients out of 21, i.e. 62% sensi-
tivity). Both Coh patterns classified using logistic regression log reg,
as well as patterns of phase difference entropy H classified using
conv-net predicted all test seizures without false positive on 11 pa-
tients (52% sensitivity). Finally, SPLV classified using log reg and
nonlinear interdependence S classified using conv-net worked
without false alarm on 10 patients (48% sensitivity). Table 1 sum-
marizes the above sensitivity results. Results on our best classifier
and features outperform previously published 42% sensitivity and
three false positives per day on the Freiburg dataset.

Irrespective of the EEG feature, convolutional networks
achieved a zero-false alarm seizure prediction on 20 patients out
of 21, compared to 11 only using SVM (however, good results were
obtained for patient 5, contrary to convolutional networks). Sur-
prisingly, the linear classification boundary of logistic regression
enabled perfect seizure prediction on 14 patients.

Tables 1–4 recapitulate how many patients had ‘‘perfect predic-
tion” of their test seizures, i.e. zero-false alarm during interictal
phases and at least one alarm during pre-ictal phases, given a com-
bination of feature and classifier (see Table 1), as well as given each
type of feature pattern (see Table 2) or classifier (see Table 3). Table
4, organized by patient, feature type and classifier, displays the fre-
quency of false alarm per hour, and how many minutes ahead were
the one or two test seizures predicted. Fig. 4 shows the times of
preictal alarms for each patient, achieved using the best patient-
specific method.

It has to be noted that both for convolutional networks and lo-
gistic regression, 100% of training samples (patterns of bivariate
features) were correctly classified. The only exceptions were pa-
tients 17, 19 and 21, where we allowed a larger penalty for false
positives than for false negatives. On these three patients we ob-
tained only some false negatives and no false positive on the train-
ing dataset, while managing to predict all train seizures.

We did not evaluate the classification results obtained by a
combination of all six types of features because of two reasons.
First, combining a large number of features would yield very
high-dimensional inputs. Secondly, the computational cost of the
features could make it impractical to compute many types of fea-
tures at once in a runtime setting (see Section 4.3).
3.3. Verification of EEG for artifacts

Analysis of Table 4 reveals that for a given patient and a given
test seizure, most feature-classifier combinations share the same
time of first preictal alarm. The simple justification is that most
of these time-aligned first preictal alarms also correspond to the
beginning of the preictal recording. Going back to the original
raw EEG, and with the help of a trained epileptologist, we per-
formed additional sanity checks. First, we verified that there were
no recording artifacts that would have helped differentiate interic-
tal from preictal EEG, and second, we verified that EEG segments
corresponding to the pattern at the time of the first preictal alarm
were not artifacts either. Through visual inspection, we compared
several EEG segments: at the time of the first preictal alarm, right
before the seizure and a few randomly chosen 5 min segments of
normal interictal EEG.

We noticed that there seemed to be high frequency artifacts on
preictal recordings for patients 4 and 7, and that no such artifacts
were visible on interictal recordings. However, for all other pa-
tients, short artifacts were indiscriminately present on both preic-
tal and interictal segments. Moreover, we observed what appeared
to be sub-clinical events or even seizures on the preictal EEG of pa-
tients 3, 4, 6, and 16: we hypothesize that these sub-clinical events
might have been (correctly) classified by our system as preictal
alarms.

3.4. Feature selection results

The additional functionality of our seizure prediction algorithm
is the feature selection mechanism detailed in Section 2.5. This fea-
ture selection could help narrowing down the set of input bivariate
features. When learning the parameters of the logistic regression
or convolutional network classifiers (but not the support vector
machine), weight parameters are driven to zero thanks to L1-norm
regularization, and the few remaining non-zero parameters are
those that enable successful classification on the training, cross-
validation and testing datasets. We performed a sensitivity analy-
sis on individual classifier inputs and identified which couples of
EEG channels were discriminative between preictal and interictal
patterns. We observed that out of the 15 pairs of channels, gener-
ally only 3 or 4 pairs were actually necessary for seizure prediction
when using non-frequency-based features (cross-correlation C and
nonlinear interdependence S). Similarly, only a subset of frequency
bands was discriminatory for seizure prediction classification
when using wavelet-analysis-based measures of synchrony
(phase-locking SPLV, coherence Coh or entropy H). Interestingly,
that subset always contained high frequency synchronization fea-
tures (see Fig. 5).

