
www.elsevier.com/locate/clinph

Clinical Neurophysiology 118 (2007) 2637–2655
Exploration of computational methods for classification of movement
intention during human voluntary movement from single trial EEG

Ou Bai a,*, Peter Lin a, Sherry Vorbach a, Jiang Li b, Steve Furlani a, Mark Hallett a

a Human Motor Control Section, Medical Neurological Branch, National Institute of Neurological Disorders,

National Institutes of Health, Bethesda, MD 20892, USA
b Department of Electrical and Computer Engineering, VMASC, Old Dominion University, Norfolk, VA 23529, USA

Accepted 27 August 2007
Available online 29 October 2007
Abstract

Objective: To explore effective combinations of computational methods for the prediction of movement intention preceding the produc-
tion of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG).
Methods: Twelve naı̈ve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded
from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational pro-
cedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic
investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component
analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral
density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier
(LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP),
probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic
algorithm was employed.
Results: The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods
using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combi-
nations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG
activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement
intention.
Conclusions: Effective combinations of computational methods provide possible classification of human movement intention from single
trial EEG. Such a method could be the basis for a potential brain–computer interface based on human natural movement, which might
reduce the requirement of long-term training.
Significance: Effective combinations of computational methods can classify human movement intention from single trial EEG with rea-
sonable accuracy.
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1. Introduction

Brain–computer interfaces (BCIs) may provide an alter-
nate communication pathway for patients with motor dys-
function, such as amyotrophic lateral sclerosis, stroke, or
cerebral palsy. Various neural signals have been used for
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invasive or non-invasive BCIs. Electroencephalography
(EEG), a non-invasive method, has been widely studied
for BCI implementation. Several successful EEG-based
BCI methods have been reported: slow cortical potential-
based thought translation device (Birbaumer et al., 2000;
Hinterberger et al., 2004), sensorimotor rhythm-based cur-
sor control (Wolpaw et al., 1991), and P300-based letter
selection (Donchin et al., 2000). P300 is a positive event-
related potential appearing about 300 ms after presenting
a rare visual or auditory stimulus. For BCI purposes, the
users can select a specific letter from a series of many differ-
ent letters by producing a P300 when that letter flashes. For
P300-based BCI, the communication accuracy may
decrease significantly with time due to easy fatigue (Soyuer
et al., 2006). Both slow cortical potential and sensorimotor
rhythm methods require long-term training before subjects
can make robust communication or control (Wolpaw and
McFarland, 2004). Recent clinical data showed that
patients had difficulty participating in long-term BCI train-
ing, in particular, those with ‘‘locked-in’’ syndrome (Bir-
baumer, 2006).

It is preferable to achieve BCI control through human
natural behavior, so that BCI users do not have to perform
long-term training. Internally cued (self-paced) or exter-
nally cued hand and finger extensions or flexions are
among the repertoire of human natural behavior. Both
anatomical and physiological evidence showed the nature
of contralateral control of hand movements (Haaland
and Harrington, 1994). Further, EEG also can demon-
strate hemispheric differences during movement production
(Stancak and Pfurtscheller, 1996; Haaland et al., 2000; Bai
et al., 2005). For the purpose of BCI, we are interested in
the brain signal associated with movement intention pre-
ceding movement. The intention to move is associated with
at least two cortical activities over sensorimotor and sup-
plementary motor cortices: the movement-related cortical
potential, which occurs about �1.5 s before the movement
(Shibasaki et al., 1993); and event-related desynchroniza-
tion (ERD) or power decrease in alpha and beta bands,
which occurs as early as 2 s before the movement (Toro
et al., 1994a). Furthermore, these activities are available
even though no movement occurs (Castro et al., 2005). In
Castro’s study, subjects were instructed to get ready to flex
and extend their toes before they heard a tone provided
externally. In one session, they needed to respond to the
stimulus by executing the movement, while in another ses-
sion, the subjects did not execute the movement with the
stimulus. They observed cortical activity before the stimu-
lus in both sessions. This provided evidence that pre-move-
ment activity was available even without real movement.
These features yield possible opportunities to classify
human intention to move the right or left hand before
movement occurs. However, because EEG records poten-
tials from the scalp where intervening tissues may blur
the neuronal signals from the cortex, those features are evi-
dent only after averaging across a large number of trials
(Toro et al., 1994b; Sochurkova and Rektor, 2003; Bai
et al., 2005). For single trial EEG, signals relevant to move-
ment are usually very small compared with ongoing back-
ground activity. Studies have attempted to classify whether
the subject intended to move the right or left hand during
the production of real or imagined movement from single
trial EEG (Burke et al., 2005; Blankertz et al., 2006; Cong-
edo et al., 2006; Pfurtscheller et al., 2006). They suggested
that advanced signal processing and pattern recognition
techniques are necessary to extract the relevant signal from
single trial EEG. Although many signal processing and
pattern recognition techniques have been explored for
improving the signal-to-noise ratio for greater classification
accuracy (Tie and Sahin, 2005; Kim et al., 2006; Rezaei
et al., 2006; Townsend et al., 2006), it is still difficult to
determine more effective solutions for accurate classifica-
tion because there are no systematic approaches. For
example, previous studies investigated either the perfor-
mance of different spatial filters (Muller-Gerking et al.,
1999; Naeem et al., 2006), or the performance of different
classification methods (Garrett et al., 2003; Hinterberger
et al., 2003), independently. Therefore, additional investi-
gation is required to explore more effective combinations
of spatial filter, temporal filter and classification methods.
Furthermore, although one study has investigated a large
number of subjects to test different modalities of visual,
auditory and cross-modal visual-auditory stimuli for BCI
(Pham et al., 2005), previous studies on the comparison
of computational algorithms were performed only with a
relatively small number of subjects. A larger sample of sub-
jects may yield a better combination of computation meth-
ods that are robust among subjects. This is very useful for
BCI applications because it may not be practical to rely on
an engineering team to test the entire range of computa-
tional methods for each prospective BCI user.

We performed a systematic study to explore better com-
binations of computational methods for classifying self-
paced movement on either right or left hand before move-
ment occurred. We recorded high-density 128-channel
EEG from a relatively large sample of 12 subjects with
about 150 single trials for classification for each subject.
Since typical BCI users are unable to perform movements,
only the signal preceding the movement was used for the
exploration offline optimization procedures which con-
sisted of spatial filtering, temporal filtering, feature selec-
tion and classification. We employed state-of-the-art
neural signal processing and pattern recognition tech-
niques; spatial filtering using principal component analysis
(PCA), independent component analysis (ICA), common
spatial patterns analysis (CSP), surface Laplacian deriva-
tion (SLD); temporal filtering using power spectral density
estimation (PSD) and discrete wavelet transform (DWT);
pattern classification using linear Mahalanobis distance
classifier (LMD), Quadratic Mahalanobis distance classi-
fier (QMD), Bayesian classifier (BSC), multi-layer percep-
tron neural network (MLP), probabilistic neural network
(PNN), and support vector machine (SVM). We also
employed a robust multivariate feature selection strategy
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using a genetic algorithm (GA). The analysis of features
from the optimal selection was performed.

2. Methods

2.1. Subjects

Twelve healthy volunteers (nine males and three
females; mean age: 39.1 ± 9.1 years) participated in the
study. Eleven subjects were right-handed according to the
Edinburgh inventory (Oldfield, 1971) and one subject (sub-
ject 2) was left-handed. The protocol was approved by the
Institutional Review Board; all subjects gave their written
informed consent for the study.

2.2. Experimental protocol and data acquisition

Subjects were seated in a chair with the forearm semi-
flexed and supported by a pillow; they were asked to per-
form self-paced 3-key sequences on a computer keyboard
with either their right or left hand for the purpose of
enhancing the MRCP and ERD, and to maintain the sub-
jects’ attention level. The data preceding the first keystroke
were used for the following analyses. Subjects were asked
to execute a set of sequential key strokes every 10 s. After
10 min of training on each hand, subjects paced the move-
ments, determining the time and laterality in a pseudo-ran-
dom manner. They were specifically asked not to count
time themselves because verbal feedback was provided by
the investigator to maintain the target rate (0.1 Hz). Fur-
thermore, subjects were asked to keep all muscles, other
than those in the performing hand, relaxed. They were also
instructed to remain relaxed between key strokes. Eye
movements, blinks, body adjustments, throat clearing,
and other movements were to be avoided during the inter-
val at least 3 s prior and 2 s after the movement. The
recording was done in five 20-min blocks with intermittent
3-min breaks to avoid fatigue with total recording time
about 2–3 h.

