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Abstract: Recent studies have shown that resting-state functional networks as studied with fMRI, EEG,
and MEG may be so-called small-world networks. We investigated to what extent the characteristic fea-
tures of small-world networks are genetically determined. To represent functional connectivity between
brain areas, we measured resting EEG in 574 twins and their siblings and calculated the synchroniza-
tion likelihood between each pair of electrodes. We applied a threshold to obtain a binary graph from
which we calculated the clustering coefficient C (describing local interconnectedness) and average path
length L (describing global interconnectedness) for each individual. Modeling of MZ and DZ twin and
sibling resemblance indicated that across various frequency bands 46–89% of the individual differences
in C and 37–62% of the individual differences in L are heritable. It is asserted that C, L, and a small-
world organization are viable markers of genetic differences in brain organization. Hum Brain Mapp
29:1368–1378, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Brain connectivity is likely to have evolved under the
constraints of optimized processing capacity while main-

taining cost efficiency and resilience to loss of substrate
[Achard and Bullmore, 2007; Bassett and Bullmore, 2006].
To describe such properties of neural networks, recent
studies have applied graph theoretical methods on data
obtained with MRI, fMRI, MEG, and EEG [e.g., Achard
et al., 2006; Bassett and Bullmore; 2006; Micheloyannis
et al., 2006a,b; Ponten et al., 2007; Stam, 2004]. Graph
theory describes mathematical methods applied to repre-
sentations of networks reduced to their essence: vertices
(nodes) and edges (connections). In their ground-breaking
article, Watts and Strogatz [1998] calculated two parame-
ters to describe graphs derived from biological as well as
nonbiological networks. The first describes the amount of
local interconnectedness—or cliquishness—called cluster-
ing coefficient C. It takes a value between 0 and 1 indicat-
ing the proportion of neighboring vertices that are inter-
connected amongst each other. That is, if a neighbor is
defined as a vertex that is one step removed, how many of
the neighbors of one vertex are not only connected with
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that vertex, but also with each other. The second parame-
ter describes global interconnectedness and is called the
average path length L. It is a value simply indicating the
average number of steps required to go from each vertex
to all others taking the shortest route. Figure 1 shows a
graphical explanation of the calculation of C and L.
Watts and Strogatz [1998] showed that C and L parame-

ters represent non-trivial aspects of connection patterns
along the dimension ranging from highly ordered graphs
(lattices, regular networks) to fully randomized graphs.
Ordered graphs are characterized by high C and long L.
Random graphs have short L and low C. By starting from
ordered graphs and randomly reconnecting single edges
with a rewiring probability P, Watts and Strogatz showed
that while the average path length L drops quickly, clus-
tering coefficient C showed resilience against reconnection.
Figure 2 shows the development of C and L against recon-
nection probability for a simulated 100-vertex graph with
degree K 5 8, where K represents the average number of
edges per vertex. Ordered graphs, therefore, require only a
few random long distance connections to drastically
shorten the path length while maintaining a high cluster-
ing. Such efficient networks are designated ‘‘small-world,’’
referring to the phenomenon that it takes surprisingly few
steps to contact any two people in the world [Milgram,
1967] or to connect any actor to Kevin Bacon [wikipedia

entry: six degree; of separation; Bassett and Bullmore,
2006]. Many types of existing networks have been shown
to possess small-world features, including power grids, the
world wide web, and as indicated, human societies.
In the realm of neural networks, a small-world topology

has also been shown to exist in the neural network of C.
elegans [Watts and Strogatz, 1998], in the brain anatomy in
macaque and cat cortex [Hilgetag et al., 2000], and recently
also in connectivity derived from cortical thickness mea-
sured in humans He et al., [in press]. Besides stationary
anatomical connectivity, however, the brain also shows
nonstationary functional connectivity between brain areas.
Because of the high temporal resolution, EEG and MEG
are particularly useful to study this kind of connectivity.
Statistical interdependencies between EEG/MEG signals
may serve as indices to these temporary connections
between brain areas [or ‘‘effective connectivity’’; Aertsen
et al., 1989]. Although coherence is the most widely used
linear measure of connectivity of EEG/MEG patterns, non-
linear measures of coupling may be more appropriate
since brain activity is perhaps better modeled as an ensem-
ble of coupled nonstationary, nonlinear dynamical subsys-
tems [Friston, 2000; Pereda et al., 2005]. A relatively new
measure that captures both the linear as well as nonlinear
dependencies is synchronization likelihood (SL). With this
measure, Stam and co-workers [Montez et al., 2006; Stam
and van Dijk, 2002; Stam et al., 2003] have found that both
linear and nonlinear synchronization are indeed present in
normal background EEG/MEG. In addition, they sug-
gested clinical usefulness of SL by showing that synchroni-
zation increased during and slightly before epileptic seiz-
ures; also, alpha, beta, and gamma band SL was decreased
in Alzheimer’s disease patients (for reviews see: Stam,
2005, 2006).
SL is based upon the concept of generalized synchroni-

zation as introduced by Rulkov et al. [1995]. Generalized

Figure 1.