3.5. Prediction results vs. patient condition

Finally, we investigated whether the epileptic patient’s condi-
tion can impact the seizure prediction task, and compared the
number of combinations of feature and classifier that achieved per-
fect seizure prediction performance, versus several characteristics
of the patients. These characteristics, summarized for the Freiburg
dataset in Table 2 of (Maiwald et al., 2004), included the Engel clas-
sification of epilepsy surgery outcome (I through IV), the types of
epilepsy (simple partial, complex partial, or generalized tonic-clo-
nic) and the localization of the epileptogenic focus (hippocampal or
neo-cortical). Like in the rest of our study, we defined perfect sei-
zure prediction as having no false positives and all test seizures
predicted for a given patient. We did not observe any significant
correlation between the patient condition and the number of suc-
cessful feature-classifier combinations for that same patient. For
instance, only three combinations of feature and classifier worked
flawlessly for patient 6, who was seizure-free after surgery,
whereas most combinations of feature and classifier worked per-
fectly for patients 2 and 12, whose condition did not improve much
or even worsened after surgery. Patients 3 and 10 presented the
opposite case. Therefore, we cannot draft at that stage of our inves-
tigations any hypothesis, neither about the applicability of our sei-
zure prediction method to specific cases of epilepsy, or about how
well it predicts the surgery outcome. It seems that albeit being pa-
tient-specific, our method is not condition-specific, and should be
applied individually to predict seizures in various types of localized
epilepsies.



Table 4
Seizure prediction results on the test dataset, as a function of the type of EEG feature and type of classifier. For each patient, the false positives rate (in false alarms per hour) as well as the time to seizure at the first preictal alarm (in
minutes), for one or two test seizures, are indicated. Gray crosses mark combinations of EEG feature type and classifier type that failed to predict the test seizures or that had more than 0.3 false positives per hour.

pat 1 pat 2 pat 3 pat 4 pat 5 pat 6 pat 7 pat 8 pat 9 pat 10 pat 11

feature classifier fpr ts1 fpr ts1 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 fpr ts1 fpr ts1 fpr ts1 ts2 fpr ts1 ts2 fpr ts1

C log reg x x x x x x x x x x x x x x x 0 46 x x x x x 0 79 73 x x
conv net 0 68 0 40 x x x 0 54 61 0 25 52 x x 0 56 x x x x x x x x x x
svm 0.23 68 0 40 x x x x x x x x x 0.12 66 0 36 x x x x x 0.12 79 73 x x

S log reg x x x x 0 48 3 0 54 61 x x x x x 0 56 x x x x x x x x x x
conv net 0 68 0 40 0 48 3 0 54 61 x x x x x 0 56 x x 0 51 78 x x x 0 67
svm 0.23 68 0 40 x x x 0.13 39 61 0 45 52 0.12 16 0 56 0 9 0.13 51 43 0.12 79 73 0.25 67

DSTL svm x x x x x x x 0 39 51 x x x x x x x x x x x x 0.24 9 3 x x

SPLV log reg 0 68 0 40 0 48 3 0 54 61 x x x 0 66 0 56 x x 0 51 78 x x x 0 57
conv net 0 68 0 40 0 48 3 0 54 61 x x x x x 0 56 0 39 0 51 78 0 79 73 0 67
svm 0.12 68 0 40 0 48 3 0 54 41 x x x 0.12 66 0 56 x x 0 51 78 0.24 79 73 0 27

H log reg x x 0 40 0 48 3 0 54 61 x x x x x 0 56 x x 0 51 78 x x x 0 67
conv net 0 68 0 40 0 48 3 0 54 61 x x x x x 0 56 x x 0 51 78 x x x 0 67
svm 0.23 68 0 40 0 48 3 0 54 61 x x x 0.12 66 0 56 x x 0 51 78 0.24 79 73 0 27