EEG was recorded from 122 (tin) surface electrodes,
mounted on an elastic cap (Electro-Cap International,
Inc., Eaton, OH, USA) with reference of the right ear.
The distance between two adjacent electrodes was approx-
imately 2.5 cm. Bipolar recordings of the vertical and hor-
izontal electrooculogram (EOG) and electromyogram
(EMG) from the volar surface of the right and left forearm,
mostly sampling flexor carpi ulnaris and flexor digitorum
superficialis muscles, were also obtained. Signals from all
channels were amplified (Neuroscan Inc., El Paso, TX),
lowpass filtered at 100 Hz (third-order Butterworth filter
with at least �12 dB/octave rolloff), and digitized (sam-
pling frequency, 1000 Hz).

2.3. Data processing

Data processing was performed offline using home-
made MatLab (MathWorks, Natick, MA) scripts. We visu-
ally inspected all the continuous data and marked EMG
onset manually. Marking was done only for those move-
ments where EMG burst onset was sharp and clearly
defined. EEG was down-sampled to 250 Hz, i.e., extracted
one sample from four continuous samples. Epoching was
done with windows of �1.024 to 0 s with respect to
EMG onset. The epoched 1 s data were used for classifica-
tion. Any epochs contaminated with face muscle artifacts
were rejected. Epochs with bilateral EMG activity were
also discarded. Eye-movement related artifacts were cor-
rected using an Auto-Regressive Exogenous input (ARX)
model, in which the vertical and horizontal EOG signals
were used as the exogenous inputs (Cerutti et al., 1988).
Approximately 150 artifact-free epochs for each side in
each subject were obtained.

2.4. Computational methods for offline optimization

The artifact-free EEG epochs from �1.024 to 0 s with
respect to movement onset for each subject were pooled
into one dataset with corresponding right or left labels.
One complete experiment consisted of dataset generation,
training and testing as illustrated in Fig. 1. The explora-
tion experiments were performed on each subject inde-
pendently, i.e., the performance of 90 combinations of
spatial filter, temporal filter and classification method
was investigated on an individual basis, and better com-
binations of computational methods were explored
according to the statistical analysis of individual perfor-
mance. Only the testing results were used for subsequent
statistical analysis. To reduce the bias in testing, the com-
plete experiment was repeated five times. The computa-
tional methods employed in this study were described
as follows. The detailed mathematical or theoretical
background of the computational methods was beyond
the scope of this paper. We emphasized the algorithms
employed and ignored theoretical descriptions, and
instead, provide necessary references.

2.5. Dataset generation procedure

The pooled dataset for each subject was pseudo-ran-
domly separated into training dataset (80%) and testing
dataset (20%). The optimization procedure was per-
formed on the training dataset, while the testing dataset
was left untouched for the testing purpose only. The con-
trol parameters for neural network classifiers were also
determined from the training set. For each of the
repeated measurements of testing accuracy for each sub-
ject, the sampling for training and testing datasets was
independent. We repeated the training and testing proce-
dures five times. In each experiment consisting of both
training and testing procedures, the pooled dataset was
randomly split into the datasets for training and testing.
Further, the numbers of samples (EEG trials) for right
and left hand movements were balanced for both training
and testing procedures.



Fig. 1. The complete procedure of offline optimization: dataset generation, training, and testing. The optimization of computational methods was
explored using all combinations from spatial filtering, temporal filtering and classification. The optimization experiments were performed five times for
each subject.
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2.6. Training procedure

The training procedure consisted of filtering (spatial fil-
tering and temporal filtering), data preprocessing, feature
selection and classification. The purpose for the training
was to provide robust computational models that could
optimize testing accuracy. We explored a number of
state-of-the-art neural signal processing techniques for data
filtering and classification. The investigation was estab-
lished on complete combinations of spatial filter, temporal
filtering and classification methods: for example, the com-
putational procedure of ‘ICA’–‘PSD’–‘PNN’, ‘CSP’–
‘DWT’–‘MLP’, etc. The total number of combinations
was 90, i.e. 5 (‘None’, ‘PCA’, ’ICA’, ‘CSP’, and
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‘SLD’) · 3 (‘VAR’, ‘PSD’, and ‘DWT’) · 6 (‘LMD’,
‘QMD’, ‘BSC’, ‘MLP’, ‘PNN’, and ‘SVM’). Detailed expla-
nations of computational algorithms explored in this study
are given in the Appendix.

2.7. Testing procedure

The testing dataset, which was independent of the train-
ing dataset, was used in the testing procedure. The param-
eters and models determined in the training procedure were
applied in the spatial filtering, the temporal filtering, pre-
processing, feature selection and classification procedures.
Similar to the training procedure, 90 combinations of com-
putational methods were performed.

2.8. Pre-temporal filtering

As the spatial filters of ‘PCA’ and ‘CSP’ are susceptible
to possible contaminations of physiological and non-phys-
iological artifacts, a previous study suggested to pre-filter
signals for the ‘PCA’ and ‘CSP’ modeling (Muller-Gerking
et al., 1999). In order to compare the performance of ‘PCA’
and ‘CSP’ with pre-filtering, additional experiments were
performed; a narrow bandpass filter (16–24 Hz) and a
broad bandpass filter (8–30 Hz) using fourth-order infinite
impulse response (IIR) Butterworth filter were applied
before the procedure of the ‘PCA’ and ‘CSP’ spatial filter-
ing. The variance of the spatial filtered CSP components
(‘VAR’) was used for the following feature selection. The
linear classifier ‘LMD’ was applied for the classification.

2.9. Summary of the combination methods using different

computational algorithms

For the classification of the intention to move right and
left hands, the single trial EEG data from 1 s preceding
movement to movement onset were extracted and the sin-
gle trial data were marked according to the EMG activity
during right and left hand movement. The pooled data
were randomly sampled five times. In each time, the pooled
data were randomly extracted to produce a training dataset
(80%) and testing dataset (20%) so that the testing dataset
was independent from the training dataset. Only the train-
ing dataset was used for modeling. The final classification
accuracy was obtained from the average of five testing
results. To summarize, the combination of five spatial filter
algorithms (‘None’, ‘PCA’, ’ICA’, ‘CSP’, and ‘SLD’), three
temporal filter methods (‘VAR’, ‘PSD’, and ‘DWT’), and
five classification methods (‘LMD’, ‘QMD’, ‘BSC’,
‘MLP’, ‘PNN’, and ‘SVM’) together with ‘GA’-based fea-
ture selection was used. A total of 90 combinations of com-
putational algorithms were compared.

2.10. Data analysis

To investigate the neurophysiology associated with
human voluntary movement, the movement-related corti-
cal potentials (MRCPs) and event-related desynchroniza-
tion (ERD) (Toro et al., 1994b) preceding and during the
production of self-paced movement were calculated. In
order to observe the time course of MRCP and ERD, the
data were epoched from �4 to 1.5 s with respect to move-
ment onset. The epoched data were averaged and low pass-
filtered at 10 Hz using a second-order Butterworth filter.
The MRCP was obtained by baseline correction from �4
to �3 s. To calculate ERD, each epoch datum was linearly
de-trended and divided into 0.256 s segments. The power
spectrum of each segment was calculated using FFT with
Hamming window resulting in a band width of about
4 Hz. ERD was obtained by averaging the log power spec-
trum across epochs and baseline corrected with respect to
�4 to �3 s. The detailed calculation of MRCPs and
ERD was previously reported (Bai et al., 2006) and (Bai
et al., 2005), respectively.

