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a b s t r a c t

Application of neuroscience methods to analyze and understand human behavior related to markets and
marketing exchange has recently gained research attention. The basic aim is to guide design and presen-
tation of products to optimize them to be as compatible as possible with consumer preferences. This
paper investigates physiological decision processes while participants undertook a choice task designed
to elicit preferences for a product. The task required participants to choose their preferred crackers
described by shape (square, triangle, round), flavor (wheat, dark rye, plain) and topping (salt, poppy,
no topping). The two main research objectives were (1) to observe and evaluate the cortical activity of
the different brain regions and the interdependencies among the Electroencephalogram (EEG) signals
from these regions; and (2) unlike most research in this area that has focused mainly on liking/disliking
certain products, we provide a way to quantify the importance of different cracker features that contrib-
ute to the product design based on mutual information. We used the commercial Emotiv EPOC wireless
EEG headset with 14 channels to collect EEG signals from participants. We also used a Tobii-Studio eye
tracker system to relate the EEG data to the specific choice options (crackers). Subjects were shown 57
choice sets; each choice set described three choice options (crackers). The patterns of cortical activity
were obtained in the five principal frequency bands, Delta (0–4 Hz), Theta (3–7 Hz), Alpha (8–12 Hz),
Beta (13–30 Hz), and Gamma (30–40 Hz). There was a clear phase synchronization between the left
and right frontal and occipital regions indicating interhemispheric communications during the chosen
task for the 18 participants. Results also indicated that there was a clear and significant change
(p < 0.01) in the EEG power spectral activities taking a place mainly in the frontal (delta, alpha and beta
across F3, F4, FC5 and FC6), temporal (alpha, beta, gamma across T7), and occipital (theta, alpha, and beta
across O1) regions when participants indicated their preferences for their preferred crackers. Addition-
ally, our mutual information analysis indicated that the various cracker flavors and toppings of the crack-
ers were more important factors affecting the buying decision than the shapes of the crackers.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Consumer neuroscience is an emerging interdisciplinary field
that combines psychology, neuroscience, and economics to study
how the brain is physiologically affected by advertising and mar-
keting strategies (Lee, Broderick, & Chamberlain, 2007; Madan,
2010). It links consumer choices and decision-making to marketing
research (Camerer, Loewenstein, & Prelec, 2004; Pirouz, 2007;
ll rights reserved.
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Plassmann, Ramsoy, & Milosavljevic, 2012). The general assump-
tion is that human brain activity can provide marketers with infor-
mation not obtainable via conventional marketing research
methods (e.g., interviews, questionnaires, focus groups) (Ariely &
Berns, 2010). This is mainly driven by the fact that people cannot
(or do not want to) fully explain their preferences when explicitly
asked; as human behavior can be (and is) driven by processes oper-
ating below the level of conscious awareness (Calvert & Brammer,
2012). In such cases, the effectiveness of the different marketing
strategies may be evaluated by monitoring brain activity resulting
from consumers observing different advertisements and products
(Astolfi et al., 2009; Ohme, Reykowska, Wiener, & Choromanska,
2009). The change in the human brain signal, denoted as Electroen-
cephalogram (EEG), and its main spectral bands of Delta (0–4 Hz),
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Fig. 1. The experimental setup utilized in this paper.
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Theta (3–7 Hz), Alpha (8–12 Hz), Beta (13–30 Hz), and Gamma
(30–40 Hz) is observed to examine consumers’ cognitive or
affective processes in response to prefabricated marketing stimuli
(Aurup, 2011; Bourdaud, Chavarriaga, Galan, & Millan, 2008;
Custdio, 2010; Kawasaki & Yamaguchi, 2012; Khushabaa et al.,
2012; Mostafa, 2012; Ohme, Reykowska, Wiener, & Choromanska,
2010). The main goals in such neuromarketing research are first to
detect the small changes in commercial stimuli that may prove to
have substantial impacts on marketing efficacy (Ohme et al., 2009).
Secondly, it also aims to explain how changes in the depiction or
presentation of marketing information affect the ways in which
the brain reacts (changes in the brain signals). It is assumed that
the later provides information about the process of preference-
formation/choice (Kenning & Plassmann, 2008).