(A) Average path length L for X is the average number of steps

from node X to all other nodes: Lx 5 (1 þ 1 þ 1 þ 2 þ 3 þ
3)/6 $ 1.8 (B). Clustering coefficient C for X describes propor-

tional connectivity between the nodes neighboring node X:

Cx 5 2 out of 3 possible connections 5 0.67.

Figure 2.

Development of C and L as a function of the probability p of ran-

domly rewiring of the edges of a 100 vertex ordered network

with degree K 5 8. Both Cp and Lp are scaled to a minimum of

zero (a fully randomized network) and a maximum of one

(a fully ordered network).
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synchronization is said to exist between two dynamical
systems X and Y if there exists a continuous one-to-one
function F such that the state of one of the systems (the
response system) can be mapped onto the state of the
other system (the driver system): Y 5 F(X) [Abarbanel
et al., 1996; Kocarev and Parlitz, 1996; Rulkov et al., 1995].
Intuitively, this means that generalized synchronization
exists between two systems X and Y if the following holds:
if X is in the same state at two different times i and j, Y
will also be in the same state at times i and j. By deriving
the state of the system X from one EEG/MEG signal at a
certain time point and the concurrent state of system Y,
we can find evidence for connectivity between the brain
areas whose activity is reflected in the signals. In sum, SL
has the advantage over coherence as it will not show spu-
rious connectivity between bandpass filtered white noise—
in which case SL will assume the fixed, predefined value
pref—, and is able to detect complex nonlinear coupling
patterns. Detailed calculation procedures are presented in
the Methods section.
The result of calculating SL between all possible pairs in

a set of EEG/MEG signals can be interpreted as a general
(linear and nonlinear) measure of connectivity strength in
a functional network of brain areas. By application of a
threshold, a sparsely connected graph can be created that
is suitable for further graph theoretical analysis as pro-
posed by Watts and Strogatz. Both C and L calculated
from these graphs can be interpreted as measures of—local
and global—efficiency [Barahona and Pecora, 2002; Lago-
Fernandez et al., 2000; Latora and Marchiori, 2001; Masuda
and Aihara, 2004]. Short L reduces the time or effort
needed to connect two vertices, allowing efficient informa-
tion exchange between, in this case, more distant brain
regions. High C lowers the cost of building and maintain-
ing localized networks and increases error tolerance in the
case of loss of connectivity [Achard and Bullmore, 2007;
Bassett and Bullmore, 2006]. Therefore, these parameters
may reflect biologically important characteristics of the
network.
The main focus of the current article is to determine

whether individual differences in the network properties C
and L, derived from resting state EEG functional connec-
tivity, have a biological basis by establishing them as herit-
able traits. Heritability will be assessed by comparing C
and L scores of MZ and DZ twins and their singleton sib-
lings, who, having varying degrees of genetic relatedness,
provide information on the amount of variation that can
be attributed to genetic or environmental sources of varia-
tion [Boomsma et al., 2002a; Falconer and MacKay, 1996;
Fisher, 1918].
Since it has been suggested that a small-world network

architecture may be optimal for synchronizing neural ac-
tivity between different brain regions, it seems plausible to
hypothesize that individual differences in network proper-
ties C and L may be correlated with overall processing
capacity or cognitive performance. Indeed, using EEG
measured during a working memory task (the two-back

task), higher educated subjects showed less of a small-
world phenomenon than subjects with less education with
almost the same behavioral performance [Micheloyannis
et al., 2006a]. We will therefore investigate whether the
same relation can be found between ‘‘small-worldness’’
and measures of general cognitive ability in the context of
resting state EEG functional connectivity.

METHOD

Subjects

The sample for this study was derived from an ongoing
twin-family study on cognition [Posthuma et al., 2001] in
twins and family members from the Netherlands Twin
Registry [Boomsma et al., 2002b]. Twins and siblings were
invited for detailed psychophysiological study in the labo-
ratory. The EEG sample consisted of 760 subjects from 309
families divided into two age cohorts based on the age of
the twins: a younger cohort (M 5 26.2 years, SD 5 4.1)
and a middle-aged cohort (M 5 49.4 years, SD 5 7.2). Par-
ticipating families consisted of one to seven siblings
(including twins). On average, 2.50 participants per family
participated. Informed consent was obtained in writing for
the EEG study. The study received approval from the
appropriate ethical committees.

Intelligence Testing

IQ was measured with the Dutch adaptation of the
WAISIII-R (WAIS-III, 1997). In accordance with the WAIS
guidelines, the following four dimensions were calculated:
verbal comprehension (the mean percentage correct of
subtests information, similarities, and vocabulary), work-
ing memory (the mean percentage correct of subtests arith-
metic and letter-number sequencing), perceptual organiza-
tion (the mean percentage correct of subtests block design,
matrix reasoning, and picture completion), and processing
speed (the number of correct items per 60 s of subtest digit
symbol substitution). The validity of these four dimensions
was confirmed by a reanalysis of the WAIS manual data
by Deary [2001]. From these dimensions the combined full
scale IQ was determined.