2.11. Statistics

To determine better combinations of spatial filter,
temporal filter and classification methods, an analysis
of variance (ANOVA) for repeated measures with three
within-subject main factors was performed on the testing
accuracy results. The three within-subject main factors
were: (1) spatial filter (‘None’, ‘PCA’, ’ICA’, ‘CSP’,
and ‘SLD’ with 5 levels); (2) temporal filter (‘VAR’,
‘PSD’, and ‘DWT’ with 3 levels); and (3) classification
(‘LMD’, ‘QMD’, ‘BSC’, ‘MLP’, ‘PNN’, and ‘SVM’ with
6 levels). The total number of repeated measurements for
each subject was 5 · 3 · 6 = 90. Mauchly’s test was used
to test the assumption of sphericity and significance was
found, i.e. the assumption of sphericity was violated. As
a result, we applied the Greenhouse–Geisser correction
to adjust the degrees of freedom (DF). A significance
level of p < 0.05 was adopted for ANOVA in this
study.

Additionally, multiple comparison tests were per-
formed on each of the significant (p < 0.05) main factors
and interactions identified from the ANOVA test. To
reduce the risk of false positives, we used Bonferroni cor-
rection to compensate for multiple comparisons. The sta-
tistical analysis was performed using SPSS (Ver. 15,
Chicago, Illinois).

2.12. Implementation

The offline computation was scripted using MATLAB
7.2 and standard toolboxes (MathWorks, Natick, MA);
Neural Network Toolbox for ‘PNN’, System Identifica-
tion Toolbox for ARX modeling, Signal Processing Tool-
box for ‘PSD’, and Wavelet Toolbox for ‘DWT’. Three
open-source MATLAB packages were used; ‘EEGLAB’
for ‘ICA’ (Delorme and Makeig, 2004), ‘Netlab’ for
‘MLP’ (Nabney, 2004), and ‘SVMLIB’ for ‘SVM’ (Fan
et al., 2005). The statistical analysis was performed using
SPSS.
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3. Results

We performed five complete experiments. Each experi-
ment included dataset generation, training, and testing pro-
cedures. In each complete experiment, we investigated 90
combinations of computational methods on each of 12 sub-
jects. The ANOVA was performed on the averaged testing
accuracy from five complete experiments as shown in Table
1. In ANOVA, significant within-subject factors were: spa-
tial filter, SF (F (2.3,23.3)=15.2, P < 0.01); temporal filter,
TF (F (1.7,17.2) = 6.5, P = 0.01), and classification
method, CM (F (1.6,16.0) = 12.3, P < 0.01). Further, we
observed significant interaction between the spatial filter
and classification methods, SF*CM (F (5.4,53.9) = 3.8,
P < 0.01). No other significant interactions were found.

Multiple comparison procedures were performed on the
significant main effects and interactions. The multiple com-
parison result for the spatial filter is illustrated in Fig. 2(a).
The bar plots show the estimated value of means for five
spatial filters and the error-bar provide the standard errors.
‘ICA’ provided significantly higher accuracy to those of
‘None’, ‘PCA’ and ‘CSP’. No significant difference was
found between ‘ICA’ and ‘SLD’. The ‘CSP’ approach pro-
duced a significantly lower accuracy than ‘None’, ‘ICA’
and ‘SLD’ approaches. The estimated mean testing accu-
racy by ‘ICA’ approach was approximately 5% higher than
‘None’ and ‘PCA’ approaches and 8% higher than ‘CSP’
approach. The multiple comparison result for the temporal
filter is shown in Fig. 2(b). The ‘DWT’ approaches pro-
vided significantly higher accuracy than the ‘VAR’
approach, which provided about 3% mean difference. No
significant difference was found between ‘PSD’ and
‘DWT’. Fig. 2(c) shows the multiple comparison results
of classification methods. Linear and quadratic statistical
classification methods of ‘LMD’, ‘QMD’, and ‘BSC’ pro-
vided significantly higher accuracy than the neural network
approach of ‘MLP’, but the mean difference was small, i.e.,
about 1–2%. The ‘SVM’ approach produced similar accu-
Table 1
ANOVA test of classification accuracy (SF, spatial filter; TF, temporal filter;

Source Type III sum of
squares

Degrees of
freedom

Greenhouse–G
epsilon

SF 10099.5 4 0.58
Error (SF) 6630.5 40
TF 1743.8 2 0.86
Error (TF) 2705.1 20
CM 574.8 5 0.32
Error (CM) 441.5 50
SF*TF 750.0 8 0.41
Error (SF*TF) 3425.4 80
SF*CM 252.0 20 0.27
Error (SF*CM) 661.7 200
TF*CM 68.1 10 0.39
Error (TF*CM) 377.9 100
SF*TF*CM 146.9 40 0.16
Error

(SF*TF*CM)
1513.2 400
racy than those of statistical classification methods (i.e.,
no significant difference), although the ‘SVM’ provided
better accuracy than ‘MLP’ approach. Fig. 3 shows the
multiple comparison results of the interaction between spa-
tial filter and classification methods. There were 30 combi-
nations of the spatial filter methods and classification
methods. From the multiple comparison, the ‘ICA’ and
‘SLD’ are better spatial filter methods and ‘LMD’,
‘QMD’ and ‘SVM’ are better classification methods.

As shown in Table 2, the classification performance was
improved slightly by applying a temporal filter before the
‘CSP’ and ‘PCA’ spatial filter. For ‘PCA’, the classification
performance was marginally improved about 1.8% and
decreased 3.9%, by applying bandpass filter of 8–30 and
16–24 Hz, respectively. For ‘CSP’, the average classifica-
tion accuracy from 12 subjects was improved 0.3% by
applying a broad bandpass filter (8–30 Hz), and the aver-
age classification accuracy was also marginally improved
by 1.2% when applying a narrow bandpass filter of 16–
24 Hz. These results supported that the ‘ICA’ and ‘SLD’
were better spatial filters providing an improved classifica-
tion performance than the performance of ‘PCA’ and
‘CSP’. Furthermore, the testing accuracy results of the clas-
sification performance of spatial filters on bandpass filtered
single trial EEG were obtained using a 10-fold cross-valida-
tion method for feature selection. The results of the testing
accuracy using 5- and 10-fold cross-validation methods are
given in Table 2 for the purpose of comparing the classifi-
cation performance between the two cross-validation meth-
ods. For example, when using ‘CSP’ as the spatial filter on
the bandpass (8–30 Hz) signal trial EEG, the mean testing
accuracy of 12 subjects using a 5-fold cross-validation
method for feature selection was 51.4% with standard devi-
ation of 4.6%, whereas the mean testing accuracy of 12 sub-
jects using a 10-fold cross-validation method for feature
selection was 53.1% with standard deviation of 4.6%. The
difference of the classification performance was small at
1.7% compared with the standard deviations. Similar
CM, classification method)

eisser Corrected degrees of
freedom

Mean
square

F value P value

2.3 4333.5 15.2 <0.01
23.3 284.5
1.7 1016.7 6.5 0.01

17.2 157.7
1.6 341.0 12.4 <0.01

16.0 27.6
3.2 231.1 2.2 0.10

32.4 105.6
5.4 46.7 3.8 <0.01

53.9 12.3
3.9 17.7 1.8 0.15

38.7 9.8
6.6 22.4 1.0 0.46

65.5 23.1



Fig. 2. Multiple comparison results of significant main effects from three-
way ANOVA test on testing accuracy. (a) Spatial filter: ‘ICA’ approach
produced significantly higher accuracy than those of ‘None’, ‘PCA’, and
‘CSP’ approaches, but comparable with ‘SLD’ approach. The estimated
mean difference between them was about 5–8%. (b) Temporal filter:
‘DWT’ approaches provided significantly higher accuracy than ‘VAR’
approach, but comparable with ‘PSD’ approach. The estimated mean
difference between them was about 3%. (c) Classification: linear and
quadratic statistical classification methods of ‘LMD’, ‘QMD’, and ‘BSC’,
and neural network approach of ‘SVM’ provided significantly higher
accuracy than two neural network approaches of ‘MLP’. The estimated
mean difference between them was about 1–2%.
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results are seen in Table 2 with different spatial filter meth-
ods on different bandpass filtered single trial EEG. These
show that the 5-fold cross-validation method provides
comparable classification results with the 10-fold cross-val-
idation method.