A number of studies investigated the changes in brain activity
while participants observed TV commercials by tracking the corti-
cal activity and changes in functional connectivity in normal sub-
jects (e.g. Ohme et al. (2010), Astolfi et al. (2008), Custdio, 2010
and Vecchiato, Kong, Maglione, & Wei, 2012). These studies found
that the amount of cortical spectral activity from the frontal areas
and parietal areas was higher for TV commercials that were-
remembered, compared with the activity elicited by TV commer-
cials that were forgotten (Ohme et al., 2010; Astolfi et al., 2008).
Alpha band activity was also observed in the occipital regions
and theta activity in the midline and frontal cortical regions for
the well remembered advertisements (Custdio, 2010). Costa,
Rognoni, and Galati (2006) investigated the patterns of interdepen-
dency between different brain regions as volunteers looked at
emotional and non-emotional film stimuli. They concluded that
sadness yielded a pattern involving a large exchange of informa-
tion among frontal channels while happiness involved a wider
synchronization among frontal and occipital sites. Nie, Wang, Shi,
and Lu (2011) proposed an approach to identify the relation
between EEG signals and human emotions while watching movies;
they found more importance for alpha, beta and gamma than delta
and theta bands.

In general, only a limited number of studies have collected both
neural (cognitive and emotion) data and preference data, as this is
a newly emerging field of research. Unlike most prior work focus-
ing on the effect of different advertisements on human brain activ-
ity, this paper focuses on analyzing EEG spectral changes in a
simple choice (decision) context designed to measure specific
features (i.e., shape, topping, and flavor) of the choice options
(crackers) that individuals like/dislike when choosing from 57
choice sets of three different crackers. We used a discrete choice
experiment (DCE) to measure individuals’ preferences because
DCEs simulate typical choice tasks like choosing from a store shelf
or a menu; participants in DCEs can indicate what they prefer, but
they often find it more difficult to articulate why this is the case.
DCEs require participants to make a series of choices (in our con-
text they were presented with 57 unique choice sets) and indicate
their most and their least favorite options. DCEs do not require
them to rate, rank or articulate why they chose the particular op-
tions. This allows us to avoid some of the more restrictive assump-
tions about how individuals compare competing alternatives (e.g.
criticisms of ranking and rating tasks) and issues related to
constructed reasoning (e.g. criticisms of retrospective reporting/
thinking aloud tasks).We also investigate changes in EEG spectral
activity in response not only to the presence of three choice op-
tions (presented one at a time), but our analysis recognizes that
each choice option (cracker) is described by three specific features
(shape, topping, flavor). The participants evaluate the three cracker
features to come with an overall evaluation of each cracker. Their
choices (favorite and least favorite cracker) provide a discrete indi-
cator measure of each participant’s cracker preferences that can be
decomposed into separate preferences for each cracker feature. The
EEG measurement also allows us to examine associated changes in
the EEG spectral activity associated with each cracker feature.
Thus, as a first step toward understanding the role of EEG as a mea-
sure of emotional and cognitive response in decision making, this
paper provides a preliminary study on the dynamics of EEG mea-
surement during elicitation of preferences.

The structure of this paper is as follows: Section 2 describes the
data collection procedure including a description of both the eye
tracker and Emotiv EPOC EEG headset based experiments. Section 3
describes the preprocessing and feature extraction steps, and the
use of mutual information to identify associations between prefer-
ences and EEG. Section 4 presents the experimental results; and
finally, conclusions are provided in Section 5.
2. Data collection

The data collection process employed two sets of equipment;
the first was a brain signal monitoring system represented by the
Emotiv EPOC EEG wireless headset with 14 channels (<www.emo-
tiv.com>); and the second is an eye-tracker system from Tobii tech-
nology (<www.tobii.com>), as shown in Fig. 1 and described in the
following sections.
2.1. Emotiv EPOC-based EEG data collection

The Emotiv EPOC is a high resolution, neuro-signal acquisition
and processing wireless headset that monitors 14 channels of
EEG data and has a gyroscope measure for 2 dimensional control.
The electrodes are located at the positions AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8, AF4 according to the International
10–20 system forming 7 sets of symmetric channels as shown in
Figs. 2 and 3. Two electrodes located just above the participants
ears (CMS/DRL) are used as references (one for the left and the
other for the right hemisphere of the head). The EPOC internally
samples at a frequency of 2048 Hz, which then gets down-sampled
to 128 Hz sampling frequency per channel, and sends the data to a
computer via Bluetooth. It utilizes a proprietary USB dongle to
communicate using the 2.4 GHz band. Prior to use, all felt pads
on top of the sensors have to be moistened with a saline solution.
The Emotiv Software Development Kit (SDK) provides a packet
count functionality to ensure no data is lost, a writable marker
trace to ease single trial segmentation tasks, and real-time sensor
contact display to ensure quality of measurements (Anderson

http://www.emotiv.com
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Fig. 2. Emotiv EPOCs electrode positioning.