EEG Recording

The experimental protocol for background EEG registra-
tion has been described in detail elsewhere [Posthuma
et al., 2001; Smit et al., 2005], but a brief description will
be repeated here. EEG was measured at rest. Half of regis-
tration sessions were during morning hours, and half were
in the afternoon. Subjects were seated in a comfortable
reclining chair in a dimly-lit, sound-attenuated, and elec-
tromagnetically-shielded room. They were instructed to
close their eyes, relax, but stay awake and minimize eye
and body movement. EEG was registered for 3 min with
17 Ag/AgCl electrodes mounted in an electrocap. Signal
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registration was conducted using an AD amplifier devel-
oped by Twente Medical Systems (TMS; Enschede, The
Netherlands) for 656 subjects (374 young, 282 middle-
aged) and NeuroScan SynAmps 5083 amplifier for 104 sub-
jects (24 young, 80 middle-aged). Signals were continu-
ously represented online on a Nec multisync 17-in. com-
puter screen using Poly 5.0 software or Neuroscan Acquire
4.2. Standard 10–20 positions were F7, F3, Fz, F4, F8, T7,
C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. The vertical
electro-oculogram (EOG) was recorded bipolarly between
two Ag/AgCl electrodes, affixed 1 cm below the right eye
and 1-cm above the eyebrow of the right eye. The horizon-
tal EOG was recorded bipolarly between two Ag/AgCl
electrodes affixed 1 cm left from the left eye and 1 cm
right from the right eye. An Ag/AgCl electrode placed on
the forehead was used as a ground electrode. Impedances
of all EEG electrodes were kept below 3 kX, and impedan-
ces of the EOG electrodes were kept below 10 kX. The
EEG was amplified, digitized at 250 Hz and stored for off-
line processing. Amplifier filter settings for TMS were a
single order FIR bandpass filter with cut-off frequencies of
0.05 and 30.0 Hz. NeuroScan filter settings were a lowpass
filter at 50.0 Hz.

EEG Data Processing

The signals were recalculated with averaged earlobes
(A1 and A2) as reference. All EEG was automatically and
visually checked for bad channels such as absence of sig-
nal, hum, clipping, persistent muscle tone artifacts, and
external noise. Subjects without the full set of 17 leads
were excluded. This procedure resulted in the exclusion of
186 subjects leaving 574 subjects. Next, the data were cut
into 16 s epochs with 8 s overlap. For each subject, artifac-
tual episodes were identified automatically using the
EEGLAB [Delorme and Makeig, 2004] ‘‘reject by threshold’’
and ‘‘reject by spectra’’ option. Threshold settings for all
leads was 6200 lV. The spectral analysis procedure identi-
fied deviant epochs by comparing each epoch’s power
spectrum to the spectrum averaged over all epochs.
Epochs with more than 10-dB excess power within the fre-
quency range below alpha (1.0–8.0 Hz) or above alpha
(13.0–30.0 Hz) were marked artifactual. If less than four
nonoverlapping epochs were available, the (quite strict)
criterion of 10 dB was relaxed until exactly four were
obtained. The average level of the dB criterium was 16.8
(SD 3.4). No subject reached a criterium level over 36 dB.
Visual inspection revealed that this procedure successfully
selected epochs without artifacts.
Each epoch was baseline corrected and filtered using

theta (4.0–8.0 Hz), lower alpha (8.0–10.0 Hz), upper alpha
(10.0–13.0), lower beta (13.0–18.0 Hz), and upper beta
(18.0–25.0 Hz) bandpass filters. Frequencies above 25.0 Hz
were disregarded as the discrepancies in hardware filter
settings between TMS and Neuroscan registered subjects
may lead to spurious results.

SL Calculation

The state of a driver system – here, an EEG signal – is
operationalized with the embedded vector
X ¼ fxi; xi þ 1� l; xi þ 2� l; . . . ; xi þ ðm� 1Þ�lg where l is the
lag and m the embedding dimension. The elements of X
are m samples taken from the signal spaced l apart. The
vector is taken to represent the state of the system at time
i. Within the same signal recurrences are sought at times j
that reflect a similar state: a threshold distance ex is chosen
such that a fixed proportion (pref) of comparisons are close
enough to be considered in a similar state. Next, the same
comparison is made for a different system Y at the same
time points i and j and with the same value for pref. Now
the SL Si between X and Y at time i is defined as follows:

Si ¼
1

N

X

j

uðey � jYi � YjjÞuðex � jXi � XjjÞ

where y is the Heaviside step function returning 0 for all
values <0 and 1 for values �0. N represents the number
of recurrences in signal X, i.e.:

