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We propose an object recognition scheme based on a method for feature 
extraction from gray level images that corresponds to recent statistical 
theory, called pmjection pursuit, and is derived from a biologically mo- 
tivated feature extracting neuron. To evaluate the performance of this 
method we use a set of very detailed psychophysical three-dimensional 
object recognition experiments (Biilthoff and Edelman 1992). 

1 Introduction 

A system that performs recognition of three-dimensional (3D) objects in 
visual space must transform a complex pattern of visual inputs to an 
appropriate categorization. Such recognition is possible, for example, by 
template matching once the object and its templates are brought into reg- 
ister (Ullman 1989). Other similar schemes (Lowe 1986; Thompson and 
Mundy 1987) base the recognition on viewpoint consistency, which relate 
projected locations of key features of a model to its 3D structure given 
a hypothesized viewpoint. The regularization network or HyperBF in- 
terpolation scheme (Poggio and Edelman 1990; Poggio and Girosi 1990) 
represents 3D objects by sets of two-dimensional (2D) views using vec- 
tors of key-feature locations and regards generalization from familiar to 
novel views as a problem of nonlinear hypersurface interpolation in the 
space of all possible views. All these methods rely on the ability to find 
key features in the objects and, in some cases, to solve the correspon- 
dence problem between them.' However, sometimes these tasks can be 
as difficult as the recognition itself. 

In this paper, we propose an object recognition method that does 
not rely on finding such key features a priori. Instead, a transforma- 
tion is sought that reduces the pixel image representations into a low- 
dimensional space from which nonlinear hypersurface interpolation can 

'Edelman and Weinshall (1991) used the vertices without solving the correspondence 
problem between them. 
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a priori an ordered list of vertices from the image and using a generalized 
radial basis function classification scheme (Moody and Darken 1989; Pog- 
gio and Girosi 1990, GRBF). This method classified lists of vertices based 
on their orientation within a vector space defined by the vertex sets of 
known objects; it achieved close to human performance in generalizing to 
novel views of the wires. The performance reflected a strong focus on the 
classification technique, and assumed a deterministic, a priori feature ex- 
traction. We, on the other hand, want to concentrate on the examination 
of the properties of our proposed feature extraction method and therefore 
in this study have chosen to use a classical, well-known classifier, based 
on the k-nearest-neighbor-rule5 (see for example, Duda and Hart 1973). 

In addition to the type of classifier used, the recognition paradigm 
with which the system is tested is a vital component in determining the 
usefulness of the features extracted. In the following sections we present 
an application of the BCM model to a set of specific 3D object recognition 
problems. The experiments chosen fulfill two important criteria: (1) they 
test the model's abilities to both recognize and generalize across a wide 
range of difficulties, and (2) these same studies have been used to test 
the abilities of not only computational models, but also human subjects; 
the psychophysical results in fact serve as benchmarks for this study. 

3.1 Previous Studies. Bulthoff and Edelman (1992) developed and 
used wire-like objects in their experiments, in an effort to simplify the 
problem for the feature-extractor by providing little or no occlusion of the 
key features from any viewpoint. The wires consisted of seven connected 
segments, each pointed in a random direction but with its vertices dis- 
tributed normally around the origin. Each experiment consisted of two 
phases, training and testing. In the training phase subjects were shown 
the target object from two standard views, located 75" apart along the 
equator of the viewing sphere. The target oscillated around each of the 
two standard orientations with an amplitude of 335" about a fixed ver- 
tical axis, with views spaced at 3" increments (see Fig. 1). Test views 
were located either along the equator-n the minor arc bounded by the 
two standard views (INTER condition) or on the corresponding major 
arc (EXTRA condition)--or on the meridian passing through one of the 
standard views (ORTHO condition). Testing was conducted according to 
a two-alternative forced choice (2AFC) paradigm, in which subjects were 
asked to indicate whether the displayed image constituted a view of the 
target object shown during the preceding training session. Test images 
were either unfamiliar views of the training object or random views of a 
distractor (one of a distinct set of objects generated by the same proce- 
dure). 

5Very similar classification results were obtained using a backpropagation classi- 
fier. In a forthcoming article, performance of backpropagation and radial basis function 
(RBF) classifiers will be compared using features extracted by the above feature extrac- 
tion method. 
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Figure 1: The training and testing experimental paradigm. 