According to the statistical test reported in Figs. 2 and 3,
the combination method of ‘ICA’ as the spatial filter,
‘PSD’ as the temporal filter and ‘SVM’ as the classification
method was a better combination to classify movement
intentions. The number of trials and the testing results
using the above computational methods for each subject
are given in Table 3. The average of testing accuracy was
obtained from the average of five experiments, and the
SD showed the standard deviation. Two subjects (3 and
5) had a mean testing accuracy greater than 75%. However,
the variance among subjects was large (SD = 7.5%). Four
subjects had mean accuracy less than 60%.

We performed data analysis to investigate the neuro-
physiological features supporting the classification of
human movement intention. Subject 2, who was left-
handed, was excluded from the analysis for neurophysio-
logical consistency. The grand averaged MRCPs and
ERD following right and left hand movements are shown
in the right and left columns, respectively. Both MRCPs
and ERD were baseline-corrected with the baseline range
from �4 to �3 s. The MRCP waveforms of channel C4
for right and left hand movements are plotted in
Fig. 4(a) and (b). The negative slopes in MRCPs for both
right and left hand movements started about �1.2 s before
movement onset. The negative peaks for both movements
were found just after movement onset. The peak amplitude
of MRCPs following left hand movement was larger than
that of right hand movement. The head topography of
MRCPs at movement onset is illustrated in Fig. 4(c) and
(d). The MRCPs were observed over sensorimotor cortex,
and centered at medial-central area. The MRCPs were lat-
eralized to the contralateral left hemisphere before the right
hand movement. In contrast, the MRCPs were lateralized
to contralateral right hemisphere before the left hand
movement. However, the contralateral lateralization was
not distinct due to the widespread activity over the central
area. The alpha and beta ERD of left hand movement
began about 1.8 s before movement, whereas the ERD of
right hand movement started about 1 s before movement
onset. Both alpha and beta ERD maximized at movement
onset. During the window for classification (�1 s to move-
ment onset), ERD in both alpha and beta bands was larger
for left hand movement. The head topography of ERD in
beta band (20–24 Hz) at 500 ms before movement onset
shows that the beta ERD lateralized to left sensorimotor
cortex before the right hand movement, in contrast, the
beta ERD was present in both right and left hemispheres
before the left hand movement.

To obtain direct spatial and temporal information, fea-
ture analysis was performed on the Bhattacharyya distance
data obtained in the pre-feature selection procedure follow-
ing the filtering procedure. In this procedure, no spatial fil-
ter was employed and ‘PSD’ was employed as the temporal
filter. The produced Bhattacharyya distance matrix showed
the separability for each channel and frequency. Because



Fig. 3. Multiple comparison results of significant interaction between spatial filter and classification method from three-way ANOVA test on testing
accuracy. The combinations of spatial filter of ‘ICA’ and ‘SLD’, and classification method of ‘LMD’, ‘QMD’ and ‘SVM’ provided higher classification
accuracy.
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the succeeding best-feature selection was performed on the
100 best pre-features, for each subject, the Bhattacharyya
distance data smaller than the best 100th value were cor-
rected to zero. The grand average of Bhattacharyya dis-
tance among eleven subjects is illustrated in Fig. 5. The
first column shows the channel-frequency plots of individ-
ual (subjects 3, 5 and 7) and grand average of Bhattachar-
yya distance; the second and third columns show the alpha
(8–12 Hz) and beta band (16–24 Hz) head topography of
Bhattacharyya distance. A larger value of the Bhattachar-
yya distance indicated higher separability. We observed
high separability on features in the beta band in subjects
3, 5, and 7, and the grand average. Significant alpha band
Bhattacharyya distance was only observed in subject 3 so
that the alpha band activity was used for the classification
in this subject. No obvious Bhattacharyya distance in DC
was observed in the Bhattacharyya distance plot perhaps
because the difference was too small, or the variance across
trials was large, or both. The head topography of Bhatta-
charyya distance in beta band shows that channels with
higher separability were over the sensorimotor cortex on
Table 2
Comparison of classification performance of spatial filters on bandpass filtere

Spatial filter PCA

Bandpass Filter None 8–30 Hz 16–2

Accuracy (%) 56.7 ± 5.7 58.5 ± 5.3 52.8
(Mean ± STD)a

Accuracy (%) 54.2 ± 4.0 59.5 ± 5.3 53.5
(Mean ± STD)b

a Fivefold cross-validation in feature selection.
b Tenfold cross-validation in feature selection.
the right hemisphere. The channel with the maximal sepa-
rability was C4. In contrast, the separability of the channels
on the left sensorimotor cortex was small, which was con-
sistent with the beta ERD observation of the bilateral dis-
tribution preceding left hand movement.

4. Discussion

4.1. Exploration of computational methods

Signal processing and pattern recognition techniques
have been considered a fundamental requirement for BCI
research and development. McFarland et al. reported the
taxonomy of the computational methods that had been
employed in BCI laboratories, which was summarized in
a recent BCI meeting (McFarland et al., 2006). According
to that taxonomy, we considered that the current study was
comprehensive because the majority of the summarized
methods had been explored. Comparison is important for
optimizing computational methods. Townsend et al. per-
formed a comparison study of signal processing methods
d single-trial EEG

CSP

4 Hz None 8–30 Hz 16–24 Hz

± 4.9 51.1 ± 2.6 51.4 ± 4.6 52.3 ± 4.1

± 4.3 51.9 ± 3.5 53.1 ± 4.6 51.5 ± 3.3



Table 3
Testing accuracy for classification of movement intentiona

Subject index 1 2 3 4 5 6 7 8 9 10 11 12 Average

Number of trials (right/left) 156 195 153 146 291 403 277 195 197 104 95 292 209 ± 91
136 219 154 123 224 321 282 192 192 115 79 356 199 ± 86

Testing accuracy (average/SD) 55.2 60.8 75.3 64.2 75.8 56.0 69.1 60.9 53.9 68.0 56.7 62.1 63.2 ± 7.5
5.2 4.3 5.9 6.9 4.1 3.5 5.2 3.7 3.0 1.9 4.7 5.7

a Spatial filter, ICA; Temporal filter, PSD; Classification, SVM.
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for spatial and temporal filtering (Townsend et al., 2006).
The comparison of pattern recognition techniques for clas-
sification and feature selection was also reported (Garrett
et al., 2003; Hinterberger et al., 2003). To our knowledge,
the current work is the first to perform a complete compar-
ative investigation on the combination of both signal pro-
cessing and pattern recognition methods. We aimed to
explore better combinations of computational algorithms.
We do not conclude that we have identified an optimal
method because it was not practical to test every available
algorithm. However, we wanted to identify the best per-
forming methods from a large number of options that have
either been used in the literature before or have theoretical
advantage.

4.2. Classification of movement intention during human

voluntary movement

Prediction of human movement intention during self-
paced or memory-delayed movement has been investigated
by several BCI groups. The highest prediction accuracy of
84% was reported in a BCI competition (Wang et al.,
2004), in which a similar experimental paradigm was used.
This result was higher than the average accuracy obtained
in the current study, even when applying an optimized
computational method. We considered two possible rea-
sons: subject and experimental paradigm. We investigated
12 naı̈ve subjects in the current study, whereas the result
from the BCI competition only provided a dataset from a
single subject and it was unclear whether the subject was
trained before recording. We observed that the subjects’
variance was relatively large (7.5%) in the current explora-
tion study. It is more likely that the prediction accuracy
was subject-dependent so that it was difficult to compare
the two studies. Both studies extracted the EEG trials
before movement and focused on this period since there
is often no EMG activity in potential BCI users and there-
fore no ability to use actual movement-related signals. The
major difference in experimental paradigms between the
two studies was the interval between two succeeding key-
strokes. The BCI competition was based on a 1 s interval
(Congedo et al., 2006), whereas we used a 10 s interval.
Although simple keystrokes can be finished within 1 s,
the existence of post-movement activity, for example,
event-related synchronization (ERS), might contribute to
the classification (Pfurtscheller et al., 1998). However, it
is also not clear whether ERS appears when no real move-
ment occurs in BCI applications. In this study, the subjects
performed self-paced movement once per 10 s to avoid
post-movement activity in our experiment. In contrast, fas-
ter tapping rates of 0.5 and 2 taps/s were employed in a
previous study (Blankertz et al., 2003). Because the window
of [�450–350] ms was used as the baseline, there was a risk
of using post-movement activity when the tapping rate was
2 taps/s. Because the subjects did not have enough time to
decide which side to move in such a short time, we consid-
ered that the post-movement activity improved the classifi-
cation as the subjects might perform in a rhythmic manner,
for example, right and left alternatively.