Fig. 3. Emotiv EPOC headset on a subject showing left, right, and back views.
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et al., 2011; Bobrov et al., 2011; Campbell et al., 2010; Stopczynski,
Larsen, Stahlhut, Petersen, & Hansen, 2011). The effectiveness of
the EPOC headset as a real-time brain EEG scanner was demon-
strated in a number of recent publications,1 including a demonstra-
tion at the well-known neural information processing conference.2

Both of the EPOC and eye tracker were forced to start at the same
time by means of synchronization software written in Visual Basic
to start both modules together. After the data collection step, all col-
lected data were transferred to Matlab for further processing, as de-
scribed in the next sections.
2.2. Extracting and analyzing eye tracking data

The experiments were conducted using the Tobii X60 eye track-
er (<www.tobii.com>); a stand-alone eye tracking unit designed
for eye tracking studies of real-world flat surfaces or scenes such
as physical objects, projections and video screens. This eye tracker
has an accuracy of 0.5� which averages to 15 pixels of error with a
drift factor of less than 0.3� and a sampling rate of 60 Hz. Tobii Stu-
dio 1.3 was employed as it offers an easy-to-use solution to extract
and analyze eye tracking data. The package facilitates efficient
multi-person and multi-trial studies. The software combines the
collection and analysis of eye gaze data with numerous other data
sources, including keystrokes, external devices, video recordings
and web browser activities. The X60 monitor mount accessory pro-
vides fixed geometry for the eye tracker and screen, allowing the
1 A list of recent publications on Emotiv EPOC is available at <http://www.emo-
tiv.com/researchers/>.

2 http://milab.imm.dtu.dk/nips2011demo
setup to be adjusted for each participant without impacting data
quality. Thus, the eye tracking system was calibrated on each sub-
ject to provide the best results.

A sequence of 57 choice sets was developed. Each described
three crackers that varied in shape, flavor and topping. The context
was choosing crackers for a party that the participants would host.
Three shapes (round, triangle and square), three flavors (wheat,
dark rye and plain) and three toppings (salt, poppy seed and plain)
were used to create the objects as shown in Fig. 4. The three crack-
er features were varied using a full factorial design producing 27
unique crackers. We then used a balanced incomplete block design
to assign the 27 different crackers to 57 choice sets. Each of the 57
choice sets contained three crackers; the design also controls for
order of appearance, which ensures that each of the 27 crackers ap-
pears in every order. The design also insures that each of the 27
crackers appears equally often across the 57 sets, and co-appears
with every other cracker equally often. Each of the 57 choice sets
was shown on the screen one-at-a-time. Each set consisted of a
black screen with the 3 crackers aligned on the left, middle, and
right positions as per the example in Fig. 5. The participant’s task
was to click on the cracker he/she felt that they liked the most,
and click on the cracker that they liked the least (to serve at a party
they would host). Observing most and least preferred choices in
each set provides a complete preference ranking of the three crack-
ers, and allows extrapolation to non-tested choice sets. Throughout
the task, the Tobii eye tracker system monitored their eye gaze.

During the choice experiments, when an option was selected by
a participant, the corresponding shape, flavor and topping levels of
Fig. 4. Illustration of the developed choice set objects which vary shape, flavor and
topping.

http://www.tobii.com
http://www.emotiv.com/researchers/
http://www.emotiv.com/researchers/
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Fig. 5. An example of one choice set of three crackers with different shapes, flavors, and toppings.
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the cracker were automatically recorded. As an example, in Fig. 5
participants ‘‘see’’ three shapes, namely round, triangle, and
square. If a participant selects the square cracker as his/her most
favorite the variable corresponding to square is assigned a value
of 3 (round = 1 and triangle = 2). Flavor and topping levels were
coded the same way. Thus, across all 57 choice sets and partici-
pants each of the three variables (cracker characteristics) were as-
signed a distinct code that corresponded to the levels chosen as
most or least preferred. The resulting characteristics variables are
used (described in later sections) to compute the amount of change
in EEG spectral activities using the mutual information measure of
dependency.

