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A B S T R A C T

Acoustic heart signals, generated by the mechanical processes of the cardiac cycle, carry significant

information about the underlying functioning of the cardiovascular system. We describe a computational

analysis framework for identifying distinct morphologies of heart sounds and classifying them into

physiological states. The analysis framework is based on hierarchical clustering, compact data

representation in the feature space of cluster distances and a classification algorithm. We applied the

proposed framework on two heart sound datasets, acquired during controlled alternations of the

physiological conditions, and analyzed the morphological changes induced to the first heart sound (S1),

and the ability to predict physiological variables from the morphology of S1. On the first dataset of 12

subjects, acquired while modulating the respiratory pressure, the algorithm achieved an average

accuracy of 82 � 7% in classifying the level of breathing resistance, and was able to estimate the

instantaneous breathing pressure with an average error of 19 � 6%. A strong correlation of 0.92 was obtained

between the estimated and the actual breathing efforts. On the second dataset of 11 subjects, acquired during

pharmacological stress tests, the average accuracy in classifying the stress stage was 86 � 7%. The effects of

the chosen raw signal representation, distance metrics and classification algorithm on the performance were

studied on both real and simulated data. The results suggest that quantitative heart sound analysis may

provide a new non-invasive technique for continuous cardiac monitoring and improved detection of

mechanical dysfunctions caused by cardiovascular and cardiopulmonary diseases.

� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The activity of the cardiovascular system is periodic by nature.
However, as the complex physiological processes driving this
system are inherently variable, periodic cardiovascular signals
exhibit a considerable beat-to-beat variation. Heart sounds are a
good example of periodic, yet variable physiological signals.
Changes in the mechanical processes generating the acoustic
vibrations, as well as in the propagation medium, cause
morphological variations of the acquired signals. In this study
we show that an accurate analysis of the signal’s morphological
variation, using pattern recognition algorithms, can reveal mean-
ingful changes in the underlying physiological processes.

1.1. Heart sounds

The systolic contraction of the ventricles triggers vibrations of
the cardiohemic system, including the heart chambers, heart
* Corresponding author.

E-mail address: gamit@tau.ac.il (G. Amit).

1746-8094/$ – see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.bspc.2008.07.003
valves and blood. These vibrations propagate through the thoracic
cavity and are received on the chest wall as a transient low-
frequency acoustic signal, commonly known as the first heart
sound, S1. At the end of systole, following closure of the semilunar
valves between the ventricles and the arteries, the second heart
sound, S2, is produced [1]. The mechanical cardiac cycle is
continuously controlled and regulated by the autonomous nervous
system, which induces changes to both rate and intensity of
myocardial contraction. The pulmonary system has an important
part in modulating the cardiovascular activity by respiratory-
induced changes in the pleural pressure, pulmonary artery
pressure and venous return [2]. The physiological variability of
the mechanical function of the heart is reflected in the produced
acoustic vibrations—the heart sounds. Heart sounds have been
widely used in clinical practice since the introduction of the first
stethoscope by Laennec in 1816, and the invention of phonocar-
diography, the graphic recording of heart sounds, by Einthoven in
1894. Heart sounds and their clinical utilization in cardiovascular
and cardiopulmonary diseases have been extensively studied for
many years [3]. Relations between morphological features of heart
sounds and hemodynamic parameters have been quantitatively
described in both animal models and humans [4,5]. Despite the
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retained importance of cardiac auscultation in clinical diagnosis
[6,7], the use of heart sounds remains mostly qualitative and
manual. The immense technological developments of the last
decades made cardiac imaging techniques such as echocardio-
graphy, computerized tomography (CT) and magnetic resonance
imaging (MRI) the state-of-the-art tools of cardiac diagnosis. As
much as these imaging technologies are valuable, they require
complex equipment and expert operators, and thus cannot be used
continuously or outside of the hospital environment. Electro-
cardiography maintains its central role in cardiac diagnosis and
monitoring. The electrocardiogram (ECG) signal provides reliable
indications for electrical dysfunctions related to the heart’s pacing
and conduction systems, as well as for conditions of myocardial
ischemia [8]. In particular, ECG-based techniques of heart-rate
variability (HRV) have been shown useful in predicting mortality
rates in high-risk cardiac patients [9]. However, mechanical
dysfunctions that are not accompanied by electrical changes
may not be reflected in the electrocardiogram. In addition, patients
with chronic heart disease such as heart failure often have
enduring ECG abnormalities [10], which reduce the efficacy of ECG
monitoring in detecting worsening of the disease. Consequently,
long-term non-invasive monitoring of mechanical cardiac function
remains unavailable in the common medical practice. In our view,
revisiting heart sound analysis using modern computational tools
may provide new insights about the relationship between these
signals and the mechnical function of the heart and can contribute
to improved diagnosis of cardiac malfunctions.