A number of interesting characteristics of human visual object recog- 
nition abilities emerged from the psychophysical experiments. General- 
ization over orientations lying between two sets of known views-the 
INTER condition-resulted in, on average, significantly fewer errors than 
with the other two extrapolation conditions. In addition, error rates in- 
creased steadily as the testing views moved farther away from the learned 
views, until recognition was near chance levels at large displacements. 
Finally, there were indications for a “horizontal bias,” so that error rates 
were lower when generalization was required along the horizontal, as 
opposed to the vertical, plane. 

3.2 Experimental Paradigm. In the first part of the study, the net- 
work was tested on a 63 by 63 array of 8-bit gray-scale values with a 
paradigm nearly identical to the one used in the psychophysical investi- 
gation (Edelman and Bulthoff 1991). The procedure was modified slightly 
in that training was performed with two wires, since the k-NN classifier 
would yield meaningless results if trained on only a single wire. 

In the second part of the study, simple yes/no recognition was up- 
graded to a more difficult classification task involving six separate wires. 
The modification was necessary to fully test thFBCM model’s ability 
to extract the most salient rotation-invariant features from the images. 
Specifically, since BCM neurons explicitly search for differentiating fea- 
tures (due to the search for multimodality in the projected distribution), 
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many cases involving only two distinct sets of inputs can be solved yith 
”features” corresponding to prototypical views of each wire. In these 
cases, the two sets of wire-views, corresponding to the two wires, would 
form two distinct clusters in feature space. However, such differentia- 
tion would be much more difficult with a larger number of wires, and 
therefore the BCM network neurons would be forced to find projections 
that correspond to individual, rotation-invariant features, not prototypi- 
cal views of individual wires. 

In addition, the model was modified in an attempt to account for the 
asymmetic psychophysical results. In the psychophysical experiments, 
the horizontal bias was found when humans were given the exact same 
paradigm as described above, except the objects were rotated 90” so that 
the training axis was aligned vertically, not horizontally. One possible 
explanation of such asymmetry is in increased resolution at the object 
representation level, namely, due to the fact that behaviorally, humans 
spend more time rotating around a vertical axis (i.e., rotation in a hori- 
zontal plane). This is experimentally equivalent to having more patterns 
rotated in a horizontal than in a vertical plane. This possibility has been 
eliminated in the careful psychophysical experiment performed by Edel- 
man and Biilthoff (19911, in which subjects are provided identical expe- 
rience with horizontal and vertical training. The continued existence of 
the bias under such conditions implicates an internal mechanism. We hy- 
pothesized greater a riori resolution in the infernal representation along 

olution in the horizontal plane and that in the vertical plane (the aspect 
ratio) to be 2/1 for “normal” training in the horizontal plane; conversely, 
training in the vertical plane was, from the point of view of the network, 
equivalent to setting the aspect ratio to be 1/2. Prediction of simulation 
performance due to this asymmetrical resolution is not straightforward 
since there are two contradictory effects. On the one hand, decreased 
resolution in the vertical plane means reduced disparity from rotations 
along that plane and therefore possibly better performance. On the other 
hand, there may also be improved performance in the horizontal axis 
since higher resolution will emphasize features that are rotation invari- 
ant along that direction. 

the horizontal plane. F! More specifically, we set the ratio between the res- 

4 Results 

The six wires used in the experiments are depicted in Figure 2. Dif- 
ferent views of three of the wires are depicted in Figure 3. When only 
two wires were used (experiment one) the features extracted correspond 
almost exclusively to a single view of a whole image of one of the wires. 

“There is, in fact, limited evidence for visual field elongation in the horizontal plane 
(Hughes 19m. 
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Figure 2: The six wires from a single view. 

Figure 3 Different views (15' apart) of a single wire; top-to-bottom are INTER, 
EXTRA, and ORTHO. 

In contrast, when the task was recognition of six wires the extracted 
features emphasized small patches of several images or views, namely, 
areas that either remain relatively invariant under the rotation performed 
during training or represented a major differentiating characteristic of a 
specific wire (Fig. 4). A typical result is a set of weights that may cor- 
respond to a single wire but emphasizes small patches of the object and 
selectively inhibits selected areas which correspond to invariant locations 
of adjacent wires. For example, the top left image of Figure 4 largely r e p  
resents object number 5 in Figure 2 with additional inhibition from other 
objects, while the top right image or the bottom second from the right 
image exhibits weights related to several imagedviews. 