2.3. participants

Eighteen participants (including males and females), were re-
cruited for the study. All participants were aged between 25 and
65 years (average age 38 years). Some participants were right-
handed, and some were left-handed; nine wore medical glasses.
The experimental procedure was approved by the human research
ethics committee in the University. The eye tracker was re-cali-
brated for each subject to provide accurate measurements for the
participant’s gaze during the experiments. On average, participants
took 7 min to complete the experiment (i.e. reading the instruc-
tions and then completing 57 choice sets, selecting their most
and least preferred cracker from each choice set of three objects).
3. Data analysis

The data analysis procedure for measuring the correlations be-
tween different brain activities at different channel locations with
the choice task is shown in Fig. 6 and described in the following
sections.

3.1. Cleaning and denoising EEG signals

Detecting and removing artifacts in the EEG data due to muscle
activity, eye blinks, electrical noise, etc., is an important problem in
EEG signal processing research. We used a combination of Inde-
pendent Component Analysis (ICA) (Comon, 1994; Hyvarinen,
Karhunen, & Oja, 2001) and discrete wavelet transform (DWT)
based denoising (Akhtar, Mitsuhashi, & James, 2012; Mallat,
2009) to clean the EEG signals collected by the EPOC headset.
The flowchart of the ICA-wavelet procedure we used is shown in
Fig. 6. An initial preprocessing starts with a baseline removal, or
detrending section due to the included DC offset in the EPOC EEG
readings. This is followed by a filtering step that seeks to include
only the relevant frequencies in our analysis, remove the effect of
50 Hz noise and eliminate artifacts related to higher frequencies.

Various approaches combining ICA with wavelet denoising have
been proposed in the literature proving the efficiency of this com-
bination (Akhtar et al., 2012; Castellanos & Makarov, 2012; Amin-
ghafari, Cheze, & Poggi, 2006; Ren, Yan, Wang, & Hu, 2006;
Vazqueza et al., 2012). All these attempts suggested significant
enhancements to EEG signals with the application of ICA with
wavelet denoising, so we adopted this approach in our work. We
make three assumptions in ICA (Akhtar et al., 2012; Castellanos
& Makarov, 2012; Chawla, 2011): (i) the collected EPOC data is a
spatially stable mixture of the activities of temporarily indepen-
dent cerebral and artifactual sources, (ii) the superposition of
potentials arising from different parts of the brain, scalp, and body
is linear at the electrodes with negligible propagation delays from
the sources to the electrodes, and (iii) the number of sources is no
larger than the number of EEG electrodes (14 in this case). Given a
set of observations of random variables (x1(t),x2(t), . . . ,xn(t)), where
t is the time or sample index, assume they are generated as a linear
mixture of independent components (s1(t),s2(t), . . . ,sn(t)), with A
being the mixing matrix, and (v1(t),v2(t), . . . ,vn(t)) is additive noise,
then we write the observations as

x1ðtÞ
x2ðtÞ
�
�
�

xnðtÞ

0BBBBBBBBB@

1CCCCCCCCCA
¼ A

s1ðtÞ
s2ðtÞ
�
�
�

snðtÞ

0BBBBBBBBB@

1CCCCCCCCCA
þ

v1ðtÞ
v2ðtÞ
�
�
�

vnðtÞ

0BBBBBBBBB@

1CCCCCCCCCA
ð1Þ

or simply as

xðtÞ ¼ AsðtÞ þ vðtÞ ð2Þ

Independent component analysis consists of estimating both the
matrix A and the si(t), when we only observe the xi(t). After the
application of ICA, the resulting bsICAðtÞ (ICA’s version of s(t)) are usu-
ally manually inspected to identify the independent components
corresponding to artifacts, where such components are replaced
by zeros to construct a new ICA data (Akhtar et al., 2012; Amingha-
fari et al., 2006; Castellanos & Makarov, 2012; Ren et al., 2006;
Vazqueza et al., 2012). In our approach, we denoise each of the ac-
quired components by applying the DWT rather than replacing the



Fig. 6. Block diagram of the data analysis part.
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whole component with zero. For a signal si(t) composed of m sam-
ples, DWT is applied with a scale factor of 2j and is given as

wj
k ¼ 2�j=2

Xm�1

t¼0

siðtÞw
t

2j
� k

� �
ð3Þ

where the scale factor j is related to the frequency, the parameter k
is related to the time at which a frequency component occurs, wj

k is
the wavelet coefficient of si(t) at scale index j and time index k, and
w(n) is an orthogonal basis. We used the fifth-order Daubechies
compactly supported wavelet with 5 decomposition levels, as it
proved to yield good practical results. We then implemented a
hard-thresholding step on the wavelet coefficients in which only
those coefficients with values less than a specific threshold T were
maintained, with all other coefficients replaced by zeros. The value
of T was selected empirically as the median of the signal plus 3
times its standard deviation. We then used the inverse wavelet
transform to acquire the denoised version of the ICA componentsbsICA�waveletðtÞ. After the wavelet denoising step, we obtained the
clean EEG signals by multiplying the denoised ICA components by
the mixing matrix A as

x̂ICA�waveletðtÞ ¼ AbsICA�waveletðtÞ ð4Þ

A key advantage of the above approach is that no manual interven-
tion is required to select the noisy components to remove from ICA
before projecting back because the purpose of the wavelet denois-
ing is to remove the associated noise from the components auto-
matically before projecting back to the data.