1.2. Analysis techniques

Heart sounds have been previously studied using a variety of
digital signal processing techniques, including spectral analysis,
parametric and non-parametric time–frequency decomposition
and acoustic modeling [11,12]. Signal representation is a funda-
mental consideration of any signal analysis framework. A
representation that is suited to the characteristics of the signal
allows a more reliable extraction of features. Heart sounds are low-
frequency, non-stationary multi-component signals. Their con-
current variability in both time and frequency domains makes joint
time–frequency analysis a favorable method of decomposition and
representation. Time–frequency representations, including short-
time Fourier transform, Wigner-Ville distribution, continuous
wavelet transform and reduced-interference distributions have
been previously applied to heart sound signals [13–15]. These non-
parametric methods have been shown useful in characterizing the
sub-components of the first and second heart sounds and
extracting meaningful spectral features from them, with good
performance compared to parametric modeling techniques [16].
We have previously used principal component analysis to extract
the pattern of spectral changes of S1, associated with the increased
cardiac contractility during stress response [17]. Feature extraction
is typically a preceding step for a classification or regression task.
Heart sound classification, based on morphological spectral and
time–frequency features, has been previously used for assessing
the condition of bioprosthetic heart valves [18–20]. Classification
Fig. 1. Heart sound signal
algorithms used in these studies included K-nearest-neighbor,
Gaussian–Bayes and neural networks. The reported high accuracy
of 89%–98% motivated the utilization and development of
advanced pattern recognition techniques for other applications
of heart sound analysis. Cluster analysis is a common unsupervised
learning technique for partitioning a dataset into subsets of data
elements that are similar according to some distance metric.
Previous biomedical applications of cluster analysis focused
primarily on imaging modalities such as magnetic resonance
imaging (MRI) [21]. When applied on periodic physiological
signals, cluster analysis can identify groups of signal cycles with
distinct common morphologies, as well as point-out outlier noisy
cycles with irregular morphologies. If the dataset is labeled, i.e.
each signal cycles is associated with a specific physiological
condition, a classifier can be constructed to predict the physio-
logical label from the morphology of the signal. The ‘correctness’ of
the clustering is validated in case signal cycles from different
clusters are indeed classified into different physiological classes,
thus uncovering the relation between morphology and function.

This paper presents a signal clustering and classification frame-
work for inducing parameters of cardiac function from the
morphology of acoustic heart signals. The analysis framework is
used to study the changes induced to S1 by alternations of the
physiological conditions during resistive respiration and during
pharmacological stress. We study the signal representation most
appropriate for heart sound classification, and compare between
time-domain, frequency domain and various joint time–frequency
representations, using both real and simulated data. We also address
the choice of distance metrics used for comparing heart sound
signals, and evaluate the performance of several types of classifiers.

2. Methods

The signal analysis framework used in this study is illustrated in
Fig. 1. Heart sound signals (S1) were first identified and extracted
from the acquired data, and then transformed to a raw feature
space in the time–frequency plane. Hierarchical clustering was
applied to the signals, creating a compact representation of the
data in the feature space of cluster distances. In this new feature
space, classification or regression algorithms were used to test
whether the different signal morphologies represent different
physiological states.

2.1. Datasets

Two sets of heart sound data were used in this study. In both
datasets, heart sounds were acquired during controlled alterna-
tions of the physiological conditions, and the ability of the analysis
framework to identify the effects of these alternations was
evaluated. The physiological variability was induced in the first
dataset (HSPRS) by changing the breathing resistance and in the
second dataset (HSDSE) by changing the heart’s contractility.
1. H
an
SPRS: Heart sounds with alternating breathing resistance. Data
consisted of 12 healthy subjects (age 29 � 12 years, 8 men). For
alysis framework.