In this study, we aimed to predict human movement
intention preceding the movement onset. Therefore, we
checked the EMG activity carefully and manually marked
the data and extracted the prediction window strictly
before the movement onset. We found that the data epo-
ching method in our study was different from a previous
study that reported a higher classification accuracy in the
prediction of movement intention (Blankertz et al., 2003).
In the previous study, the prediction window was extracted
with respect to the keypad trigger rather than movement or
EMG onset. Although the delay between movement onset
and keypad trigger onset was taken into account and an
earlier time window for the prediction was set (�120 ms
before keypad trigger onset), the prediction window would
still pick up the activities after movement onset because of
the variance of delay among trials. The EMG activity was
found as early as �350 ms before the key stroke, and the
error rate of classification was about 30%, i.e., the classifi-
cation accuracy was about 70% if using the prediction win-
dow before �350 ms. This classification accuracy was
similar to our results.

We would like to explore more effective computational
methods to classify human movement intention, and to
know what neurophysiological signals can be used for the
classification. Although there are many studies related to
the single trial classification of movement intention, the
results were not identical. For example, Pfurtscheller
et al. reported a very high accuracy (89–100%) in an earlier
study (Pfurtscheller et al., 1996), but more recently their
group reported that the average classification accuracies
using different mental strategies were from 56–80% (Neu-
per et al., 2005). Although the subject-to-subject variance
is a possible reason, we consider the accuracies depend
on what kind of signals was used for the classification.
We believe that careful study of the experimental design



Fig. 4. Movement-related cortical potentials (MRCPs) and event-related desynchronization (ERD) averaged from 11 subjects (excluding subject 2)
preceding self-paced right (on the left column) and left (on the right column) hand movements. The waveforms of the MRCP from channel C4 are
illustrated in (a) and (b). Peak MRCP amplitude of left hand movement was larger than that of right hand movement. The head topography of MRCP at
movement onset is plotted in (c) and (d) for right and left hand, respectively. The MRCP over sensorimotor cortex lateralized to contralateral left
hemisphere preceding the right hand movement; the MRCP over sensorimotor cortex lateralized to the contralateral right hemisphere preceding the left
hand movement, however, activity on the ipsilateral left hemisphere was also observed before the left hand movement. Time-frequency plots of ERD from
channel C4 are shown in (e) and (f). Both alpha and beta band activities were observed over sensorimotor cortex before the movements. The lateralized
ERD over left sensorimotor cortex was observed at 500 ms before the onset of right hand movement (g), but bilateral ERD activities on both hemispheres
were seen before the left hand movement.
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and neurophysiological signal analysis is crucial for appro-
priate classification. For example, in the pilot study per-
formed in Pfurtscheller’s group (Pfurtscheller et al.,
1996), the subjects performed a sustained motor imagery
task for 3 s with external cues. Although the classification
accuracy was high, fatigue may be a problem in long-term
BCI use due to sustained motor tasks. Because self-paced
movement is a natural movement behavior, humans have



Fig. 5. Feature analysis for the classification of human movement intention. The channel-frequency plots of Bhattacharyya distance, the head topography
of Bhattacharyya of alpha band activity (8–12 Hz), and the head topography of Bhattacharyya of beta band activity (16–24 Hz) are illustrated in the first,
second and third columns, respectively. The average of Bhattacharyya distance from 11 subjects (excluding subject 2) is provided in the fourth row. High
separability for intention classification was observed in the beta EEG activity over right sensorimotor cortex, whereas the beta band Bhattacharyya
distance was small over left sensorimotor cortex from both individual and average plots. Only subject 3 showed high Bhattacharyya distance in alpha band
over contralateral sensorimotor cortex. Bhattacharyya distance of both DC and alpha band components in the other subjects was small.
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less mental load when performing the self-paced
movement.
In summary, since BCI is intended to provide a new
communication pathway for severe neurological patients



2648 O. Bai et al. / Clinical Neurophysiology 118 (2007) 2637–2655
who lose voluntary movement, whether the developed BCI
technology is suitable for the targeted patients should be
considered before the simple evaluation of detection accu-
racy. There are two issues that should be addressed: one is
the physiological analysis of the brain signal used for BCI
communication in order to avoid possible contamination
of EMG/EOG artifacts due to the well-known volume con-
duction effect in EEG signal. This problem has also been
addressed previously (McFarland et al., 2005; Fatourechi
et al., 2007). The second issue is the BCI paradigm design.
It is preferable to select a paradigm that requires less men-
tal load and less training due to the compromised condition
of the targeted patients. Recent studies reported the fatigue
problem when testing on targeted patients with amyotro-
phic lateral sclerosis (ALS), who were also unable to toler-
ate long-term training (Birbaumer, 2006; Sellers and
Donchin, 2006). In this study, we aimed to explore compu-
tation methods to detect human movement intention asso-
ciated with natural behavior on untrained subjects. Since
the signal was associated with natural behavior, the para-
digm was involved with less mental load. Although the sig-
nal-to-noise ratio can be improved through extensive
training, the exploration of computational methods is more
crucial when working on data with a lower signal-to-noise
ratio.

For the above reasons, we think that our results are at
least as sensitive as earlier studies and our data extraction
method is more reasonable for the BCI purpose, where
the actual movement will usually be unavailable.

4.3. Evaluation of testing accuracy and computational loads

We intended to explore optimal computational methods
for the classification. To balance the repeated measurement
of the testing accuracy, we designed an investigation on
complete combinations of possible computational meth-
ods, i.e., a total of 90 combinations. Nonlinear optimiza-
tion procedures were required for ‘ICA’, GA-based
feature selections and nonlinear neural networks. Optimi-
zation of these nonlinear methods was highly time-consum-
ing. In particular, for the GA-based feature selection, we
investigated different numbers of best features. As a result,
one experiment of investigation on 90 combinations
required about 90 hours to produce one set of testing accu-
racy, where we worked on a HP workstation with Xeon
3.2 GHz CPU and 2GB memory.

We recorded a relatively large size of samples (number
of trials) for each subject. With the data generation proce-
dure, the testing samples were independent of the training
samples. We wondered whether the testing accuracy from
one experiment was unbiased since the testing samples were
randomly selected from the sample pool and testing sample
size was relatively small (20% of whole samples). Subgroup
resampling, bootstrapping, and leave-one-out cross-valida-
tion methods are among suggested testing methods for pat-
tern recognition. Usually, a bootstrapping method requires
a large number of repetitions. The leave-one-out cross-val-
idation may have the minimal variance of the estimation,
but it has the largest computational expense. In particular,
for this study, it was not practical because nonlinear opti-
mization was required for each training procedure. Consid-
ering computational loads, we repeated the experiment of
complete investigation of methods five times using sub-
group resampling. In each experiment, the samples for
training and testing were randomly selected from the same
sample pool. Table 3 shows that the variance of the testing
accuracy was not large (3.0% to 6.9%). The average of the
testing accuracy from five experiments could be a close
estimation.

4.4. Optimal spatial filter methods

For all spatial filters, the transformation matrix was
determined in the training procedure. The testing data were
rotated using the pre-determined matrix directly. Although
the determination for ICA rotation was time-consuming
during the training procedure, in which nonlinear optimi-
zation was required, the rotation in the testing procedure
was fast and possible in real time.