3.2. EEG-power spectrum analysis

We analyzed changes in spectral power and phase to character-
ize perturbations in the oscillatory dynamics of ongoing EEG. Dur-
ing the choice modeling task, each participant had to observe 57
choice sets of three crackers that differed in shapes, flavors and
toppings. It should be noted that each participant spent different
amounts of time ‘‘looking’’ at each of the 57 choice sets. The time
spent by each participant was calculated from the data provided
by the eye-tracker and we calculated the total time across all par-
ticipants by averaging the individuals’ time as shown in Fig. 7. The
average time across all participants decreased at a decreasing rate
in terms of time spent ’’looking’’ at each of the 57 choice sets as
participants became more and more familiar with the cracker op-
tions by the end of the experiment. For power spectral analysis,
only EEG segments corresponding to the time during which the
participants were actually indicating their preferences in each
choice set were analyzed. That is, EEG segments corresponding to
time segments during which participants were moving their hands
to click on the mouse and time after making their choices were not
included in the analysis.

Moving-average spectral analysis of the preferences related EEG
data was then accomplished using epochs of EEG data of various
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lengths as shown in Fig. 8. Each EEG epoch corresponding to each
of the 57 choice sets was analyzed using a 128-point window with
64-point overlap (i.e., 1sec windows stepped in 1/2 s). When an
EEG-frame comprised less than 128-points, the corresponding
EEG-frame was extended to 128 points by zero-padding to calcu-
late its power spectrum by using a 256-point fast Fourier transform
(FFT), resulting in power-spectrum density estimation with a fre-
quency resolution near 0.5 Hz. Then, an average power spectrum
of all the sub-epochs within each epoch was calculated in each of
the well-known EEG rhythms of d, h, a, b, and c. Previous studies
showed that EEG spectral amplitudes change more linearly in a
logarithmic scale than a linear scale (Lin et al., 2006). Thus, we
Fig. 8. Signal processing procedures of the spectral feature extraction with an output re
choice factor elements with shape chosen as an example (square, triangle, or round).
normalized the averaged power spectrum of each epoch to a loga-
rithmic scale to linearize these multiplicative effects. We then ex-
tracted the power spectrum features as the mean of power in all of
the d, h, a, b, and c bands in addition to the mean of the total power
spectrum.

We also investigated patterns of interdependency between dif-
ferent brain regions as participants looked at the different cracker
characteristics. Because we already use the magnitude of the FFT of
the EEG signals to detect the interdependence between the change
in power and preferences, we also employ the phase of the FFT to
directly quantity frequency-specific synchronization (i.e., transient
phase-locking) between two EEG signals. Direct evidence support-
ing phase synchronization during emotional response to positive
and negative film stimuli already exists (Costa et al., 2006). How-
ever, we were unable to find additional studies that evaluated
EEG phase synchrony while participants actually indicated like/
dislike decisions for a product. We used the phase locking value
(PLV) as a measure of synchrony, which is defined at time t as
the average value (Costa et al., 2006; Lachaux, Rodriguez, Martin-
erie, & Varela, 1999)
PLV ¼ 1
N

XN

n¼1

expðj/ðt;nÞÞ
�����

����� ð5Þ
where /(t,n) is the phase difference /1(t,n) � /2(t,n) of the EEG sig-
nals from two brain regions, representing the inter-trial variability
of this phase. Our approach to detecting synchrony in a precise fre-
quency range between two recording sites (i.e., the PLV value) is to
calculate this quantity for each of the d, h, a, b, and c bands to detect
what brain regions and which EEG bands are mostly getting phase
synchronization, while the above approach detects interdependenc-
es between the power in each of these bands at each channel with
preferences for the shapes, flavors and toppings of the crackers.
presented by a paired data set including the spectral power and the corresponding
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3.3. Mutual information analysis

