
A N  ADAPTIVE APPROACH TO WAVELET 
FILTERS DESIGN 

Nicola Neretti, Nathan Intrator 
Institute for Brain and Neural Systems 

Brown University, Providence, RI 02912, US 
Phone: (401) 863-3920 

Fax: (401) 863-3494 
Email: NicolaNeretti@brown.edu 

Abstract .  We present a general  framework for the design of a 
mother wavelet best adapted to a specific signal or to a class 
of signals. T h e  filter’s coefficients are obtained via  optimization 
of a smoo th  objective function. We develop an unconstrained 
gradient-based optimization algori thm for a discrete wavelet trans- 
form. The algori thm is extended to the joint optimization of the 
mother wavelet and of the wavelet packets basis. 

I N T R O D U C T I O N  

The general problem we are trying to address is to find an invertible linear 
transform C that minimizes an objective function 6 for a specific signal. For a 
class of signals, the objective function is redefined to compute some statistics 
ham the collection of data. We concentrate on the class of linear transforms 
known as discrete wavelet transforms. 

In is paper we describe a novel optimization for the purpose of wavelet 
filter decomposition or of mnre general basis function decompositions based 
on wavelet packets. The optimization is based on the lattice decomposition 
of filter banks and leads to a fast unconstrained algorithm. 

FORMULATION O F  THE D I S C R E T E  WAVELET T R A N S F O R M  

In the discrete wavelet transform, a low-pass and a high-pass filter are a p  
plied to the signal, and the output is downsampled by two. The high-pass 
Coefficients are retained, while the process is repeated on the low-pass CD 

efficients, until the length of the residual signal’s coefficients equals that of 
the filter. In order for this transform to be invertible, the filters have to 
satisfy some constrains. In particular, orthonormaiity is required to obtain 
an orthonormal basis. These constrains can be expressed in different forms. 
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Exact details of the various forms can be found in chapter 5 of [4]. Here, in 
particular, we use two formulations: 1) the timedomain method and 2) the 
lattice method. The first approach expresses the constrains directly on the 
filters' coefficients. This leads to a constrained optimization algorithm. The 
second approach is based on the lattice structure method. With this method 
it is possible to reparametrize the coefficients so that the constrains are auto- 
matically satisfied. This leads to an unconstrained optimization algorithm. 

Without loss of generality, we concentrate on wavelet transforms with 
periodic boundaries. What follows can be extended to wavelets with different 
boundary conditions. 

The time-domain method 

Consider an example which demonstrates how a discrete wavelet transform 
is computed and how some constrains on the filter's coefficients arise from 
the orthogonality condition. In what follows, the length of the signals will 
be a power of 2. The case of a filter of length 4 acting on a signal of length 
8 is described in detail, as well as generalization to filters of even length. We 
use a notation from [4], where signals and filters arc indexed from 0 to N ,  so 
that the total length is N + 1. 

Let Z = [q, . . . , z7IT be the original signal, q,. . . . q and do,. . . d3 the low- 
pass and high-pass filters' coefficients respectively. After applying the two 
filters to Z. the result is decimated by two. These two operations, application 
of the filters and decimation, can be done more efficiently in a single step. In 
matrix form they are equivalent to the following: 

b o ,  vi, uz,u3,60,61,62, &IT = Cic, (1)  

where 

c3 c2 c1 CO 0 0 0 0 - 
o o n n c3 c2 C, c0 

0 0 c3 c2 c ,  CO 0 0 

C l Q  0 0 0 0 c 3 c 2  

d3 d2 dl do 0 0 0 0 
c, = 

0 0 d3 dz di do 0 0 

0 0 0 0 d3 d2 di do 

di do 0 0 0 0 d3 dz . 
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where 