Fig. 2. Segmentation of heart sound signal into cycles of S1 and S2. Heart cycles are

determined by the ECG signal. The boundaries of S1 and S2 are marked by black

brackets. Consecutive beats of S1 and S2 exhibit noticeable morphological changes.

Fig
S-t

hig

G. Amit et al. / Biomedical Signal Processing and Control 4 (2009) 26–3628
each subject, two heart sound channels, a single-lead electro-
cardiogram and breathing pressure were acquired in 10 recordings
of 40 s each, while the subject breathed normally against
increasing five levels of breathing resistance. Each heart beat
was associated with a label of the breathing resistance (0–4) and
with the instantaneous measured value of breathing pressure.
2. H
SDSE: Heart sounds during pharmacological stress test. Data
consisted of 11 male subjects (age 60 � 14 years) undergoing a
routine pharmacological stress test (Dobutamine stress echocar-
diography). For each subject, four heart sound channels and a
single-lead electrocardiogram were continuously recorded during
the administration of increasing doses of Dobutamine, which
raised the heart’s contractility and rhythm. Recording time varied
between 30 and 45 min. Each heart beat was labeled by its
corresponding stage of the stress test (baseline, 3 to 5 doses of
Dobutamine, recovery). A detailed description of the experimental
settings and data acquisition can be found in [17].

2.2. Signal representation

The continuous heart sound signal was first pre-processed by
applying a digital band pass filter in the frequency range of 20–
250 Hz. The signal was then partitioned into cardiac cycles using
the peaks of the ECG-QRS complexes as reference points (Fig. 2).
The signal segment containing the first heart sound, S1, was
defined from 50 ms before the QRS peak to 150 ms after the QRS
peak. S1 signals were extracted from each cardiac cycle and
aggregated for further processing.

Each beat of S1 was characterized by three types of
representation (Fig. 3):
1. T
ime-domain representation: Direct characterization of the
signal as a time series of sampled amplitude values.
. 3. Representation of S1 (a) and S2 (b) in the time-domain, frequency-domain (FFT) an

ransform (ST), Wigner–Ville distribution (WVD) and Choi–Williams distribution (CWD

her resolution, but its quadratic nature creates cross-terms, which are suppressed i
2. F
d b

). S

n th
requency-domain representation: Spectral characterization of
the signal obtained by applying fast Fourier transform (FFT).
3. T
ime–frequency representation: Joint time–frequency charac-
terization of the signal obtained by applying one of the following
transforms:
� S
hort-time Fourier transform (STFT), defined by:

Sðt; f Þ ¼
Z 1
�1

sðtÞWðt � tÞ e�i2p ft dt

S-transform (ST), defined by [22]:
�
Sðt; f Þ ¼
Z 1
�1

sðtÞ j f jffiffiffiffiffiffiffi
2p
p e�ðt�tÞ2 f 2=2 e�i2p ft dt

Wigner–Ville distribution (WVD), defined by [23]:
�
Sðt; f Þ ¼
Z 1
�1

s t þ t
2

� �
s� t � t

2

� �
e�i2p ft dt

Choi–Williams distribution (CWD), defined by [23]:
�
Sðt; f Þ ¼
Z 1
�1

e�i2p ft

Z 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffi
s

4pt2

r
e�sðm�tÞ2=4t2

� s mþ t
2

� �
s� m� t

2

� �
dmdt

where s(t) is the original signal, t the time delay, f the frequency, W a
window function and s is a parameter controlling the suppression of
cross-terms.

2.3. Cluster analysis

Hierarchical clustering was applied to S1 signals, using each of
the signal representations described above. The purpose of
clustering is to partition a dataset into disjoint subsets (clusters),
such that data elements within the same cluster share some sort of
similarity. Similarity between data elements is measured using a
distance metric that is suitable for the nature of the analyzed data.
Two distance metrics were considered in this study:
1. E
uclidean distance: Dsr ¼ jjst � rtjj2 ¼
P

tðst � rtÞ2, where st, rt

are signals of length n.