In probability theory and information theory, the mutual infor-
mation between two random variables is the amount by which the
knowledge provided by one variable decreases the uncertainty
about the other variable (Klir, 2006). It can also be defined as a
quantity that measures the mutual dependence of the two random
variables (Cover & Thomas, 2006). Shannon’s information theory
(Shannon & Weaver, 1949) provides a suitable way to quantify
the above concepts. In our case, a number of features (or variables)
describing the change in the EEG power spectrum of d, h, a, b, and c
were extracted from each of the available 14 EEG sensors from the
EPOC headset. We try to discover the most relevant brain regions
associated with the choice task by estimating the mutual depen-
dence between the extracted features from each sensors and the
corresponding class label of preferences as indicated by each user
(in terms of shape, flavor, and topping). In this case, if we can iden-
tify the sensor from which the extracted features highly depend on
preferences for cracker characteristics variables (coded cracker
characteristics associated with the most and least preferred
choices) we also can identify which brain region for which the
EEG signal was most relevant to the choice task.

If we define the probabilities for the different classes (classes re-
fer to the different options within each choice factor, for example
square (1), triangle (2), and round (3) for shape) as P(c);
c = 1, . . . ,Nc, then the initial uncertainty in the output class is mea-
sured by the entropy:

HðCÞ ¼ �
XNc

c¼1

PðcÞ log PðcÞ ð6Þ

the average uncertainty after knowing the feature vector f, where f
might be any of the d, h, a, b, and c features, (with Nf components) is
the conditional entropy:

HðCjFÞ ¼ �
XNf

f¼1

Pðf Þ
XNc

c¼1

Pðcjf Þ log Pðcjf Þ
 !

ð7Þ

where P(cjf) is the conditional probability for class c given the input
vector f. In general, the conditional entropy will be less than or
equal to the initial entropy (being equal if and only if one has inde-
pendence between features and output cracker characteristics
coded values). The definition of mutual information between vari-
ables c and f, denoted as I(C;F) is the amount of reduction in the
uncertainty about the class c as provided by the feature vector f
(Battiti, 1994):

IðC; FÞ ¼ HðCÞ � HðCjFÞ ð8Þ

which also can be simplified to

IðC; FÞ ¼ IðF; CÞ ¼
X

c;f

Pðc; f Þ log
Pðc; f Þ

PðcÞPðf Þ ð9Þ

where P (c,f) is the joint probability distribution function of C and F,
and P(c) and P(f) are the marginal probability distribution functions
of C and F respectively. We used the ratio of I(C;F)/H(F), with H(F)
being the entropy of the feature f itself, to denote the normalized
mutual information between the extracted feature and the class.

4. Experiment results

In the first part of the experiments, we used the PLV measure to
detect phase synchronization while participants indicated their
preferences for the different cracker characteristics. Each pair of
electrodes from the left and the right hemispheres were analyzed
together to study symmetry between these regions and their rela-
tion to the preference elicitation task. As previously noted, we did
this along each of the d, h, a, b, and c bands with the computed PLVs
shown in Fig. 9.

The PLV results suggest few important findings, including that
the frontal channels (AF3–AF4 and F3–F4) and occipital channel
(O1–O2) were the most synchronized channels, which in turn indi-
cates the importance of cognitive processing taking place at these
brain regions. Costa et al. (2006) attributed such large phase syn-
chronization values to the dynamic cooperation between cortical
areas which highlights the role of information exchange during
emotional responses. In contrast, we applied this idea to an actual
decision making task designed to elicit preferences to indicate the
actual phase synchronization. This finding supports the idea that
there was a wide inter-hemispheric communication during this
experiment. The results presented in this paper also clearly show
the importance of all of the h, a, and b that reflected the highest
PLV at the aforementioned frontal and occipital regions. These
EEG bands and the corresponding regions with the highest PLV val-
ues was found to be very relevant for tasks involved with emo-
tional processing of preferred vs. non preferred marketing stimuli
when these regions were studied separately in prior work (Aurup,
2011; Custdio, 2010). The PLV was also calculated at each fre-
quency band for all the couples of possible electrodes, rather than
just the symmetric ones. In this case the set of frontal channels
represented by AF3, F3, F4, and AF4 showed the highest PLVs
among each other at all of the h, a, and b bands. On the other hand,
the occipital channels (O1 and O2) showed its highest PLVs with
the parietal channels (P7 and P8) instead of the frontal channels
as indicated by Costa et al. Costa et al. (2006), a difference which
could be due to the nature of the task itself (preference judgments
for crackers in our case rather than watching emotional video
scenes in Costa et al. (2006)). Thus, our results further support
the idea that synchronization provides an interesting and useful
tool for studying and understanding variation in brain activity
occurring during an actual decision making task related to subjec-
tive preferences for several characteristics (features) of a product
or service. However, we extend this prior work by also looking at
how the power of the EEG signals change with preferences.