(4) 

c g c * c 1 c g 0 0 0 0  

c 2 c o c 3 c 1 0 0 0 0  

d3 d2 di do 0 0 0 0 

di do d3 d2 0 0 0 0 

0 0 0 0 1 0 0 0  

0 0 0 0 0 1 0 0  

0 0 0 0 0 0 1 0  

0 0 0 0 0 0 0 1  

6 2  = 

Combining the two steps together, the transformed signal a i s  given by: 

i = C I =  C2ClI, ( 5 )  
It is easy to see that when Ci is orthonormal, C2 and hence C are ortb- 

normal. The condition for orthonormality are: 

(6) 
4+<+4 + 4  = 1, 

1 C O 4  + C l C 3  = 0, 

&+4+4+dj= 1, 
dod2 + did3 = 0, (7) 

CO& + cidi + ~ 2 d z  + ~ 3 d 3  = 0, 

cad0 + ~ 3 d i  = 0, 
cod2 + ~ 1 d 3  = 0, (8) 

If the c's satisfy (6), it is possible to solve all the equations in (7) and (8) 
with the following choice: 

db = (-1)'C3-& ,k = 0,.  . . , 3 .  (9) 
In general, a filter of even length N + 1, acts on a signal of length M+1, 

where M+l is a power of 2. The transform is given by: 

a= CI ,  (10) 
where the matrix C is the product of Q orthonormal matrices: 

C = CQCQ-I . . . C2Ci , Q 5 Qmax , (11) 
where Q m ~  , the maximum number of decomposition levels allowed, depends 
on both the length of the signal and that of the filter (MATLAB notation): 

The orthonormality conditions can then be expressed in a compact form: 
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Conditions on the c’s: 

N 
G G - Z k  = 6(k )  , k  = 0, . .  . , ( N  - 1)/2 (13) 

n=2k 

Conditions on the 8 s :  

Relations between the c’s and the d’s: 

N 
C n = 2 k  Gdn-zk = 6 ( k )  , k = 0,. . . , ( N  - 1)/2 

Cn=ZkCn--skdn = 6(k )  , k  = 0,. . . , ( N  - 1)/2 
(15) 

N 

The high-pass coefficients can be computed from the low-pass ones just like 
in (9): 

(16) k d k  = (-1) C N - ~  ~ k = 0,. . . , N. 

With this choice, if (13) is satisfied, then (14) and (15) =e. 

The lattice method reparametr izat ion of the filter’s coefficients 

It is possible to reparametrize the coefficients CO,. . . , CN so that the constrains 
in (13,14,15) are automatically satisfied. Starting from the simple case of 4 
coefficients, the constrains in (6) imply that: 

[CO + c212 + [Cl + 4 2  = 1, (17) 
which is automatically satisfied setting 

= cosel cos%2 

(18) 
CI = cos81 sin82 
c2 = -sin81 sinb’z i c3 = sin01 cos& 

It would be natural to extend this procedure to the general case. In fact, 
the orthonormality conditions imply that: 

2 

n even n odd 

so that we can set 
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(N-1)/2 (N-1)/2 (N-l)/Z (N-1)/2 
cZn = cos ( 0”) , a n + l  =sin ( 2 0.) (20) 

.,=O “=D ,.=0 

The right-hand side in both the above equations contains (N + l)/Z terms, 
but the expansions of the left-hand sides, obtained using the generalized 
trigonometric addition formula, contain 2(N-1)/2 terms. Distributing the 
trigonometric monomials to the various filter’s coefficients is not straightfor- 
ward. However, this problem Cm be solved in a systematic and very elegant 
way using the lattice factorization from the theory of filter banks. In fact, the 
polyphase matrix of any two channel orthogonal filter bank can be factorized 

[41 [51 PI: 

HiK’=p(Oi)A(z)p(e2)...h(Z)P(oK),A(Z)= [ ] , (21) 

The factorization of the polyphase matrix leads naturally to a factoriza- 
tion of the wavelet transform in the time domain. This factorization process 
is illmtrated below for a filter having six coefficients operating on a signal 
of length eight. Although illustrated for this example, the process can be 
extended to filters of even length and signals of arbitrary length. 

and p(0) E O(2).  