Coh log reg 0 68 0 40 0 48 3 0 54 61 x x x 0 66 0 56 x x 0 51 78 x x x 0 37
conv net 0 68 0 40 0 48 3 0 54 61 0 45 52 0 71 0 56 0 44 0 51 78 0 79 73 0 67
svm 0.12 68 0 40 0 48 3 0 54 61 x x x 0.12 66 0 56 x x 0 51 78 0.24 79 73 0 32

pat 12 pat 13 pat 14 pat 15 pat 16 pat 17 pat 18 pat 19 pat 20 pat 21

feature classifier fpr ts1 fpr ts1 fpr ts1 fpr ts1 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 ts2 fpr ts1 fpr ts1 ts2 fpr ts1 ts2

C log reg 0 25 0 2 x x x x x x x x x x x x x x x x x x x x x
conv net 0 25 0 7 x x x x 0 65 25 x x x x x x x x 0 91 96 x x x
svm 0 25 x x x x x x 0 60 20 x x x x x x x x x x x 0.12 99 70

S log reg 0 25 x x x x x x x x x x x x x x x x x x x x x x x
conv net 0 25 x x x x x x x x x x x x x x x 0 28 0 91 96 x x x
svm x x x x 0.13 33 0.12 90 0 55 55 x x x x x x x x x x x x x x

DSTL svm x x x x x x x x x x x x x x x x x x x x x x x x x

SPLV log reg 0 25 x x x x x x x x x x x x x x x x x x x x 0 99 75
conv net 0 25 x x x x 0 90 x x x x x x 0 20 70 0 28 x x x x x x
svm x x x x 0.26 33 0 80 x x x x x x x x x x x x x x 0.12 99 80

H log reg 0 25 x x 0 33 0 70 x x x x x x x x x x x x x x x x x
conv net 0 25 x x 0 33 0 90 x x x 0 78 113 x x x x x x x x x x x
svm x x x x 0.13 33 0 85 x x x x x x x x x x x x x x 0.12 14 75

Coh log reg 0 25 x x x x 0 45 0 60 10 x x x x x x x x x x x x x x
conv net 0 25 x x x x 0 90 x x x x x x 0 25 90 x x 0 99 20 x x x
svm x x x x 0.26 28 0 85 0 60 5 x x x 0.23 15 90 x x x x x 0.12 99 75

Bold values highlight the best results for each category.
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Fig. 4. Best results obtained of the Freiburg dataset. For each patient, the figure shows the total duration of preictal EEG recordings (light gray) before each test seizure, and
the times of preictal alarms. Some patients had one seizure used for test, other patients two, depending on the total number of seizures available for that patient in the
dataset. The type of bivariate features and classifier are indicated on the left.
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4. Discussion

As detailed in Results section, this article introduced a new ap-
proach to seizure prediction. We presented machine learning tech-
niques that outperform previous seizure prediction methods, as
our best method achieved 71% sensitivity and 0 false positives on
the Freiburg dataset. Such results were enabled by our pattern rec-
ognition approach applied to spatio-temporal patterns of EEG syn-
chronization features. The following section discusses the
uniqueness and advantages of pattern recognition approaches to
seizure prediction, running-time considerations; we also explain
the need for further validation on other datasets, and for an alter-
native to our current binary classification approach.

4.1. Choice of linear or nonlinear features

An important task for seizure prediction is the choice of type
of EEG features. Generally, among bivariate (or multivariate) fea-
tures, one can make two distinct assumptions about the nature
of the model underlying the observed EEG; indeed, EEG can
either be viewed as a realization of a noise-driven linear process,
or as an observation of a nonlinear, possibly chaotic, dynamical
system (Stam, 2005). The linear or nonlinear hypotheses imply
different sets of mathematical tools and measurements to quan-
tify EEG.

On one hand, linear methods for EEG analysis assume that over
short durations of time, the EEG time series are generated by a sys-
tem of linear equations with superimposed observation noise.
Although this hypothesis is restrictive, maximum cross-correlation
(Mormann et al., 2005), was shown to achieve quite a good dis-
crimination performance between interictal and preictal stages.