X

j

uðey � jXi � XjjÞ

Overall SL between X and Y is the average over all pos-
sible i. To withhold the system to compare Xi and Xj while
they represent the same state, only values for j are consid-
ered that are at sufficient time distance. The value of this
distance, W1, is the Theiler correction for autocorrelation
[Theiler, 1986]. The value for |i 2 j| is upper bound to
create a window (W1 < W2 < N) to sharpen the time reso-
lution of Si. More details on SL calculation can be found in
several other publications [Montez et al., 2006; Posthuma
et al., 2005; Stam and van Dijk, 2002]. The parameter set-
tings l, m, W1, and W2 were chosen based on the filter-fre-
quency settings. This approach, as put forward in Montez
et al. [2006], determines the lag l in sampling the embed-
ded vector on the high frequency parameter of the filter,
and the embedding dimension m on the ratio of the high
and low frequency parameters. From these, windowing
parameters W1 and W2 are chosen such that embedded
vectors are not too close in time to avoid autocorrelation
effects, while allowing enough estimations to be made. Ta-
ble I shows the parameter settings for each frequency
band. The remaining, free parameters W2 and pref were
fixed at fixed values of W1 þ 400 and 0.01. These values
reflect similar choices from the previous literature [Ponten
et al., 2007; Stam, 2006]. Using data from 51 randomly
selected subjects revealed that a increasing the value of W2
from 430 to 830 did not change the results in the upper
alpha band (r 5 0.99). Increasing pref from 0.01 to 0.05 also
yielded similar results (r 5 0.85), adding to previous
observations that variation of pref yields similar results
[Stam and van Dijk, 2002].
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C and L Calculation

SL was computed between each pair of electrodes result-
ing in a (17, 17) matrix where the values on the diagonal
will be ignored. To correct for individual differences in
overall SL this value was subtracted from the matrix of SL
connectivity. Using this matrix to represent ‘‘edge
strength,’’ a binary graph was formed by applying a
threshold y such that the average number of edges per
vertex was fixed at five different levels (K [ {3,4,5,6,7}). An
actual example of a graph extracted from a single epoch is
provided in Figure 3.
C and L were calculated as explained in the introduction

and indicated in Figure 1 with the following extension.
Standard C and L calculation requires that the graph is
fully connected [Latora and Marchiori, 2001; Watts and
Strogatz, 1998]. Many EEG epochs, however, resulted in
graphs with at least one vertex unconnected. To accommo-
date for real world applications where unconnected nodes
are unavoidable, we followed Newman’s [2003] proposal
to assign the value of þ? to the path length involving
unconnected nodes and use the harmonic mean:

L ¼ N

PN

i¼1

1
Li

For each graph we created 50 randomized graphs by
randomly reconnecting edges, preserving the symmetry of
the matrix. The average C and L values from these graphs
were used to calculate standardized parameters [Humph-
ries et al., 2006]:

g ¼ C

Cran

and

k ¼ L

Lran

The small world parameter was then calculated as
r ¼ g

k . Since Cran and Lran are fixed numbers for graphs
with the same degree K, there is no need to repeat the cor-

relational analyses for g and k. Therefore, these analyses
will be restricted to C, L, and r.

Reliability and Twin Correlations

For all statistical modeling the freely available software
package Mx version 1.65a was used [Neale et al., 2003].
A tetravariate repeated measures structural equation

model as depicted in Figure 4 was used, which allows the
estimation of the reliability of the measurement. Variance of
the four occasions (epochs) is split into a correlated part F (the
‘‘true’’ scores) and an uncorrelated part U which we may
assume represents measurement error. Reliability was then
defined as the proportion of nonerror variance to the total:

Repoch ¼ f 2

ðf 2 þ u2Þ

However, these single-epoch reliabilities should be cor-
rected using the total number of epochs actually measured
to represent reliability for the full 4 3 16 s duration using
the following formula:

Rtotal ¼
kRepoch

1þ ðk� 1ÞRepoch

where k 5 4.
The correlation r in Figure 4 will be estimated to have

the value rMZ or rDZ, depending on the nature of the rela-
tion between the two individuals. For twins and siblings
members either an MZ or DZ/sibling correlation will be

TABLE I. Synchronization likelihood parameters per

frequency band

Band LF HF L m W1 W2

Theta 4 8 8 9 72 472
Lower alpha 8 10 6 6 36 436
Upper alpha 10 13 5 6 30 430
Lower beta 13 18 3 7 21 421
Upper beta 18 25 3 7 16 416

Note. LF, low frequency filter setting; HF, high frequency filter
setting; L, Lag; m, embedding dimension; W1, minimum window
distance; W2, maximum window distance. LF and HF are in Hz,
all other parameters in number of samples.

Figure 3.

An example of a graph derived from the Synchronization Likeli-

hood matrix for a single epoch.
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estimated. Note that the resulting twin correlations repre-
sent the relation between ‘‘true’’ factors F, and are thus
corrected for measurement error.
Means were modeled with cohort and sex and the

cohort by sex interaction as covariates. Variances were
tested for heteroscedasticity between the sexes and the
cohorts. When significant, heteroscedasticity were modeled
by using a scalar model. These models use a scalar close
to 1.0 to equalize the variances in one group (e.g., males)
to the other (e.g., females). Significant differences in error
variances were modeled similarly.