Equation (21) can be rewritten as: 

H i K )  = H J K - ” A ( z ) p ( 0 K )  (22) 
which links the coefficients of a filter of length 2K to those of a filter of length 
2(K-1), and allows an iterative procedure to build a filter of arbitrary lenght. 
In particular, the polyphase matrices for filters of length six, four and two 
are given by: 

1 cos01 sin01 
-sine1 caOl  H p  = p(0,) = 

Thus from equation (22), Hr) is given by Hp) = H r ) A ( z ) p ( O * ) ,  which can 
be written as: 
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3 [ cmel sine1 ] [; z!l ] [ cos02 
sine2 

-sine1 cm(& -sin02 cos02 

Multiplying the right-hand side and solving for the value of the various C& 

efficients on the left-hand side can be determined using the reparameterized 
coefficients directly by equating powers of z .  This leads to: 

$) = cos o1 cos e2 = .p) cos e, 
cy’ = cos 01 sin 02 = 8’ sin 02 

$’ = -sin81sin02 = -c?)sin02 
cm - . - sin el cos ez = $) c0se2 

and similarly for the d ‘ s .  These relationships can he rewritten in matrix form 

(26) 

as: 

- - 

As noted above in equation (22), the next polyphase matrix Iff’ can 
be found as a function of HL”. Multiplying the matrices and equating like 
powers of z BS above yields: 

- k 3  0 0 0 
-s3 0 0 0 

0 k3 -k3 0 
O O O S ,  0 kz 
o o o b  

where sj =sin@,, ki = m 6 j .  Substituting equation (27) in (28) yields 

A similar expression hold for the ds, so that combining the two together we 
have 
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o l [  k3 -s3 0 0 0 O ]  
0 0 s 3 k 3  0 0  
0 0 k3 -sa 0 0 
0 0 0 0 s 3 k 3  

[ i: -$I ] [ 2 -I? sz kz 

(30) 
Thus, each coefficient can he found as a function of the reparameterized 
angle coefficients. Performing the matrix multiplication in equation (35) 
defines each coefficient as a linear combination of two or more trigonometric 
functions. Plugging (30) into the matrix C1 that performs the first step in 
the wavelet cascade of filters we obtain the following factorization: 

Ci = E R ( B i ) S R ( & ) S R ( O 3 )  (31) 
where 

0 0 si  k; 0 0 0 0 

s j k j O O 0 0 0  
kj -sj  0 0 0 0 0 

R ( o l ) =  (32) 
0 0 k ; - s , o  0 0 0 
0 0 0 0 s, k, 0 0 
0 0 0 0 k , - s , O  0 
O O O O O O s , k ,  

. 0 0 0 0 0 0 k , - s ,  

1 i 0 0 0 1 0 0 0 0  

0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  

0 0 0 0 1 0 0 0  
0 0 0 0 0 1 0 0  s= I (33) I 0 0 0 0 0 0 1 0  
0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0  

and E separates the high-pass coefficients from the low-pass ones. Notice 
that R (0,) are rotation matrices and S is an upshift matrix. In general, for 
a filter of length 2K we have: 

cl = E R ( B + R ( B ~ ) S . .  . sR(eK)  (34) 
The wavelet transform formulation in terms of a product of matrices can 

be easily extended to compute any basis in a wavelet packets table [I] [7]. 
Expression (11) still holds: Cr , l  5 1 5 Q is a block matrix; each block 
corresponds to either the identity, if that component of the signal is not 
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decomposed any further, or a wavelet matrix. Equation (34) provides a 
factorization for a single step in the wavelet transform. Putting all the pieces 
together wc obtain a factorization for a generic wavelet packets basis: 

- 
CQ C, 

The library of wavelet packet bases can be searched to find the best basis 
according to some criterion, for example to minimize an objective function. 
Coifman et al. [I1 showed that, if the objective function is additive a divide 
and conquer formulation can be applied to the search, so that a library of 
2" bases can be searched in nlog(n). It is then possible to perform a joint 
search of the best basis and best mother wavelet. This can be obtained for 
example through an iterative process that alternates the two oprimizations. 