The other assumption about the EEG signal is its nonlinearity.
Although deterministic by nature, systems of nonlinear differential
equations can generate highly complex or even unpredictable
(‘‘chaotic”) time series. The trajectory or ‘‘attractor” of the gener-
ated sequence of numbers can be extremely sensitive to initial con-
ditions: any perturbation in those conditions can grow at an
exponential rate along the attractor. Nonlinear, chaotic, dynamical
systems have become a plausible model for many complex biolog-
ical observations, including EEG waveforms (Stam, 2005). Even if
not all the variables of a chaotic system are observed, one can
theoretically reconstruct the original chaotic attractor, thanks to
time-delay embedding of the time series of the limited subset of
observed variables, assuming the right embedding dimension
and time delay (Takens, 1981). Similarly, although one cannot
know all the variables behind the chaotic dynamical system of
the neuronal networks of the brain, one can try to reconstruct, in
the state-space, attractors from time-delay embedded observed
EEG.

As described in Section 3.2, this study seems to discard the dif-
ference of Lyapunov exponents, and tends to favor nonlinear inter-
dependence and wavelet-analysis-based statistics of synchrony.
From the analysis of seizure prediction results on 21 patients, there
was however no specific EEG feature that would work for every pa-
tient. Moreover, the superiority of nonlinear features over linear
features could not be demonstrated in other comparative studies
(Mormann et al., 2005).
4.2. Comparison with existing threshold-based seizure prediction
methods

Most current seizure prediction techniques resort to a simple
binary threshold on a unique EEG feature. Such an approach has
two major limitations. First, in order to ensure the predictability,
and in absence of testing data, binary thresholds require valida-
tion using the Seizure Time Surrogates method (Andrzejak et al.,
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Fig. 5. Sensitivity analysis for patient 012 (top panel a) and patient 008 (bottom panel b). Both images represent the input sensitivity of convolutional networks performed on
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2003). Besides, simple statistical classification not only uses sim-
plistic linear decision boundaries, but also requires reducing the
number of variables. A typical shortcoming of an ill-designed
binary classification algorithm is illustrated in (Jerger et al.,
2005). Hilbert-based phase-locking synchrony is computed for
all frequencies without prior band-pass filtering, and cross-corre-
lation is computed for zero delay only. Bivariate measurements
from several channels are collapsed to single values. Finally,
the final decision boundary is a simple line in a 2D space
covered by the two bivariate measurements. Unsurprisingly,
the seizure prediction performance of (Jerger et al., 2005) is very
weak. We believe that the explanation for such unsatisfying re-
sults is that relevant seizure-discriminative information has been
lost as the dimensionality of the features has been reduced to
two.

Let us now make a crude analogy between the feature derived
from one or two EEG signals around time t, and the value of a
‘‘pixel” in a ‘‘movie” at time t. Most current seizure prediction
methods look at ‘‘individual pixels” of the EEG-based feature ‘‘im-
age” instead of looking at the ‘‘full picture”, i.e. the relationship be-
tween the ‘‘pixels” within that ‘‘image”; moreover they forego the
dynamics of that ‘‘movie”, i.e. do not try to capture how features
change over time. By contrast, our method learns to recognize pat-
terns of EEG features.
4.3. Running-time considerations

The patent-pending system described in this article (Mirowski
et al., patent application filed in 2009) does not require extensive
computational resources. Although our seizure prediction method
is still under evaluation and refinement, we consider in this section
whether it could be implemented as real-time dedicated software
on an embedded computer connected to the patient’s intracranial
EEG acquisition system.

The whole software process, from raw numerical EEG to the sei-
zure prediction alarm can be decomposed in three stages: EEG pre-
processing, feature computation and pattern classification. The
first stage (EEG preprocessing) is implemented by four standard
Infinite Impulse Response (IIR) filters that have negligible runtime
even in real-time signal processing. The third stage (pattern classi-
fication) is done only every minute or every 5 min (depending on
the pattern size) and corresponds to a few matrix-vector multipli-
cations and simple floating-point numerical operations (addition,
multiplication, exponential, logarithm), involving vectors with a
few thousand dimensions. The most computationally expensive
part is the training (parameter fitting) of the classifier, but it is
done offline and thus does not affect the runtime. The second stage
(feature computation from EEG) is also relatively fast: it takes in
the order of seconds to process a 5 min-long window of 6-channel
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EEG and extract features such as wavelet-analysis-based syn-
chrony (SPLV, Coh or H), nonlinear interdependence S or cross-cor-
relation C. However, since the 5 min patterns are not overlapping,
stage 2 is only repeated every minute or 5 min (like stage 3). It has
to be noted that this running-time analysis was done on a software
prototype that could be further optimized for speed.