Both ‘ICA’ and ‘SLD’ provided better outcomes than
other methods, although there was no significant difference
between them. Consequently, we consider both as good
spatial filter methods. Since ‘ICA’ requires nonlinear opti-
mization, ‘SLD’ is definitely simpler and time-saving. We
applied four orthogonal neighbor electrodes as the refer-
ence for ‘SLD’. This simple method provides a reference-
free solution for common reference problems and as a
result, may enhance local activities. However, the
employed simple method might be inaccurate due to the
different spatial distribution of underlying neuronal sources
(McFarland et al., 1997). EEG inverse solutions might pro-
vide a more accurate estimation (Kamousi et al., 2005;
Congedo et al., 2006), but their effectiveness need further
comparison study. From the comparison result of spatial
filter, the average outcome using the ‘ICA’ approach was
higher than that of ‘SLD’, although it was not significant.
We considered that the variance of the ‘ICA’ approach was
large because of its nonlinear optimization procedure. We
might expect more accurate estimation of ICA rotation
matrix from a large number of samples, whereas inaccurate
estimation might be generated from a small number of
samples. Therefore, we suggest the ‘ICA’ approach when
the sample size (for training) is large; otherwise, the
‘SLD’ is a good choice.

The ‘CSP’ approach provided the lowest average accu-
racy in this comparison study. A few studies showed that
the CSP method provided a better classification perfor-
mance than other spatial filters; for example, ‘SLD’ by
(Muller-Gerking et al., 1999), or ‘ICA’ by (Naeem et al.,
2006), whereas we found that the CSP method was not bet-
ter than the other methods in this study. One possible rea-
son may be that we used high-density electrodes over the
whole head, and the covariance matrix was 122 · 122,
which might result in model over-fitting. From our data,
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the training accuracy using CSP method was as high as 80–
90%; the testing accuracy, however, was low. On the other
hand, any artifacts or noise contaminated in the electrodes
would make the covariance matrix meaningless. Therefore,
to improve the generalization, some constraints, for exam-
ple, reducing the matrix dimension, needs to be provided
according to empirical knowledge as suggested in (Mul-
ler-Gerking et al., 1999).

4.5. Feature selection

We intended to compare the performance of different
combinations of spatial filters, temporal filters and classifi-
ers. The comparison of different feature selection methods
was not the purpose of this study. For pattern recognition,
there are many feature selection methods, such as exhaus-
tive search, genetic algorithm-based searching, forward
searching, and backward searching. Although the exhaus-
tive search can avoid the local minima in the searching pro-
cedure, it is not practical in most cases due to huge
computational loads. Other searching methods may have
the problem of the local minima. The genetic algorithm
has a better performance in solving the local minima prob-
lem. To reduce the risk of the local minima in the searching
procedure, we employed the genetic algorithm-based fea-
ture selection method, although the computational loads
were still large.

We used a high-density EEG to explore the classification
of movement intention so that the feature dimension was
very large. Although we could perform GA-based search
from whole feature space, it is impractical due to the length
of searching time and it is also risky due to the local min-
ima problem in the searching so that we needed to deter-
mine an appropriate number of the pre-selected features
to reduce the search loads. We did a pilot study to deter-
mine the pre-selection number of 100, 200, and 300.
Although the features ranking outside 100 were selected
in 200 and 300 searching, the classification accuracy from
100 was comparable with those of 200 and 300 searching.
Therefore, we determined 100 as the number of the pre-
selection feature size. The feature dimension can also be
reduced according to empirical knowledge. However, the
empirical approach may have risked the loss of useful fea-
tures that may reduce the accuracy of this comparison
study. This point in particular applies when considering
the inter-subject differences in the distribution of the motor
potentials. Due to the above differences, a careful inspec-
tion of individual motor potential is required. However,
this will increase more manual power for the optimization,
which is usually not preferred in a practical BCI. Further-
more, the information theory-based feature selection was
found to not be robust to classify the motor potential in
a previous study by (Yom-Tov and Inbar, 2002). Based
on the above considerations, we considered that the pro-
posed feature selection method using GA algorithm is ade-
quate for feature selection with less risk of losing useful
features.
4.6. Optimal classification methods

It was not surprising that the ‘SVM’ approach provided
a better solution than the other two neural network
approaches. The reason might be that ‘SVM’ provided a
better control of model complexity to avoid over-fitting.
Because of this property, ‘SVM’ was the first choice of neu-
ral network method in BCI development, e.g. (Schlogl
et al., 2005; Thulasidas et al., 2006).

It was interesting that simple statistical approaches pro-
vided a performance similar to the ‘SVM’ approach. This
result suggested that the linear or quadratic statistical
approaches, which provide a simple discriminant boundary,
were sufficient to classify human movement intention. This
result was consistent with the previous comparison study
of classification methods, which also suggested simple linear
approaches (Garrett et al., 2003; Rezaei et al., 2006).

We provided the individual classification results using a
better combination of spatial filter, temporal filter and clas-
sification methods. We selected the ‘SVM’ as the classifica-
tion method for reporting the individual classification
accuracy because it was one of the better classification
methods. However, we did not intend to use the ‘SVM’
as the ultimate classification method because the perfor-
mance of ‘SVM’ was not significantly better than the per-
formance of the statistical methods.

4.7. Feature analysis

Hemispheric asymmetry suggests that the contralateral
hemisphere is predominantly involved with dominant hand
movement, whereas both contralateral and ipsilateral hemi-
spheres are involved with non-dominant hand movement
(Kawashima et al., 1993; Volkmann et al., 1998; Jung
et al., 2003). For right-handed subjects, only the left senso-
rimotor cortex is activated during dominant right hand
movement, whereas sensorimotor cortices of both right
and left hemispheres are activated during non-dominant left
hand movement. Consequently, the major difference
between right and left hand movements would be expected
in the right sensorimotor cortex. In this study, the univariate
analysis of Bhattacharyya distance was consistent with the
above expectation. We observed that the beta band activity
in the right sensorimotor cortex had the largest separability.

We observed both MRCP and ERD in alpha band dur-
ing right and left hand movements. However, the separabil-
ity of those two components was low, although the MRCP
and alpha ERD difference between right and left hand
movements could be observed. Although the mean differ-
ence of the MRCP preceding right and left hand move-
ments was about 4 lV as shown in Fig. 4, it is not
necessarily going to be an effective feature for the classifica-
tion because we want to make the classification on a single
trial basis so that the trial-to-trial variance is also very
important. The small values of the Bhattacharyya distance
in Fig. 5 suggested a large trial-to-trial variance of the near
DC component of the MRCP. A feature with large inter-
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class difference but also with large trial-to-trial variance
will not provide a robust classification. The large variance
of alpha ERD might suggest that central alpha rhythm or
Mu rhythm can be modulated by mental processes other
than movement behavior. This idea is supported by a
BCI approach of mental regulation of Mu rhythm (Wol-
paw and McFarland, 1994; Pfurtscheller et al., 2006). How-
ever, the mental regulation of Mu rhythm is not a natural
human behavior so that long-term training is usually
required for effective control.

We investigated high-frequency components above
40 Hz. We did not observe robust ERD/ERS during right
and left hand movements. Further, the separability of high-
frequency components measured from Bhattacharyya dis-
tance was also low. Our data did not support the idea that
very high-frequency components (30–200 Hz) discriminate
human movement intention, which was reported recently
(Gonzalez et al., 2006). The reason might be the paradigm
difference: self-paced vs. visuomotor reaction time. From
the results of the current study, we considered that the
high-frequency components observed by Gonzalez et al.
might be related to the visual evoked response. Further,
the possible contamination of EMG artifacts, which was
noticed by (McFarland et al., 2005), would be another con-
cern. Further evidence is needed to validate the suggested
high-frequency components.

4.8. Movement intention and brain–computer interface

From this exploratory study, we confirmed that human
intention to move either the right or left hand could be dis-
criminated from scalp EEG when employing appropriate
signal processing and pattern recognition methods. We
consider that natural movements will activate normal phys-
iological processes that can then be taken advantage of by
detection techniques even in the absence of movement exe-
cution. We intend to achieve BCI control using human nat-
ural signals associated with natural movement intention,
where movement intention will still be present even without
movement execution. The natural movement intention pre-
sumably does not require training or effort, and the sub-
jects should tire less. Therefore, the current outcome
would provide a potential brain–computer interface under
human natural movement behavior where the subject does
not require long-term training.