OPTIMIZATION 

The formulation given in (35) is very natural for a gradient optimization. It 
thus serves our goal to find the optimal parameterization of the transform 
given a signal or a class of signals. This is obtained by minimizing an appro- 
priate objective function. A general procedure for its minimization based on 
the computation of the derivatives with respect to the parameters is given be- 
low. Due to the linearity of the transform, these derivatives can be expressed 
in a simple form. The gradient of the objective function with respect to the 
parameters of the transform is Vp+ = JFV,#, where J, is the Jacobian of 
C. For Cp[q = C I  

J, = [(a,,C)Z,(ap,C)f ..... ( a , ~ C ) ~ ]  . (36) 
An explicit form for the derivatives with respect to the lattice parameters 

can be obtained through equation (35): 

ajc(O1,. .. , Ox) = 

= E R ~ ( B ~ ) s ~ . . . D ~ R ~ ( B ~ ) . . . s ~ R ~ ( B ~ )  + 
+ ERQ(BI)SQ.. ... . D ~ - ~ R ~ - ~ ( B , ) .  . . s l R I ( e K )  + (37) 
....................................................... 
+ ERp(Bi)SQ.. .......... DlRl(8,). . .Sl&(BK) 

where 4 is a block-diagonal matrix whose block are equal to . 
With the appropriate choice of the matrices Cl,. .. , CQ, the above expression 
allows the computation of the gradient with respect to the lattice angles for 
any basis in the wavelet packets table. I t  is then possible to combine a best 

-1 [ O  'I 
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basis algorithm with the optimization of the filters' coefficients in various 
ways (e.g. iterative two steps optimization). Moreover, given a basis in the 
wavelet packet table, the computation of the transform and of it's gradient 
with respect to the lattice angles can procede in parallel. 

It is possible to add additional contrains to the filter's coefficients - for 
example a certain number of vanishing moments can be required ~ but in 
general this leads to a constrained optimization. However, it is possible to 
impose a zero-mean conidition to the high-pass filter a t  very little cost, and 
recast the optimization into an unconstrained one. 

DISCUSSION 

We have shown that it is possible to find an optimal mother wavelet with 
respect to a given objective function through an unconstrained optimization 
over a compact manifold, which guaranties the existence of a minimum. We 
explicitely reparametrized the filters' coefficients using the lattice decompu 
sition so that the orthogonality constrains are automatically satisfied, and 
derived an expression for the gradient of the objective function with respect 
to the lattice angles. Any gradient based optimization can then he used to 
find the optimal solution. We showed that the framework we have developed 
is not constrained to wavelet transforms, but can be extended directly to a 
generic wavelet packets' basis. It is then possible to optimize the specific 
basis and the filters jointly. 

Wavelet design is usually based on the optimization of wavelets according 
to some property of the filter itself, such as stopband attenuation, coding 
gain, or degree of smoothness. It has been shown that for some specific 
objective function it is convenient to optimize the filters coefficients in the 
time-domain [3]. This was possible because the optimization problem could 
he cast into a quadratic-constrained least-squares minimization one; more- 
over, the optimization was performed on a single step of the transform. 

The constrained optimization leads to a polynomial with a degree propor- 
tional to the length of the filter and of the number of decomposition steps, 
which is in general linked to the length of the filter. Thus, realistic filters 
cannot be practically optimized due to the roughness of the polynomial error 
surface. 

In our approach, the design is driven by the data themselves and the 
whole cascade of filters is taken into account. Preliminary work shows that 
there exist classes of signals for which the optimal solution is far from the 
classical wavelets developed with the above methods. 

Furthermore, starting from the lattice formulation, it is simple to decom- 
pose the transform into lifting steps. In fact, every Givens rotation in the 
polyphase matrix (21) can be decomposed into three lifting steps [2]. Thus, 
once an optimal set of parameters are obtained through optimization, the cor- 
responding lifting implementation can be used, making it possible to exploit 
all the advantages of the latter formulation. 
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