Genetic analyses

Resemblance (covariance) in psychophysiological traits
between twins and siblings derive from genetic relatedness
or shared environmental influences [Boomsma et al.,
2002a; Falconer and Mackay, 1996]. If the correlation
between DZ twins or siblings, who share on average 50%
of their genetic make-up, is half the correlation between
MZ twins, who are genetically identical, this is seen as evi-
dence for additive genetic influences (A). If the correlation
between DZ twins or siblings is less than half the correla-
tion between MZ twins this is seen as evidence for domi-
nant (nonadditive) genetic influences (D). If the correla-
tions between MZ and DZ twins/siblings are comparable
and nonzero this is evidence for shared environmental
influences (S). If the correlation between MZ twins is not
unity this is evidence for environmental effects unique to
each individual (E). By comparing MZ and DZ/sibling
correlations, using structural equation modeling as imple-
mented in, for example, Mx [Neale et al., 2006], we can
obtain maximum likelihood estimates of the relative contri-
butions of each of these factors to the total trait variance.
Heritability is defined as the proportional contribution of

genetic effects (A þ D) to the total variance (A þ S þ D þ
E). In a twin-sibling design, however, no information is
available to estimate the effects of both S and D simultane-
ously. The relative size of the DZ/sibling to the MZ corre-
lation guides which is selected. If the DZ/sibling correla-
tion is less than half the MZ correlation, then A þ D þ E
are modeled. If it is more than half the MZ correlation, A
þ S þ E are modeled. For more information on genetic
modeling we refer to Boomsma et al. [2002a] and Post-
huma et al. [2003].

WAIS Correlations

Correlations were calculated between C, L, and r and
scores on the four subscales verbal comprehension, work-
ing memory, perceptual organization, and perceptual
speed. Since dependencies exist between family members,
statistical inference from straightforward correlations
between traits would be incorrect. We therefore modeled
the correlations while allowing for within family correla-
tions (i.e., MZ and DZ/sibling correlations, and cross-
twin-cross-trait correlations). As with all other modeling,
the correlations were modeled on the ‘‘true,’’ nonerror var-
iance of C, L, and r.

RESULTS

Unconnected Vertices

It may have been possible that one lead resulted in an
unconnected vertex in most subjects, suggesting that this
lead should be removed from the analysis. Although T7
and T8 showed quite a high proportion of epochs which
resulted in unconnected vertices, still in about 60% of the
epochs they were connected. Therefore, we decide not to
exclude these leads.

Descriptives

Table II shows the descriptives for parameters C and L,
and the derived variables g, k and r Since the distribu-
tions for k were in many cases right skewed, median val-
ues are shown to define central tendency. Overall, these
parameters are consistent with a small-world organization
of the functional network, since k is relatively close to
unity, whereas g is larger than that (see Table II). For all
explored levels of K, gamma was clearly and significantly
larger than unity. However, increasing K resulted in
reduced levels of gamma (as can be expected). The median
value for the variable k is only slightly larger than unity
for higher degrees of K (K � 5). Lower values of K showed
clearer deviation from unity with values above 1.1 in all
frequency bands.

Levels of K

To explore the nature of the dependency of the graph varia-
bles C and L on degree K we calculated the correlation of the

Figure 4.

Path model describing the relation between any pair of siblings.

V1, V2, V3, and V4 represent the observed variables C, L, or r
from the four epochs. Factors U are uncorrelated and represent

unreliable factors such as measurement error. F is ‘‘true’’ factor

scores representing the remaining variance. Depending on the

relation between the two subjects, an rMZ (MZ twins), rDZ (DZ

twins and siblings) is modeled.
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graph descriptors C and L between all levels of K. Next, we
averaged the correlations (using the Fisher transform) to
obtain marginals representing the strength of correlation
between a each level of Kwith all other levels. Table III shows
the average correlations forC and L in all frequency bands. For
C, the correlations are somewhat smaller than those for L, but
still moderate to high (ca. 5 forK5 3 but 0.6 to 0.7 for other lev-
els). For L, correlations between levels are high. Degree K 5 3
seems to correlate the worst with all other levels, whereas K5

5 seems to correlate best for bothC (r> 0.67) and L (r> 0.83) in
all frequency bands.
Overall, K 5 5 seems to be the best representation of

most of the variation shared between all levels of K. In
addition, C and L at degree K 5 5 seems to show small
world network properties as mentioned in the previous
paragraph. To reduce the amount of further testing, we
chose to restrict the genetic and phenotypic analyses to
graphs with degree K 5 5.

Effects on Means and Variances

Sex differences in L were found in the lower frequency
bands such that males show shorter L (theta: bsex 5 0.026,
v2(1) 5 7.70, P 5 0.006; lower alpha: bsex 5 0.045, v2(1) 5
8.30, P 5 0.004). No other significant mean sex differences
were found. The middle-aged cohort showed significantly

lower C for the theta band (bcoh 5 -0.011, v2(1) 5 8.53,
P 5 0.003), but higher C for upper alpha (bcoh 5 0.011,
v2(1) 5 8.52, P 5 0.004). Middle-aged adults showed lon-
ger L in both these bands (theta: bcoh 5 0.028, v2(1) 5 8.53,
P 5 0.003; upper alpha: bcoh 5 0.077, v2(1) 5 24.4, P 5

1 3 1026). In the theta band this resulted in a significantly
lower value of the small-world variable sigma for the mid-
dle-aged (bcoh 5 20.029, v2(1) 5 8.14, P 5 0.004).
Variances differed between the sexes only for L in the

theta band (v2(1) 5 17.5, P 5 3 3 1025). In males ‘‘true’’
variance was larger than in females. Large differences in
true variance were also found between the cohorts (theta:
v2(1) 5 57.0, P 5 4 3 10214; upper alpha: v2(1) 5 17.8, P
5 2 3 1025), such that the older cohort had larger varian-
ces in L than the younger cohort.