Although this exploratory study was time-consuming,
we expect that the time for the training procedure can be
reduced significantly when optimal computational methods
are determined, because we need not investigate all the
combinations. Furthermore, the computational loads for
the testing procedure are very small so that possible appli-
cations can be done online or in real-time.

We also noticed that the subject variance of the classifi-
cation accuracy was also large. In this study, the classifica-
tion accuracy for four subjects was just higher than the
random level (50–60%). It suggests that other BCI
approaches might be required for these subjects.
The major purpose of the current study was to test the
performance of identifying movement intention using dif-
ferent combinations of computational algorithms. The
data analysis was performed on naı̈ve subjects who had
no BCI experience. However, we did not assess whether
the performance can be improved after training, in partic-
ular, with feedback. This will be of interest in future
studies.
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Appendix A. Filtering

A.1. Spatial filtering

The spatial filter applies a transformation matrix that is
determined under certain constraints to the EEG signal so
that the filtered signal may have a better signal-to-noise
ratio for identifying the changes of the underlying neuronal
sources. This procedure is similar to beamforming, which
can increase the gain in the direction of the task-related sig-
nals and decrease the gain in the direction of interference
and noise (Rodriguez-Rivera et al., 2003). As a result, the
spatial filter may improve classification accuracy. Five spa-
tial filtering methods were explored. No spatial filtering
was applied for ‘None’ method, which was for comparison
purposes. The signal from electrodes was directly fed into
the temporal filter.

‘PCA’ is a conventional data reduction method for pat-
tern recognition. The high-dimensional training dataset
including both right and left instances was decomposed
into PCA components through linear orthonormal trans-
formation, in which the eigenvectors with largest eigen-
values explained the major variance of the dataset. The
orthonormal matrix was saved for the PCA transformation
in the testing procedure. PCA has been successfully applied
in identifying the waveform components of event-related
potentials (ERP) (Carretie et al., 2004; Dien et al., 2005)
and BCI approach (Vallabhaneni and He, 2004). However,
there is concern that eigenvectors with smaller eigenvalues
may also provide crucial contributions to pattern recogni-
tion (Marques, 2001). We retained all components from
PCA transformation for the succeeding procedure. The
components for constructing the classification model were
determined in the feature selection procedure.

‘ICA’ transforms EEG signal into latent components or
sources with maximal statistical independence. The ratio-
nale for ICA decomposition is more neurophysiologically
sound, because it is reasonable to assume that neuronal
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sources are mutually independent and spatial projections of
sources are not necessarily orthogonal, which is assumed
for PCA-based source estimation. Makeig et al. demon-
strated that ICA provided a better image of underlying
neuronal sources than did PCA (Makeig et al., 1997).
ICA had also been employed in several BCI approaches
(Delorme and Makeig, 2003; Piccione et al., 2006). For
ICA decomposition, we need to select optimal components
for further pattern classification. Empirical knowledge of
the scalp distribution is usually required for identifying
neurophysiologically meaningful components. However,
the empirical approach might also risk losing useful fea-
tures due to the limits of previous knowledge. In this paper,
we employed the ‘data-driven’ or computational solution.
Similar to PCA, the selection of ICA components was per-
formed in the feature selection procedure. The ICA weight-
ing matrix was achieved by an open source MATLAB
routine using logistic infomax algorithm (Delorme and
Makeig, 2004). The determined ICA weighting matrix in
the training procedure was used for the same decomposi-
tion in the testing procedure.

‘CSP’ can be considered as an optimal PCA approach,
i.e., the common spatial patterns are obtained through
PCA decomposition followed by a varimax rotation (Koles
et al., 1995; Muller-Gerking et al., 1999). The CSP compo-
nents are constrained to be as different as possible in the
two task conditions. For the EEG signal in this study,
the first common spatial pattern accounted for maximal
variance in the right hand movement and minimal variance
in the left hand movement. Similarly, the last common spa-
tial pattern accounted for maximal variance in the left hand
movement and minimal variance in the right hand move-
ment. As a result, different task conditions can be more
accurately discriminated from CSP components with larger
inter-task variance (Guger et al., 2000). As a post hoc
method, CSP is highly data-dependent and is sensitive to
noise contamination so that the generalization of CSP-
based classification needs to be validated. We retained all
CSP components, and feature selection procedure deter-
mined the components for classification through cross-val-
idation method.

‘SLD’ performs surface Laplacian transformation on
multi-dimensional EEG signals. Realistic Laplacian trans-
formation usually requires a head shape model, which can
be constructed from brain imaging (Babiloni et al., 2003).
We employed a simple method, which is also called a ‘ref-
erence-free’ method (Hjorth, 1975) so that the signal is
independent of which electrode is used as reference. The
EEG signal from each electrode was referenced to the
averaged potentials from four orthogonal nearby elec-
trodes. SLD operation enhanced the spatial resolution
of local EEG potentials by reducing the volume conduc-
tion effect. SLD applies a high-pass filter to suppress
low-spatial frequency components along with volume con-
duction components so that the local synchronizations, in
particular, their radial components, have increased spatial
specificity (Pfurtscheller, 1988) and as a result, the spatial
difference following hand movements might be more
discriminable.

A.2. Temporal filtering

Three temporal filtering methods were explored. The
temporal filters were performed on spatially filtered EEG
trials. The signal power obtained from temporal filters
was represented in logarithmic form. ‘VAR’ calculated
the variance of the spatial filtered signal, i.e., whole fre-
quency band power of the signal.

‘PSD’ estimated power spectral densities of the spatial
filtered signal using the Welch method. A Hamming win-
dow was employed to reduce side lobe effect. The FFT
length was set to 0.256 s resulting in a frequency resolution
of approximately 4 Hz. Power spectral densities were
smoothed from segments with 50% overlapping. A number
of PSD estimation methods have been used in the signal
processing literature, each of which varies in resolution
and variance of the estimation. Periodogram or modified
periodogram has higher spectral resolution, but the result-
ing variance is also larger than that of the Welch method
(Welch, 1967). The multitaper method provides a solution
to balance the variance and resolution (Mitra and Pesaran,
1999). However, an optimal multitaper method permits the
trade-off between resolution and variance to usually be
data-dependent (Percival and Walden, 1993). We did not
employ parametric methods, for example, using autore-
gressive model coefficients (Huan and Palaniappan,
2004). The parametric model requires determining model
order. Further, the model coefficients for classification
are also indirect to frequencies, which are difficult for gen-
eral neurophysiological analysis.

‘DWT’ provides multi-resolution representation of
EEGs signal or components for time-frequency analysis.
We adopted 8th-level one-dimensional decomposition
using fourth-order Daubechies mother wavelet (Daube-
chies, 1992). The variances of the DWT components were
calculated. The corresponding central frequencies ranged
from about 90 to 1 Hz. For the issue of computational
loads, we did not explore optimal approaches, for example,
optimal filter bank design (Strang and Nguyen, 1996).

Appendix B. Feature preprocessing

Features having large variances may dominate the learn-
ing process in the classifier training. The filtered data (fea-
tures) were scaled to zero mean and unit standard deviation
of 1 for numeric stabilization.