In the second part of the experiments, we assessed individual
preferences for each cracker characteristic (shapes, flavors and top-
pings). Recall that the eye tracker provides information about what
was selected as the most and least preferred cracker in each choice
set. This information allows us to decompose the chosen option
into preference values for each characteristic level (three levels
each of shape, flavor and toppings). For example, we decomposed
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Fig. 10. Mutual information between the extracted features from the d, h, a, b, and c bands and total spectrum with the class labels of shapes, flavors, and toppings.
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the chosen shape into three binary vectors, one to indicate that a
square shape was chosen (indicated by 1’s) versus all other cases
where square was not selected (indicated by 0’s), and similarly
for rectangle and rounded shapes. This produces three vector rep-
resentations of shape preferences typically known as dummy
codes. We used the same coding logic to represent flavors and top-
pings for a total of nine vectors of preferences.
It is worth noting for this experiment that each of the extracted
EEG features provided one summary measure for each of the 57
choice sets with the suggested mutual information measure fur-
ther summarizing the results along these 57 choice sets for each
person. Ideally, we would like the EEG information to be provided
for each of the three crackers in each choice set, but the data sam-
pling is insufficient to get reliable measures from this experiment.
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Thus, the proper way to interpret our results for the cracker feature
levels is that these represent deviations from the choice sets mea-
sures associated with the levels across all 57 choice sets. Techni-
cally, these reflect differences among the features of the crackers
in each choice set. Thus, the analysis identifies how the change
in the attributes of the crackers magnifies/attenuates the EEG
power, which is in turn captured by the amount of estimated mu-
tual information. In simple words, high mutual information value
between the EEG features and the preferences labels means that
the corresponding cracker attribute had high impact on magnify-
ing/attenuating the EEG power in a specific band. The mutual
information between the extracted d, h, a, b, and c bands’ power
features and the constructed choice labels vectors was then com-
puted and graphed as shown in Fig. 10.

Analysis of the mutual information between the extracted EEG
features (magnitude of the FFT) and preferences revealed that in
terms of d, changes in the mutual information values during stim-
ulation with different cracker characteristics were more apparent
in the left frontal region (F3 and FC5) of the brain than the right re-
gions (F4 and FC6). It was also apparent that the right temporal
(T8) and anterior frontal (AF4) regions exhibited higher mutual
information with the preference characteristics vectors than the
corresponding right regions of T7 and AF3. Delta oscillations were
identified previously in the literature as a signature of stimulus-
elicited activity in the brain’s reward circuit (Stefanics et al.,
2010; Knyazev, 2007; Wacker, Dillon, & Pizzagalli, 2009). In this
experiment participants were stimulating their own reward sys-
tem (or simply rewarding themselves) by continuously selecting
crackers with combinations of characteristics (visual stimulus) that
gave them most pleasure. So, the observed cracker characteristics
may have acted as reinforcers as their occurrence increases the
probability of choosing the most (and least) preferred shape, flavor
and topping. This in turn resulted in high d-relevance to the prob-
lem of choosing most and least preferred crackers, while also indi-
cating the significance of the left frontal regions and the right
temporal regions to this choice task. We used analysis of variance
(ANOVA) to test for significant differences between actual d band
feature values from different EEG channels (significant level is re-
ported at p < 0.05). The results indicated significant differences be-
tween d band features from each channel indicated in parentheses
in the left (AF3,F3,FC5,T7) and right hemispheres (AF4,F4,FC6,T8).
All these tests were associated with a p-values 6 0.001.