2. C
ross-correlation:

Dsr ¼ 1�
P

tðst � s̄Þðrt � r̄ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tðst � s̄Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tðrt � r̄Þ2

q

where s̄ ¼ 1=n
Pn

t¼1 st , r̄ ¼ 1=n
Pn

t¼1 rt
y various joint time–frequency transforms: short-time Fourier transform (STFT),

TFT has fixed resolution, while ST has frequency-dependent resolution. WVD has

e reduced-interference CWD representation.
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Clustering was done using an agglomerative hierarchical
clustering procedure [24] that initially partitions a set of n data
elements into n clusters, each containing one data element, and
then iteratively merges the two most similar clusters, until the
entire dataset forms a single cluster. The bottom of the created
hierarchical tree can next be pruned so that the required number of
clusters N is obtained. Data elements below each cut are assigned
to a single cluster, creating the output data partitioning to clusters
{C1, . . ., CN}. The algorithm requires a cluster similarity criterion for
choosing the next two clusters to be merged. We have used Ward’s
step-wise optimal criterion, which chooses the clusters such that
the increase in the overall sum-of-squared error after the merge is
minimal [25]. The distance between clusters Ci and Cj is defined by:
DwðCi;C jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nin j=ni þ n j

p
jjmi �m jjj, where ni, nj are the sizes of

clusters, and mi, mj are their means.

2.4. Classification framework

While cluster analysis is used to identify distinct signal
morphologies in the data, the classification framework is aimed
to uncover the relation between these morphologies and the
alternating physiological conditions. This is achieved by evaluating
the ability of a classifier to accurately predict the label of each heart
beat, given only its morphological representation. The input of the
clustering-classification framework is a dataset of n heart sound
cycles, B = {(b1,l1),(b2,l2), . . ., (bn,ln)}, where bi is a representation of
a heart sound component (e.g. S1) during a single cardiac cycle, and
li is its associated class label li 2 {L1, . . ., Lm}. The cluster analysis
procedure assigns a cluster identifier to each signal cycle,
producing a clustered dataset C = {(b1,c1), (b2,c2), . . ., (bn,cn)},
where ci 2 {1, . . ., N} are arbitrary cluster identifiers. Using these
notations, a cluster Cj is the set of signal cycles with cluster
identifier cj: Cj = {ij(bi,cj) 2 C}. Clusters that contain a minimal
portion of the data, i.e. jCjj � bn, are denoted as significant clusters.
b was set by experiment to 0.05. The center of a cluster Cj is a
weighted average of the cluster’s elements, in which each signal
cycle is weighted by its similarity to the cluster’s arithmetic mean:
C̄ j ¼

P
i2C j

vibi, vi ¼ 1� Dðbi; ð
P

i2C j
biÞ=jC jjÞ, where D is a dis-

tance function.
The centers of the significant clusters provide a compact

representation of the morphological variability in the entire dataset.
Furthermore, a signal cycle bi can be efficiently characterized by the
vector of its distances from the centers of the significant clusters
~d

i ¼ ðdi
1; d

i
2; . . . ; di

N̂
Þ, di

k ¼ Dðbi; C̄kÞ. The classification algorithm is
applied in this new feature-space of cluster distances.

The outline of the classification framework is as follows:
1. C
lassification is applied separately on the dataset B of each
subject.
2. D
ata is partitioned into a training set Btrain and a testing set Btest.

3. H
ierarchical clustering is applied on the training set, producing

clustered data Ctrain.

4. T
he centers of the significant training clusters C̄train

1 ; . . . ; C̄train

N̂
are

calculated.

5. E
ach beat bi 2 Btest [ Btrain is characterized in the cluster-

distance space by the vector ~d
i ¼ ðdi

1; d
i
2; . . . ; di

N̂
Þ of its distances

from the centers of the significant training clusters.

6. A
 classifier F is constructed from the cluster distance-space

representation of the training set. For beat bi 2 Btrain,
FðbiÞ ¼ Fðdi

1; d
i
2; . . . ; di

N̂
Þ ¼ l̃i, l̃i 2fL1; :::; Lmg.
7. T
he classification accuracy is evaluated on cluster distance-
space representation of the testing set Btest.