The software for computing features from EEG was imple-
mented in MatlabTM and can be run under its free open-source
counterpart, OctaveTM. Support vector machine classification was
performed using LibSVMTM (Chang and Lin, 2001) and its Matlab/
Octave interface. Convolutional networks and logistic regression
were implemented in LushTM, an open-source programming envi-
ronment (Bottou and LeCun, 2002) with extensive machine learn-
ing libraries.

4.4. Overcoming high number of EEG channels through feature
selection

In addition to real-time capabilities during runtime, the training
phase of the classifier has an additional benefit. Our seizure predic-
tion method enables further feature selection through sensitivity
analysis, namely the discovery of subsets of channels (and if rele-
vant, frequencies of analysis), that have a strong discriminative
power for the preictal versus interictal classification task.

This capability could help the system cope with a high number
of EEG channels. Indeed, the number of bivariate features grows
quadratically with the number of channels M, and this quadratic
dependence on the number of EEG channels becomes problematic
when EEG recordings contain many channels, e.g. one or two 64-
channel grids with additional strip electrodes. This limitation
might slow down both the machine learning (training) and even
the runtime (testing) phases. Through sensitivity analysis, one
could narrow down the subset of EEG channels necessary for a
good seizure prediction performance. One could envision the fol-
lowing approach: first, long and slow training and evaluation
phases using all the EEG channels, followed by channel selection
with respect to their discriminative power, and a second, faster,
training phase, with, as end product, a seizure prediction classifier
running on a restricted number of EEG channels. The main advan-
tage of this approach is that the channel selection is done a-poste-
riori with respect to the seizure prediction performance, and not a
priori as in previous studies (D’Alessandro et al., 2003; Le Van Quy-
en et al., 2005). In our method, the classifier decides by itself which
subset of channels is the most appropriate.

4.5. Statistical validity

One of the recommended validation methods for seizure predic-
tion algorithms is Seizure Time Surrogates (STS) (Andrzejak et al.,
2003). As stated in the introduction, STS is a necessary validation
step required by most current statistical seizure prediction meth-
ods, which use all available data to find the boundary thresholds
(in-sample optimization using the ROC curve) without proper
out-of-sample testing. STS consists in repeatedly scrambling the
preictal and interictal labels and checking that the subsequent fake
decision boundaries are statistically different from the true deci-
sion boundary.

Such surrogate methods are however virtually unknown in the
abundant machine learning literature and its countless applica-
tions, because the validation of machine learning algorithms relies
instead on the Statistical Learning Theory (Vapnik, 1995). The lat-
ter consists in regularizing the parameters of the classifier (as de-
scribed in Section 2.5), and in separating the dataset into a
training and cross-validation set for parameter optimization, and
a testing set that is unseen during the optimization phase (as de-
scribed in details in Section 2.1).
On one hand, the use of a carefully designed separate and un-
seen testing set verifies that the classifier works well in the general
case, within the limits of the testing dataset. Given the long time
required to train a machine learning classifier, such an approach
is less computationally expensive than surrogate methods.

On the other hand, the regularization permits to choose, among
the infinity of configurations of parameter values (e.g. the ‘‘synap-
tic” connection weights of a convolutional network or the matrix of
logistic regression), the ‘‘simplest” one, generally satisfying a crite-
rion such as choosing the feasible parameter vector with the small-
est norm. The regularized classifier does not overfit the training
dataset (e.g. it does not learn the training set patterns ‘‘by heart”)
but has instead good generalization properties, i.e. a low theoreti-
cal error on unseen testing set patterns. Moreover, regularization
enables to cope with datasets where the number of inputs is great-
er than the number of training instances. This is for instance the
case with machine learning-based classification of biological data,
where very few micro-array measurements (each micro-array
being a single instance in the learning dataset) contain tens of
thousands of genes or protein expression levels.