Theta band power exhibited the highest level of mutual infor-
mation with the cracker characteristics measures over the left
occipital region and to some extent bilaterally over the frontal re-
gions (F4 and F3), as shown in Fig. 10(b). The left occipital theta re-
sponse has been related in the literature to encoding of visual
stimuli (Hald, Bastiaansen, & Hagoort, 2006). We suggest that in
this study this is related to processing of semantically coherent
or semantically violated sets of cracker characteristics. The
strength of preference-related theta-modulation effects was re-
cently studied by Kawasaki and Yamaguchi (2012) who found en-
hanced h activity in the right and left occipital electrodes when the
participants focused on their preferred colors in the opposite hemi-
field. In turn, this suggests that changes in h are correlated with
changes in preferences, in which case our results are in-line with
those in the literature. Our results for h also suggest that the differ-
ent toppings had the largest impact on preferences due to high
dependence between the stated preferences and h power changes
on the left occipital region. The change in a band power also agreed
with h on the importance of the left occipital region. However, in
addition to the occipital region, a power also showed high mutual
dependence between the EEG and stated preferences at the left
frontal and left temporal regions as shown in Fig. 10(c). The impor-
tance of the frontal and temporal regions also was indicated in sev-
eral studies, including work in Min et al. (2003) and Potts and
Tucker (2001), and the association between h and a from the left
frontal regions and stated preferences was established in several
studies (Custdio, 2010; Kawasaki & Yamaguchi, 2012; Nie et al.,
2011; Yokomatsu, Ito, Mitsukura, Jianting, & Fukumi, 1720). Alpha
mutual information further emphasized the impacts of different
flavors and toppings as preferences for these characteristics
achieved higher mutual information values on F3 than shape pref-
erences. However, the literature suggests no clear agreement on
which frontal channel, F3 or F4, and which bands from these chan-
nels, should be more related to the decision making process. That
is, some researchers reported that either F3 or F4 could be inter-
changeably more active across different participants (Aurup,
2011). ANOVA results also indicated significant differences be-
tween a band features at F3, T7, and O1, with an achieved p-value
60.001 for all tests.

On the other hand, b bands’ power changes further confirmed
the above results as it also was associated with higher mutual
information values with the stated preferences. This was shown
for the left occipital region, bilateral frontal regions (FC5 and
FC6), and the left frontal region (F3). The mutual information val-
ues achieved by b further supports our finding that flavor and top-
ping had larger impacts on preferences than shape, as we found
higher mutual information values for b with flavor and topping
preferences than for shape preferences. Gamma also exhibited high
mutual information values with flavor and topping preferences on
bilateral frontals and left temporal regions. This may be due to
familiarity with the visual stimulus and degree of preference for
it modulating the induced EEG activity in the c band, resulting in
higher dependence between c band power and flavor and topping
preferences than shape preferences (Golumbic, Golan, Anaki, &
Bentin, 2008). Finally, changes in the total power spectrum also
suggested the importance of the frontal, temporal, and occipital re-
gions, while also suggesting more importance for flavor and top-
ping preferences than shapes. ANOVA test results further
confirmed the significant differences across the different channels
on b as well as on c power features, with an achieved p-value
60.001 for all tests.

In the final part of this experiment, it should be noted that a key
limitation of this research was a wide variation in the amounts of
EEG data available for each person in each choice set. This in turn
resulted in having insufficient EEG observations in some choice
sets to reliably estimate the effects of the attribute levels on the
EEG measures. Future work should try to deal with this issue,
and one way to do that would be to present the crackers (or more
generally, stimuli with varying features) individually one-at-a-
time to insure that there is no confound. A second possibility is
to present the items in each choice set one-at-a-time, and then ob-
serve the choices in each set collectively.
5. Conclusion

We used a commercially available wireless EEG headset to
investigate the brain activities taking place during decision-mak-
ing. A series of 57 choice sets, each set described by three choice
objects, was shown to participants with them asked to select (by
mouse clicking) their most and least favorite choice options for a
party that they would host. The frequencies of their choices were
recorded by eye tracker software from a Tobii X60 eye-tracker sys-
tem. The eye tracker system was used in this case solely to map the
transition between the choice sets and the actual choice of object.
When studying the EEG activities related to the choices made by
participants several important points emerged. The first is that
there was a clear phase synchronization between symmetric fron-
tal and occipital channels with high phase locking values for h, a.
and b. On the other hand, the phase locking value across non-sym-
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metric channels showed higher values among all of the AF3,F3,-
F4,AF4 while occipital channels were highly synchronized with
the parietal channels. Secondly, in terms of the change in the
EEG power spectrum and the relevance of this change to the stated
preferences, the left frontal channel (F3), left temporal (T7), and
left occipital (O1) were the most important as they showed high
mutual information values with the stated preferences. Our analy-
sis also showed that higher mutual information values were
achieved by almost all EEG bands power with the flavor and top-
ping labels in comparison to that of the shape. This in turn suggests
that these attributes of the crackers initiated more cognitive pro-
cessing in a way which caused the power of the different EEG
bands to correlate well with the change in the factors making each
of the flavor and topping attributes, i.e., wheat, dark rye, plain for
flavor and salt, poppy, no topping for topping.
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