Two classification methods were used, and their performances
were compared:
1. K
-nearest-neighbor (KNN): A non-parametric method that
classifies a test data element by a majority vote of the closest
data elements in the training set [26]. Given a labeled training
set B and a test data element d, KNN classifies d by choosing K

train data elements {b1, . . ., bK} � B that are the closest neighbors
of d under a distance metric D: D(d,b1) 	 D(d,b2) 	 . . . 	 D(d,bK)
	 D(d,bj). 8bj 2 B,j =2 {1, . . ., K}. Then, given that li is the label of
train data element bi, d will be classified as the statistical mode
of {l1, . . ., lK}. In the regression case, when the training data
elements are associated with real values vi rather than discrete
class labels, the value associated with d is estimated as a
weighted average: vðdÞ ¼

PK
i¼1 Dðd; biÞvi=

PK
i¼1 Dðd; biÞ.
2. D
iscriminant analysis (DA): Finds a linear transform that
maximizes the separation between classes in the training
set [27]. The maximized objective function is: JðwÞ ¼
wtSBw=wtSW w, where SB ¼

Pm
c¼1 ncðd̄c � d̄Þðd̄c � d̄ÞT, SW ¼Pm

c¼1

P
i2 cðd

i � d̄cÞðdi � d̄cÞ
T

are the between-classes scatter
matrix and the within-class scatter matrix, respectively, nc is
the number of data elements in class c, d̄c ¼ 1=nc

P
i2 cdi is the

mean of class c and d̄ ¼ ð1=NÞ
P

id
i ¼ ð1=NÞ

Pm
c¼1 ncd̄c is the

mean of the entire training set. Once the transformation w is
found, by solving an eigenvalue problem, a test data element d

can be classified to arg minc Dðdw; d̄cwÞ, the class whose center is
closest to d, under a distance metric D.

The distance metric used by the classification algorithm is the

mahalanobis distance, defined by Dð~d i
; ~d

j Þ ¼ ð~di � ~dj ÞV�1ð~di � ~dj Þ
T
,

where V is the covariance matrix of vectors ~d
i

and ~d
j
.

Since the class labels in this data represent a continuum of
physiological changes, rather than dichotomic classes, the
classification accuracy CCm was defined as the percentage of data
elements classified within a certain range m of their actual label
(typically, m = 1):

CCm ¼
jfbi 2Btestjjl̃i � lij 	 mgj

Btest

2.5. Classification of heart sound data

The classification framework was applied separately on the
records of each subject from the HSPRS and HSDSE datasets. For each
of the five levels of breathing resistance in the HSPRS dataset, one 40-
s signal was used for training and one 40-s signal was used for
testing. Analysis was carried out on S1 signals from a single heart
sound channel. Each beat was associated with the label of its
corresponding breathing resistance (five classes: R0–R5), as well as
with a real value of the instantaneous breathing pressure. To
compute the instantaneous breathing pressure, cluster analysis was
performed separately on the data of each resistance level, producing
significant clusters C1; . . . ;C

N̂
that are related to the phase of the

respiratory cycle (inspiration and expiration). The value of the
breathing pressure associated with a signal cycle i was defined as
vi ¼ Pðti � tÞ, where ti is the reference time point of signal cycle i

(typically, the beginning of the cycle), and t is a constant delay
parameter (0	 t 	 800 ms). The delay parameter t was chosen to
provide the maximal separation between the pressure values of the
significant clusters, in terms of Fisher’s separation criterion FC [27]:

FC ¼
PK

j¼1 p jðm j � m̄Þ2PK
j¼1 p jS j

; where m j ¼
1

jC jj
X
i2C j

vi

S j ¼
1

jC jj � 1

X
i2C j

ðvi �m jÞ2; p j ¼
jC jjP
kjCkj

; m̄ ¼ 1P
kjCkj

X
i2fC1 ;...;CN̂

g
vi
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For each stage of the stress test in the HSDSE dataset, a
consecutive 1/3 of the data was used for testing, and the
remaining 2/3 of the data was used for training. Consecutive
beats were selected in order to ensure unbiased representation
of beats occurring at different phases of the respiratory cycle,
since there are respiratory-induced morphological variations
of S1.