Nevertheless, let us devise the following combinatorial verifica-
tion of the results. Since our study focused on non-overlapping
5 min-long patterns, and since our patient-specific predictors
would ignore the time stamp of each pattern, we consider a ran-
dom predictor that gives independent predictions every 5 min on
one patient’s data, and emits a preictal alarm with probability p.
Each patient’s recording consists of at least 24 h of interictal data
(out of which, at least 8 h are set apart for testing), which contain,
respectively, at least ni = 288 or ni = 96 patterns, and m preictal
recordings of at most 2 h each (out of which, one or two are set
apart for testing), with at most np = 24 patterns per preictal record-
ing. Using binomial distributions, we can compute the probability:
AðpÞ ¼ f ð0; ni; pÞ of not emitting any alarm during the interictal
phase, as well as the probability of emitting at least one alarm be-
fore each seizure: BðpÞ ¼ 1� f ð0; np; pÞ. The probability of predict-
ing each seizure of a patient, without false alarm, is a function of
the predictor’s p: CðpÞ ¼ AðpÞBðpÞm.

After maximization with respect to the random predictor ‘‘firing
rate” p, the optimal random predictor could predict, without false
alarm during the 8 h of out-of-sample interictal recording, one test
seizure with over 8% probability and two test seizures with over
2% probability. In our study, we evaluated 16 different combinations
of features and classifiers. If one tried 16 different random predictors
for a given patient, and using again binomial distributions, the ex-
pected number of successful predictions would be computed as
1.3 for one test seizure, and 0.4 for two test seizures. Considering
that the random predictor also needs to correctly classify patterns
from the training and cross-validation dataset, in other words to
correctly predict the entire patient’s dataset (this was the case of
the successful classifiers reported in Table 1), then, by a similar argu-
ment, this expected number of successful predictions goes down
from 0.05 for a 2-seizures dataset to 10�4 for a 6-seizures dataset.

Although the above combinatorial analysis only gives an upper
bound on the number of ‘‘successful” random predictors for a given
patient, it motivates a critical look at the results reported in Table
4. Specifically, seizure prediction results obtained for certain pa-
tients where only 1 or 2 classifiers (out of 16) succeeded in predict-
ing without false alarm should be considered with reserve (such is
the case for patients 13, 17, 19 and 21).

4.6. Limitations of binary classification for seizure prediction

A second limitation of our method lies in our binary classifica-
tion approach. When attempting seizure prediction, binary classi-
fication is both a simplification and an additional challenge for
training the classifier. In our case, 2-h-long preictal periods imply



Fig. 6. Detail of the performance of the seizure prediction system on patient 8, on a test dataset comprising a segment of EEG going from December 8, 11:20 AM through
December 9, 5:51 AM. Only the segment after 23:51 PM is shown. The classifier was a convolutional network, and the 5 min-long patterns consisted of wavelet coherence
features. Dark grey boxes show successful predictions for each pattern (true negatives when the pattern is interictal and true positives when the pattern is preictal). Light gray
boxes show false negatives (missed preictal alarms). There were no false positives/alarms.
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a 2-h prediction horizon, which naturally drives the sensitivity up.
At the same time, the classifier is forced to consider patterns as re-
mote as 2 h prior to a seizure as ‘‘preictal”, whereas there might be
no difference between such a pattern and an interictal pattern.

For this reason, we suggest, as further refinements of our meth-
od, to replace the binary classification by regression. For instance,
one could regress a function of the inverse time to the seizure, tak-
ing a value of 0 away from a seizure then continuously increasing
up to a value of 1 just before the seizure. Such an approach would
naturally integrate a seizure prediction horizon and could be con-
sidered a variation of the Seizure Prediction Characteristic (Win-
terhalder et al., 2003) formulated into a machine learning problem.

4.7. Importance of long, continuous EEG recordings

As suggested in the above discussion about testing datasets, one
could see a third potential limitation of the EEG Freiburg database:
indeed, while it provides, for each patient, with at least 24 h of inter-
ictal and a few hours of preictal, ictal and postictal recording, it does
not cover the whole duration of the patient monitoring, and there
are sometimes gaps of several days between the preictal segments
and the interictal segments (e.g. this is the case for patient 12).
One could therefore argue that what has been picked by our EEG
classification algorithm was not a preictal vs. interictal signal, but
a large time-scale physiological, medical or acquisition artifact.
However, there are also patients where preictal and interictal seg-
ments are interleaved. An example is patient 8, where one continu-
ous EEG recording spans a long interictal segment and then a preictal
segment, including the transition from interictal to preictal. As illus-
trated on Fig. 6, our algorithm succeeded in raising several preictal
alarms before the test seizure, without emitting any false alarms.