Appendix C. Feature selection

The spatially and temporally filtered EEG signals pro-
vided high-dimensional features; for example, 122 EEG
channels with 32 frequency bins produced 3904 features.
Because of the noisy nature of EEG, such high-dimensional
features may bias the classification model producing a low
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testing accuracy. A compact subset of features needs to be
determined for achieving a robust classification. The subset
feature selection can be determined either empirically or
‘data-driven’. Because of the high dependence among fea-
tures, the empirical approach usually does not provide a
good solution. The exhaustive search method is one of
the optimal feature selection methods, which evaluates all
possible subsets to determine the best subsets. For example,
the exhaustive search of a subset of 3 features from 3904
features results in more than 1 billion combinations. It is
impractical to perform this due to the computational bur-
den. We adopted a sub-optimal method of genetic algo-
rithm-based search, which is a stochastic search in the
feature space guided by the idea of inheriting, at each
search step, good properties of the parent subsets found
in previous steps (Raymer et al., 2000). One important pro-
cedure in the genetic algorithm-based feature selection is
the evaluation of feature subsets. In this study, the feature
subsets were evaluated on 5-fold cross-validation accuracy
using a Linear Mahalanobis Distance (LMD) classifier in
order to reduce the risk of over-training (Li et al., 2006).
According to the evaluation of the feature subset, a new
generation was created from the best of them. By repeating
this procedure, a sub-optimal feature subset for the classi-
fication was determined. In this approach, the dimension of
feature subset should be provided previously. We per-
formed a pilot study to investigate an optimal dimension.
Because of the difference in spatial and temporal filters, it
was difficult to determine an optimal dimension. We pro-
posed the strategy of grid search from 4 to 20 with step
of 4 according to the finding in the pilot study. In GA
approach, the population size was 20, the number of gener-
ations was 100, the crossover probability was 0.8, the
mutation probability was 0.01, and the stall generation
was 20.

Because of the large number of features, the conver-
gence speed under GA was still very slow. For the pur-
pose of faster convergence and less risk of local
minima, we proposed an approach of pre-feature selec-
tion to pre-select features having larger Bhattacharyya
distance between two task conditions. The Bhattacharyya
distance is the square of mean difference between two
task conditions divided by the variance of the samples
in two task conditions (Marques, 2001). The Bhattachar-
yya distance was calculated on each feature (univariate)
in feature pool indexing the feature separability between
two task conditions, which was somewhat similar to
ANOVA statistic test by evaluating the volume of the
pooled covariance matrix of the class relative to the sep-
aration of their means. As Bhattacharyya distance
indexes the separability directly, it is preferable for fea-
ture selection with comparison of other indexing meth-
ods, for example, the Fisher Score which indexes the
similarity. The features were sorted in descending order
according to their Bhattacharyya distance; the first 100
features were retained for subsequent multivariate feature
selection.
Appendix D. Classification

We explored three statistical classification and three
neural network classification approaches. For pattern rec-
ognition, the simplest classification can be achieved by
finding the minimum distance to the prototypes, usually
the sample means under different tasks. For example, in
the case of a two-feature two-class classification problem,
the discriminant boundary is a straight line perpendicular
to the linking of means and passing at half distance.
Because the features are not necessarily mutually uncorre-
lated, we adopted linear and quadratic Mahalanobis dis-
tance, which takes covariance into account (Marques,
2001). ‘LMD’ computed a pooled covariance matrix aver-
aged from individual covariance matrices in two task con-
ditions so that the discriminant boundary is hyper-planes
leaning along the regression. ‘QMD’ computed individual
covariance matrix for two task conditions so that the dis-
criminant boundary is quadratic surfaces. It should be
noticed that the discriminant boundary of ‘LMD’ passes
through the midpoint of the line linking the means. In
order to use the ‘LMD’ or ‘QMD’ to classify a test sam-
ple as belonging to the classes of right or left, the covari-
ance matrix is estimated based on the training samples.
Then, given a test sample, the Mahalanobis distance to
each class is computed, and classifies the test sample as
belonging to that class for which the Mahalanobis dis-
tance is minimal.

‘BSC’ also uses the Mahalanobis distance. It is catego-
rized as the optimum classifier because it takes into account
the prior probabilities or prevalences and the specific risks
of a classification according to the well-known Bayes’ law.
Similar to ‘LMD’, the covariance matrix in ‘BSC’ was cal-
culated from the average of the individual covariance
matrices in two task conditions. However, it is difficult to
be optimal as prior probabilities are usually unknown in
practice. Our goal was to discriminate human intention
to move either the right or left hand. We expected the prob-
abilities for right and left to be the same. From this prior

assumption, we balanced the number of samples for both
right and left hand movements during modeling and classi-
fication. Because of the same prior probabilities, we
expected similar outcomes from ‘LMD’ and ‘BSC’.
Because of the random sampling procedure for balancing
samples, the outcomes would not be identical, but the dif-
ference would be negligible.

We explored three nonlinear classification approaches
using neural networks. The neural network approaches
provide more complicated discriminant boundaries, for
example, by using polynomial functions. Theoretically, it
may provide higher accuracy in classification tasks, at least
in the training procedure. Successful applications in BCI
development have also been reported (Garrett et al.,
2003; Hung et al., 2005).

We designed a feed-forward 2-layer (1 hidden layer)
multi-layer perceptron neural network in ‘MLP’ approach.
The number of inputs was determined by feature selection.
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For classification purposes, the number of outputs was
one. This design had a parameter of the number of hidden
nodes, which determines the complexity of the neural net-
work. In general, higher complexity will provide lower gen-
eralization, i.e., we may obtain a low testing accuracy
although the training accuracy is high. Further, the neural
network training, i.e., weight learning, is a nonlinear
approach. The training error will be decreased with the
increase number of training iterations when an appropriate
learning rate is provided for convergence issue. But, over-
training may also reduce the generalization of the classifier.
We employed the multilayer perceptron training algorithm
described in Netlab (Nabney, 2004). We adopted log-sig-
moid function as the activation function, and the scaled
conjugate gradient algorithm for neural network training
(Bishop, 1995). In this approach, early stopping of training
and the number of hidden nodes may control the risk of
model over-fitting. These two parameters were optimally
determined from a 2-D grid search under 5-fold cross-val-
idation. The searching range for the early stopping was
from 200 to 2000 with step of 200. The searching range
for the hidden nodes was from 2 to 20 with step of 2. A
pilot study was performed to determine the above ranges.

The probabilistic neural network is one type of radial
basis function (RBF) network for classification purposes.
The ‘PNN’ has alternative feed-forward architecture to
the two-layer MLP. The ‘PNN’ approach has an advantage
that an RBF network may provide a minimum approxi-
mating error, whereas the MLP approach does not (Girosi
and Poggio, 1990). However, on the other hand, RBF
approach’s generalization should be considered in order
to avoid over-fitting. We employed a probability neural
network to classify human intention (Wasserman, 1993).
In the training procedure, the spread of radial basis func-
tions was optimized from grid searching under 5-fold
cross-validation. The searching range was 2K, K from
�20 to 20 with step of 2.

Support vector machines (SVM) tackle the principle of
structure risk minimization with the consideration of
maximization of the margin of separation (Vapnik,
1998). As a consequence, SVM can provide a good gener-
alization performance independent of the sample distribu-
tion. As a promising method, SVM has been suggested in
a number of BCI applications (Lal et al., 2004; Olson
et al., 2005; Thulasidas et al., 2006). We employed a
SVM approach provided in LIBSVM (Fan et al., 2005).
We selected the RBF as the kernel function since the
RBF kernel can provide a similar classification outcome
compared with other kernels (Keerthi and Lin, 2003).
Two data-dependent parameters needed to be determined
in the training procedure; the penalty parameter for con-
trolling model complexity and the spread parameter for
RBF functions. Similar to ‘MLP’ and ‘PNN’, a 2-D grid
searching with 5-fold cross-validation was performed; 2K,
K from �5 to 15 with step of 2 for the penalty parameter
and 2K, K from �15 to 5 with step of 2 for the spread
parameter.
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Glossary

ARX: autoregressive exogenous input
BCI: brain–computer interface
BSC: Bayesian classifier
CSP: common spatial patterns analysis
DWT: discrete wavelet transforms
EEG: electroencephalography
EMG: electromyogram
EOG: electrooculogram
ERD: event-related desynchronization
ERP: event-related potentials
ERS: event-related synchronization
GA: genetic algorithm
ICA: independent component analysis
IIR: infinite impulse response
LMD: linear Mahalanobis distance classifier
MLP: multi-layer perceptron neural network
MRCPs: movement-related cortical potentials
PCA: principal component analysis
PNN: probabilistic neural network
PSD: power spectral density estimation
QMD: quadratic Mahalanobis distance classifier
RBF: radial basis function
SLD: surface Laplacian derivation
SVM: support vector machine
VAR: variance
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