Each beat was associated with the label of the corresponding
stress-test stage. The number of classes varied from 5 to 7
between subjects. All subjects had a ‘baseline’ and ‘recovery’
classes, and a varying number of stress stages. Analysis was
performed separately on S1 signals from each of the four heart
sound channels. Classification results from all four channels
were combined by a majority vote scheme. Noisy test beats that
were assigned to non-significant clusters in more than two
channels were excluded (mean 31 � 13 test beats per subject,
3.7% of the test set). Cluster analysis was applied on the training
data with the required number of clusters set to 16. Before
clustering, the signals were aligned by shifting each cycle to
maximize the cross-correlation with an arbitrary reference cycle.
Significant clusters were defined as clusters containing at least 5%
of the data. Label classification was done using either KNN with
K = 5 and mahalanobis distance or DA with mahalanobis distance.
Classification performance was evaluated by computing CC1.
Pressure estimation on the HSPRS data was done using KNN.
The estimated pressure was the weighted average of the nearest
neighbors. The mean pressure estimation error, relative to the
peak-to-peak amplitude of pressure variation was computed by:
EE ¼ ð1=jBtestjÞ

P
bi 2Btest j p̃ðiÞ � pðiÞj=Ali

, where p(i) and p̃ðiÞ are the
reference and the estimated instantaneous pressure values of beat
i, and Ali

is the peak-to-peak variation of pressure amplitude when
breathing against resistance li 2 {R1,R2,R3,R4}. The linear correlation
between the instantaneous pressures p̃ðiÞ and p(i) was also
calculated, as well as the correlation between the peak-to-peak
breathing amplitude Ali

and its estimation Ãr , defined by:
Ãr ¼maxf p̃ðiÞjli ¼ rg �minf p̃ðiÞjli ¼ rg, r 2 {R1,R2,R3,R4}.

3. Results

3.1. Heart sounds and breathing pressure

The average number of heart beats processed per subject in the
HSPRS dataset was 524 � 75. Cluster analysis performed separately
on data of each breathing resistance level was able to identify
Fig. 4. Clustering results of 132 beats of S1, recorded during strenuous breathing again

deviation of the clustered signals are apparent both in the time-domain plot (top) and in

data (right column).
distinct morphologies of S1, regardless of the chosen signal
representation and distance metric. Signal averaging within the
clusters exhibited small morphological variability, compared to
averaging of the unclustered data, and thus provided more accurate
description of the data (Fig. 4). A strong association was observed
between the identified clusters and the respiratory phase: heart
beats that followed a high breathing pressure during expiration were
morphologically different than beats that followed a low breathing
pressure during inspiration (Fig. 5). When applied on the entire data
of each subject, the clustering procedure produced a compact feature
space of cluster-distances. In this feature space, the separation
between heart beats associated with different respiratory phases
and different breathing resistance levels could be clearly observed
(Fig. 6). The classification algorithm was then used to quantitatively
assess the relation between the morphology of the sound signal and
the respiratory pressure. The number of significant clusters
identified by the analysis framework varied from 6 to 13 clusters
per subject (mean 10 � 2). The classification performance was
similar for beats recorded at all breathing resistance levels. For S1
signals, the average correct classification rate CC1 varied from 72% to
82%, and the pressure estimation error EE varied from 19% to 23%
(Table 1). The performance differences between the methods were
not very large: correlation distance was somewhat better than
Euclidean distance, and KNN classifier was slightly better than DA.
The best correct classification rates (82 � 7%) were obtained by time-
domain and S-transform representations. All representation meth-
ods achieved low estimation errors, with the best result of 19 � 6%
achieved by WVD. A good correlation was obtained between the
breathing pressure estimated from the morphology of S1 and the
pressure value associated with each beat. The correlation coefficient
was 0.76 for the 2057 test beats of all 12 subjects (Fig. 7a). In addition
to instantaneous pressure estimation, the peak-to-peak amplitude
of the estimated pressure in each breathing resistance level was
strongly correlated with the actual pressure variation, or the actual
breathing effort (R = 0.92, Fig. 7b). To ascertain that these relations
are indeed a consequence of the morphological differences between
beats, correctly derived by the classification framework, the
selection of the K nearest neighbors in the cluster-distance space
was replaced by a random selection of K training beats that were
used for classification and pressure estimation. Using this random
classification, the results were significantly worse (p < 10�5) with
average CC1 of 52%, and average EE of 35%. There was no significant
correlation whatsoever between the randomly estimated and the
actual pressure per beat.
st high resistance. The distinct average signal morphologies and the low standard