Unfortunately, no information about the patient’s circadian
variations, level of medication, or state of vigilance is available in
the 21-patient Freiburg dataset; it is therefore necessary for our
method to be further validated on different datasets. While our
algorithm passed certain sanity checks (e.g. patient 8 in the Frei-
burg dataset), we reiterate the guideline (Lehnertz et al., 2007)
for seizure prediction studies, which stipulates that datasets need
to contain long, continuous and uninterrupted EEG recordings so
that one can prove that a seizure prediction algorithm works round
the clock.
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Appendix A. Bivariate features computed on the EEG

A.1. Maximal cross-correlation

Cross-correlation (C) values Ci,j(s) between pairs (xi, xj) of EEG
channels xi(t) and xj(t) are computed at delays s ranging from
�0.5 to 0.5 s, in order to account for the propagation and process-
ing time of brainwaves, and only the maximal value of such cross-
correlation values is retained (Mormann et al., 2005), as in:

Ca;b ¼ max
s

Ca;bðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cað0Þ � Cbð0Þ

p
�����

�����
( )

where

Ca;bðsÞ ¼
1

N�s
PN�s

t¼1
xaðt þ sÞxbðsÞ; s P 0

Cb;að�sÞ; s < 0

8><
>: ðA1Þ

and N is the number of time points within the analysis window
(N = 1024 in this study).

A.2. Nonlinear interdependence

Nonlinear interdependence (S) is a bivariate feature that mea-
sures the Euclidian distance, in reconstructed state-space, between
trajectories described by two EEG channels xa(t) and xb(t) (Arnhold
et al, 1999).

First, each EEG channel x(t) is time-delay embedded into a local
trajectory x(t) (Stam, 2005), using delay s = 6 (approximately
23 ms) and embedding dimension d = 10, as suggested in (Arnhold
et al., 1999; Mormann et al., 2005):

xðtÞ ¼ fxðt � ðd� 1ÞsÞ; . . . ; xðt � sÞ; xðtÞg ðA2Þ

After time-delay embedding of EEG waveforms into respective se-
quences of vectors xa(t) and xb(t), one computes a non-symmetric
statistic S(xi|xj):

Sðxa xbj Þ ¼
1
N

XN

t¼1

Rðt; xaÞ
Rðt; xa xbj Þ

; ðA3Þ

where the distance of xa(t) to its K nearest neighbors in state-space
is defined as (A4) and the distance of xa(t) to the K nearest neigh-
bors of xb(t) in state-space is defined as (A5):

Rðt; xaÞ ¼
1
K

XK

k¼1

kxaðtÞ � xaðta
kÞk

2
2 ðA4Þ

Rðt; xa xbj Þ ¼
1
K

XK

k¼1

kxaðtÞ � xaðtb
kÞk

2
2; ðA5Þ
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where:

fta
1; t

a
2; . . . ; ta

Kg are the time indices of the K nearest neighbors of
xaðtÞ and

ftb
1; t

b
2; . . . ; tb

Kg are the time indices of the K nearest neighbors of
XbðtÞ: ðA7Þ

In this research, K = 5. The nonlinear interdependence feature is a
symmetric measure:

Sa;b ¼
Sðxa xbj Þ þ Sðxb xaj Þ

2
ðA8Þ
A.3. Difference of short-term Lyapunov exponents

The difference of short-term Lyapunov exponents (DSTL), also
called dynamical entrainment, is based on chaos theory (Takens,
1981). First, one estimates the largest short-time Lyapunov coeffi-
cients STLmax on each EEG channel x(t), by using moving windows
on time-delay embedded time series x(t). STLmax is a measure of
the average exponential rates of growth of perturbations dx(t)
(Winterhalder et al., 2003; Iasemidis et al., 1999):