Reliabilities

Reliabilities were calculated using the repeated measures
model and corrected to represent reliability of the full
measurement as specified in the methods. Table IV shows
that the reliabilities were, in general, moderate for C and
r. This indicates that measurement error covered a sub-
stantial proportion of the variance of C (�50%) and
slightly more of r (�50% to 65%). This proportion was
larger for the lower frequency bands. The proportion mea-

TABLE II. Medians and interquartile ranges for graph theoretical parameters of functional connectivity

C L g k r

Band Me Quart. range Me Quart. range Me Quart. range Me Quart. range Me Quart. range

K 5 3
Theta 0.34 0.31–0.38 2.67 2.49–2.92 2.23 2.00–2.45 1.20 1.12–1.31 1.80 1.66–1.97
Lower alpha 0.37 0.33–0.40 2.90 2.62–3.17 2.33 2.12–2.55 1.31 1.19–1.44 1.74 1.60–1.88
Upper alpha 0.36 0.33–0.39 2.80 2.57–3.09 2.30 2.08–2.50 1.27 1.17–1.40 1.76 1.62–1.92
Lower beta 0.35 0.32–0.38 2.67 2.51–2.87 2.20 2.01–2.39 1.21 1.14–1.30 1.76 1.63–1.93
Upper beta 0.35 0.32–0.38 2.78 2.58–3.07 2.23 2.04–2.44 1.26 1.17–1.39 1.72 1.57–1.86

K 5 4
Theta 0.41 0.38–0.44 2.06 1.98–2.17 1.78 1.67–1.91 1.10 1.06–1.16 1.59 1.49–1.70
Lower alpha 0.44 0.41–0.47 2.27 2.09–2.50 1.91 1.77–2.05 1.21 1.12–1.34 1.54 1.43–1.66
Upper alpha 0.44 0.41–0.47 2.19 2.07–2.40 1.89 1.75–2.03 1.17 1.11–1.28 1.55 1.45–1.67
Lower beta 0.43 0.40–0.46 2.13 2.03–2.27 1.85 1.73–1.98 1.14 1.08–1.22 1.59 1.49–1.69
Upper beta 0.44 0.41–0.47 2.24 2.07–2.44 1.89 1.74–2.01 1.20 1.11–1.31 1.54 1.43–1.65

K 5 5
Theta 0.46 0.44–0.50 1.76 1.72–1.81 1.52 1.44–1.62 1.04 1.02–1.08 1.44 1.36–1.52
Lower alpha 0.51 0.48–0.54 1.89 1.80–2.05 1.67 1.57–1.76 1.13 1.07–1.22 1.44 1.37–1.53
Upper alpha 0.51 0.48–0.54 1.84 1.77–1.98 1.66 1.56–1.77 1.10 1.06–1.18 1.47 1.39–1.55
Lower beta 0.50 0.47–0.53 1.82 1.74–1.92 1.63 1.53–1.74 1.08 1.04–1.14 1.48 1.40–1.55
Upper beta 0.51 0.47–0.54 1.88 1.79–2.02 1.65 1.54–1.75 1.12 1.06–1.20 1.44 1.36–1.51

K 5 6
Theta 0.50 0.48–0.53 1.60 1.59–1.63 1.37 1.30–1.45 1.02 1.01–1.04 1.33 1.28–1.39
Lower alpha 0.57 0.54–0.59 1.69 1.63–1.78 1.53 1.45–1.61 1.08 1.04–1.14 1.39 1.33–1.46
Upper alpha 0.56 0.54–0.59 1.66 1.62–1.74 1.52 1.44–1.60 1.06 1.03–1.11 1.41 1.34–1.47
Lower beta 0.55 0.53–0.59 1.64 1.60–1.73 1.50 1.42–1.59 1.05 1.02–1.10 1.40 1.34–1.47
Upper beta 0.56 0.53–0.60 1.71 1.62–1.81 1.52 1.43–1.61 1.09 1.03–1.16 1.38 1.31–1.44

K 5 7
Theta 0.55 0.53–0.57 1.49 1.49–1.50 1.25 1.20–1.31 1.01 1.00–1.01 1.24 1.20–1.29
Lower alpha 0.62 0.58–0.65 1.54 1.50–1.60 1.41 1.34–1.47 1.04 1.01–1.08 1.33 1.28–1.38
Upper alpha 0.61 0.59–0.65 1.52 1.50–1.57 1.40 1.34–1.47 1.03 1.01–1.06 1.34 1.29–1.40
Lower beta 0.60 0.57–0.65 1.51 1.49–1.59 1.38 1.30–1.47 1.02 1.01–1.07 1.32 1.26–1.38
Upper beta 0.62 0.58–0.66 1.56 1.50–1.65 1.41 1.33–1.50 1.05 1.01–1.11 1.32 1.26–1.38
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surement error was markedly less for L than for C and r.
Note that in some cases heterogeneity of variance and/or
error variance were found (as aforementioned). Since these
differences resulted in different reliabilities for sex or age
cohort groups, Fisher-z transformed averages (transformed
back) are shown in the table in those cases.