Classification results demonstrate the usefulness of the extracted fea- 
tures: generalization in the INTER orientations resulted in consistently 
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Figure 4 Rotation invariant features for tublike objects extracted using a net- 
work of seven BCM neurons trained on six tubl ike  objects. White areas ~ p -  
resent strong synaptic weights, black areas represent negative synaptic weights 
(inhibition). 

low error rates-around 15% (in which the chance error rate on this six 
wire experiment is 83.3%&which indicates that the features extracted by 
the BCM network could generalize well in those new views.' Further- 
more, the results are comparable to those obtained in the psychophysical 
experiments. First, INTER recognition resulted in, on average, signif- 
icantly fewer errors than with the other two extrapolation conditions. 
Second, error rates increased steadily as the testing views moved farther 
away from the learned views, until recognition was near chance levels at 
large displacements. These results are analogous to the ones shown in 
Figure 5 in which the aspect ratio is 2/1. 

Taken together, Figures 5 and 6 demonstrate a horizontal bias as seen 
in the psychophysical studies. When aspect ratio is 0.5, which corre- 
sponds in our model to training on rotations in the vertical plane, INTER 
performance is worse. This result suggests that finding specific rotation 
invariant features was harder in that case, given its lower resolution. On 
the other hand, there is no significant change in the performance of Ex- 
TRA and ORTHO orientations, suggesting that the extracted features were 
in both situations equally useful for EXTRA and ORTHO orientations. 

~~ 

'Additional supporttothe usefulness of the extracted features to rotation invariant 
recognition is shown in sub uent work (Intrator et al. 1991; War et al. 1991) in which 
the extracted features are u a  to occlude parts of the images and another network is 
trained to recognize the occluded images. 
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Figun? 5 Fraction of misclassiflcation performance for wires trained on the 
horizontal plane. 

Figure 6: Fraction of misclassification performance for wires trained on the 
vertical plane. Note the degradation in performance in the INTER orientations. 

Figures 7 and 8 show the results of the experimental paradigm test- 
ing the effect of additional experience during training in the horizontal 
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Figure 7 Fraction of dsclassification performance for wires trained on the 
horizontal plane with no asymmetry. 
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Figure 8 Fraction of misclassification performance for wires trained with re- 
duced training experience (views). 

plane! Both figures show results on training with an aspect ratio of 1, 
that is, no resolution asymmetry was used between the horizontal and 

8Testing in both cases used the same number of patterns as in the previous 
experiments. 
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vertical plane. In the experiments summarized in Figure 7, the same 
number of training views (experience) as in the previous set of exper- 
iments were used. In the experiments summarized in Figure 8, half 
as many training views were used. A number of interesting observa- 
tions can be made. Results on the INTER condition for an aspect ratio 
of 1 behave as can be predicted from the previous set of experiments; 
specifically, error rates were in between those of aspect ratios 2 and 0.5. 
EXTRA and ORTHO results, however, were less noticeably affected, indi- 
cating that object resolution primarily affected the discovery of rotation 
invariant features to be used for recognition in the INTER condition, as 
opposed to reducing overall recognition ability. Results from Figure 8, 
however, demonstrate a different effect. Reducing the number of train- 
ing patterns, analogous to reducing the experience of vertical training, 
does not lead to an asymmetry in specific recognition conditions, but 
instead to a general decline in overall recognition ability. This suggests 
that reducing the number of training views in a model (without reducing 
the overall training angle rotation) does not simply affect the ability to 
extract rotation-invariant features for a particular recognition task. In- 
stead, it degrades the ability of the model in overall feature extraction 
performance. 

5 Discussion 

This paper touches on issues of object representation. It is assumed that 
an object is internally represented by a particular combination of features. 
The nature of these features and the means for binding together the 
most important combination of features are still undetermined (Sejnowski 
1986). We presented an unsupervised method for extracting features 
directly from gray-level pixel images, and we showed that a surprisingly 
small number of features is needed for a complex classification task. A 
comparison of our results to similar psychophysical experiments gives 
some indication that these features possess desired invariance properties 
that allow for overall classification performance that compares favorably 
with human performance. 

Extracting features from these gray-level images is a highly nontriv- 
ial statistical task. The dimensionality of this problem is 63 x 63 pixels; 
therefore, the curse of dimensionality implies that the number of training 
patterns should be immense, and yet from a small training set of 132 
wires useful directions (projections) were extracted corresponding to fea- 
tures that were especially useful for rotation invariant recognition. This 
suggests that the BCM network may be a practical tool for gray-level 
image recognition in which internal low-dimensional feature representa- 
tion emerges as a result of unsupervised training. 
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