STLmaxðxÞ ¼
1

NDt

XN

t¼1

log2
dxðt þ DtÞ

dxðtÞ

����
����; ðA9Þ

where Di is the time after which the perturbation growth is mea-
sured. Positive values of the largest Lyapunov exponent are an indi-
cation of a chaotic system, and this exponent increases with the
unpredictability. In this research, where EEG is sampled at
256 Hz, time delay is s = 6 samples or 20 ms, embedding dimension
is d = 7 and evolution time Dt = 12 samples or 47 ms, as suggested
in (Iasemidis et al., 1999, 2005). The bivariate feature is the differ-
ence of STLmax values between any two channels:

DSTLa;b ¼ STLmaxðxaÞ � STLmaxðxbÞj j: ðA10Þ
A.4. Wavelet-based measures of synchrony

Three additional frequency-specific features are investigated in
this study, based on wavelet-analysis measures of synchrony (Le
Van Quyen et al., 2001, 2005). First, frequency-specific and time-
dependent phase ui,f(t) and uj,f(t) are extracted from the two
respective EEG signals xi(t) and xj(t) using wavelet transform. Then,
three types of statistics on these differences of phase are com-
puted: phase-locking synchrony SPLV (Eq. (A11)), entropy H of
the phase difference (Eq. (A12)) and coherence Coh. For instance,
phase-locking synchrony SPLV at frequency f is:

SPLVa;bðf Þ ¼
1
N

XN

t¼1

ei½/a;f ðtÞ�/b;f ðtÞ�

�����
����� ðA11Þ

Ha;bðf Þ ¼
lnðMÞ �

PM
m¼1pm lnðpmÞ

lnðMÞ ; ðA12Þ

where

pm ¼ Pr½ðua;f ðtÞ �ua;f ðtÞÞ 2 Um�

is the probability that the phase difference falls in bin m and M is
the total number of bins.

Synchrony is computed and averaged in seven different fre-
quency bands corresponding to EEG rhythms: delta (below 4 Hz),
theta (4–7 Hz), alpha (7–13 Hz), low beta (13–15 Hz), high beta
(14–30 Hz), low gamma (30–45 Hz) and high gamma (65–
120 Hz), given that the EEG recordings used in this study is sam-
pled at 256 Hz. Using 7 different frequency bands increased the
dimensionality of 60-frame, 15-pair synchronization patterns from
900 to 6300 elements.

Appendix B. Bivariate features computed on the EEG

B.1. Logistic regression

Logistic regression is a fundamental algorithm for training linear
classifiers. The classifier is parameterized by weights w and bias b
(Eq. (B1)), and optimized by minimizing loss function (Eq. (B2)). In
a nutshell, this classifier performs a dot product between pattern
yt and weight vector w, and adds the bias term b. The positive or neg-
ative sign of the result (Eq. (B1)) decides whether pattern yt is inter-
ictal or preictal. By consequence, this algorithm can be qualified as a
linear classifier: indeed, each feature yt,i of the pattern is associated
its own weight wi and the dependency is linear. Weights w and bias b
are adjusted during the learning phase, through stochastic gradient
descent (Rumelhart et al., 1986; LeCun et al., 1998a).

�zt ¼ signðwT yt þ bÞ ðB1Þ

Lðyt ; zt ;w; bÞ ¼ 2 log 1þ e�ztðwT ytþbÞ
� �

þ kjwj ðB2Þ
B.2. Support Vector Machines with Gaussian kernels

Support Vector Machines (SVM) (Cortes and Vapnik, 1995) are
pattern matching-based classifiers that compare any input pattern
yt to a set of support vectors ys. Support vectors are a subset of the
training dataset and are chosen during the training phase. The
function used to compare two patterns yt and ys is called the kernel
function K(yt, ys) (Eq. (B3)). The decision function (Eq. (B4)) is a
weighted combination of the kernel functions. We used in this
study SVMs with Gaussian kernels (Eq. (B3)). The set S of support
vectors ys, the Lagrange coefficients a and bias b were optimized
using Quadratic Programming. Gaussian standard deviation
parameter c and regularization parameter were selected by
cross-validation over a grid of values. The whole classifier and
training algorithm was implemented using the LibSVM library
(Chang and Lin, 2001).

Kðyt ; ysÞ ¼ expð�ðyt � ysÞ
2
=cÞ ðB3Þ

�zt ¼ sign
X
s2S

asKðyt ; ysÞ þ b

 !
ðB4Þ
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