Genetic Analysis

Genetic models included aforementioned significant
effects on the means and variances. Men and women and
the older and younger cohorts did not differ in MZ and
DZ/sibling correlations. The resulting twin correlations—
collapsed across cohort and sex—are shown in Table V
along with 95% confidence intervals.
Although the twin correlations suggested effects of

shared environment for theta band L, this effect was not
significant. Significant dominant genetic effects were found
for L for the theta and upper alpha bands (v2(1) 5 8.9, P 5

0.0003, and v2(1) 5 10.1, P 5 0.002, respectively). For these
variables broad heritabilities were estimated, that is,
including both dominant and additive genetic variance,

and a two degree of freedom test determining the signifi-
cance of both the effects of A and D simultaneously. All
heritabilities are shown in Table VI. Highly significant her-
itability could be established for L in all frequency bands
(lowest significance for theta: v2(2) 5 18.5, P 5 1 3 1024).
Significant heritability for C was found in the theta and
beta frequency bands (theta: v2(1) 5 8.5, P 5 0.004; lower
beta: v2(1) 5 14.9, P 5 1 3 1024; upper beta: v2(1) 5 17.6,
P 5 3 3 1025). Heritability estimates for r on the other.

DISCUSSION

The results for parameters g(L/Lran), k(C/Cran), and
r ¼ g

k derived from functional connectivity graphs with
degree K 5 5 are comparable to those reported in the
existing literature and summarized in Table VII. Functional
connectivity graphs derived from fMRI, MEG, and EEG
have shown values for k in the range of 1.0–1.5, but are
typically around 1.1 which is highly comparable to our
1.04–1.13. Values for g from the same studies ranged from
1.58 to 3.77. The values reported here (1.52 to 1.67) are at

TABLE III. The correlations between scores on each level of K and scores on all other levels, averaged using

Fisher transform, variables C and L

K

3 with 4,5,6, and 7 4 with 3,5,6, and 7 5 with 3,4,6, and 7 6 with 3,4,5, and 7 7 with 3,4,5, and 6
C
Theta 0.52 0.59 0.68 0.65 0.63
Lower alpha 0.54 0.64 0.69 0.69 0.63
Upper alpha 0.50 0.60 0.67 0.67 0.63
Lower beta 0.45 0.59 0.69 0.67 0.65
Upper beta 0.52 0.65 0.72 0.71 0.66

L
Theta 0.67 0.79 0.83 0.81 0.74
Lower alpha 0.78 0.85 0.88 0.87 0.82
Upper alpha 0.79 0.86 0.89 0.88 0.80
Lower beta 0.79 0.87 0.89 0.89 0.84
Upper beta 0.75 0.85 0.89 0.88 0.82

TABLE IV. Reliable, nonerror variance as a proportion

of total variance for graphs with degree K 5 5

C L r

Theta 0.48 0.71 0.33
Alpha low 0.53 0.77 0.41
Alpha high 0.52 0.77 0.41
Beta low 0.52 0.86 0.41
Beta high 0.62 0.87 0.47

Note. For some variable ICCs differed between cohorts and/or
sexes due to heterogeneity of variance or heterogeneity of error
variance. Average values are shown. Reliabilities are based on the
correlations between all epochs, then corrected to represent reli-
ability of the total of four epochs. C 5 clustering coefficient, L 5

average path length, r 5 small world variable g/k.

TABLE V. Twin correlations for C, L, and r
for graphs with degree K 5 5

C L r

MZ DZ MZ DZ MZ DZ

Theta 0.60 0.18 0.93*** 0.12 0.74 20.01*
Lower alpha 0.51 0.10 0.55*** 0.14 0.52 0.28
Upper alpha 0.49 0.10 0.81*** 20.01* 0.26 20.22
Lower beta 0.66* 0.26 0.49*** 0.34 0.58 20.03
Upper beta 0.53* 0.28 0.70*** 0.35 0.47 0.14

Note. All correlations were estimated using Mx after removal of
age and sex on the means, and significant cohort and sex effects
on variance terms by use of a scalar model. DZ correlations
include all fraternal (non-identical) siblings pairs, including oppo-
site sex pairs. C, Clustering coefficient, L, Path length, r, small
world index g/k* 5 P < 0.01; **P < 0.001; ***P < 0.0001.
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the lower end of this previously reported range, although this
seems consistent with the results from the other EEG studies.
Small world parameter rin the literature ranged from 1.56 to
2.79. Here, too, our results were at the low end of the dimen-
sion with 1.44–1.48. However, the small world requirement
defined as k 5 1.0 while g � 1.0 seems to be met.
Modeling of MZ and DZ twin and sibling resemblance

indicated that across various frequency bands 46–89% of
the individual differences in C and 37–62% of the individ-
ual differences in L are heritable. Overall, these results
suggest that there are consistent individual differences in
functional connectivity patterns that have a firm biological
basis. Graph theoretical analysis of background EEG con-
nectivity reveals systematic individual differences in aver-
age path length L and clustering coefficient C, which
makes them viable biomarkers for individual differences

in brain functioning. However, unreliable variance consti-
tutes a large part of the total variance of mainly C. If the
unreliable variance can indeed be attributed to measure-
ment error, that this finding indicates the importance of
measuring many epochs of sufficient length to obtain reli-
able estimates of individual scores. In the present study,
measuring four epochs did not yield sufficient power to
establish significance of the heritability estimates for the
overall network efficiency as measured with r.
Since it has been argued that C and L are parameters

that describe network efficiency, it was reasonable to
hypothesize that efficient connectivity patterns would be
related to cognitive performance measures. However, we
found that WAIS was not significantly related to either C,
L, or small-world parameter r. Although individual differ-
ences in C and L may simply not reflect those in cognitive
performance, the absence of significant correlation may
also have been the result of suboptimal measurement evi-
denced by the substantial amount of error variance. In
addition, the application of a threshold to the SL matrix
resulted in the loss of possibly valuable information
regarding the connectivity strength between brain areas.
To make use of this source of information, alternative
approaches for investigating network efficiency to the one
presently used have been proposed. For example, Latora
and Marchiari [2001] proposed a method to describe local
and global efficiency computed from what have been
called weighted graphs. It stands to reason that such an
approach could result in better estimations of overall net-
work efficiency, and hence, better estimates of phenotypic
correlations. Ultimately, though, this remains an empirical
question. Another possible source of bias is that volume
conduction in the EEG signals could have falsely increased

TABLE VII. Graph theoretical parameters from psychophysiological studies of functional connectivity

Study Sample Measurement Condition k g r

Current study Healthy subjects EEG theta, low alpha, high alpha,
low beta, high beta, K55

Resting state 1.09 1.63 1.45

Achard et al., 2006 Healthy subjects fMRI .0007-.45 Hza Resting state 1.14 2.18 1.94
Bartolomei et al., 2006 Healthy subjects MEG theta, beta, gamma Resting state �1.5 �4.0 2.67
Bassett et al., 2006 Healthy subjects MEG 1.1-75 Hza Resting state 1.92

Finger tapping 1.86
Eguiluz et al., 2005b Healthy subjects FMRI Music listening

and finger tapping
1.0–2.9 168–325

Micheloyannis
et al., 2006

Schizophrenia EEG theta, alpha, beta, gamma WM task 1.15 1.64 1.43

Healthy subjects 1.15 1.80 1.56
Ponten et al., 2007 Epileptic patients Depth electrode EEG,

1 to 48 Hz synchronization
Interictal periods 1.1 1.72 1.56

Salvador et al., 2005 Healthy subjects FMRI Resting state 1.09 2.08 1.91
Stam et al., 2004 Healthy subjects MEG theta, gammac Resting state 1.41 3.76 2.68
Stam et al., 2006 Alzheimer’s MEG beta Resting state 1.12 1.6 1.43

healthy subjects 1.07 1.58 1.48

Results as summarized by the respective authors, except:
aNo averages reported by the authors, values averaged across frequencies are shown.
b The degree K was much smaller than ln(N), which may have caused the anomalous results (see Bassett & Bullmore, 2006).
c Stam, 2004 did not find small-world organization in the alpha and beta frequency bands (omitted here).

TABLE VI. Heritabilities for C, L, and r

C L r

Theta 0.50 * 0.89 * 0.37
Lower alpha 0.37 0.46 *** 0.51
Upper alpha 0.39 0.78 *** 0.00
Lower beta 0.62 ** 0.53 *** 0.27
Upper beta 0.54 *** 0.70 *** 0.39

Note. Heritability was modeled using additive genetic and unique
environmental effects, except for: Dominant genetic effects were
significant for theta L and upper alpha L. For these, heritability
(h2) includes both additive and non-additive (dominant) genetic
effects.
*P < 0.01, **P < 0.001, ***P < 0.0001. C, clustering coefficient; L,
average path length; r, small world index: g/k.
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connectivity strengths of nearby electrodes. Therefore,
recently proposed measures that take volume conduction
into account, such as the phase lag index [Stam et al., in
press] could possibly alleviate this problem. Lastly, using a
single degree K for all individuals may have disregarded
‘‘true’’ differences between subjects, that is, some subjects
may simply have a more sparsely connected functional
network. Again, this too remains an empirical question.
In conclusion, graph theory is a useful tool for describ-

ing functional connectivity of the brain. The pattern of
twin correlations for C, L, and r establish them as viable
markers of genetic differences in brain organization.
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