the S-transform representations (middle and bottom), compared to the unclustered



Fig. 5. The relationship between clusters of 132 beats of S1 and the instantaneous breathing pressure. Clusters 3 and 4 are associated with high pressure values (expiration),

while cluster 6 is associated with low pressure values (inspiration). The remaining clusters are associated with intermediate pressure values. The phase lag between the

occurrence of S1 and the pressure waveform was 455 ms.
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3.2. Heart sounds and stress response

In the HSDSE dataset, the average number of processed heart
beats per subject was 2549 � 759. The number of significant clusters
identified by the cluster analysis procedure varied from 4 to 10 per
subject (mean 7 � 2). A considerable association was observed
between the clusters and stages of the stress test, where each stage
was dominated by two to three clusters (Fig. 8). The same clusters
were associated with the baseline and the recovery stages, indicating
that the observed morphological changes were indeed induced by the
stress response. Examining the average morphology of the detected
clusters revealed a pattern of increase in the spectral energy and
bandwidth, directly related to the stress level. This pattern, obtained
by an unsupervised learning technique, is consistent with our
previous findings about stress-induced changes of S1 [17]. Repre-
sentation of beats in the feature space of cluster distances provided a
good separation between beats from different test stages (Fig. 9). The
observed change in the cluster-distance representation of the S1 was
gradual and smooth, becoming more profound at higher stress stages,
and returning back to the baseline morphology at the later stage of
recovery. The average rates of correct classification (CC1) of S1,
achieved by different combinations of signal representations,
distance metrics and classifiers on all 11 subjects varied from 77%
Fig. 6. Cluster-distance representation of 652 beats of S1 from a single subject. Each beat

axis) and by its associated breathing pressure (z-axis). The marker colors show the brea

each level. There is a marked separation between beats of different resistance levels, a
to 86% (Table 2). Correlation distance performed better than
Euclidean distance, and DA classifier was slightly superior to KNN
classifier. The best average classification performance of 86 � 7% was
achieved by the DA classifier on signals represented by the S-
transform and clustered using correlation distance. Time-domain
representation, with correlation distance and DA classifier, provided
equivalently good performance, with correct classification of 85 � 8%.
Frequency-domain representation was inferior, compared to time-
domain or joint time–frequency representations. No significant
differences were observed between STFT, WVD and CWD.

3.3. Simulated signals

In order to realize the differences between signal representa-
tions, a simple simulation was conducted. The baseline simulated
signal was a 30 Hz sinus wave with duration of 300 ms and a
Gaussian amplitude modulation. Random noise with Gaussian
distribution was added to the signal, with initial signal-to-noise
ratio set to 7 dB. Three types of signal transformations were
simulated: (i) time shift between�200 and +200 ms, (ii) frequency
change between 20 and 40 Hz and (iii) SNR change between �6
and 10 dB. For each of the transformations, the correlation distance
between the baseline signal and the transformed signal was
is plotted by its distances from the centers of the two largest clusters (x-axis and y-

thing resistance levels and the marker symbols designate the significant clusters of

nd within each level, between beats associated with different respiratory phases.



Table 1
Classification performance on S1 signals from HSPRS dataset

Signal representation Distance metric KNN CC1 (%) DA CC1 (%) EE (%)

Time Correlation 82 � 7 76 � 11 20 � 7

Euclidean 82 � 7 80 � 9 21 � 6

Frequency Correlation 77 � 6 72 � 9 20 � 4

Euclidean 75 � 7 74 � 5 23 � 5

Short-time Fourier transform (STFT) Correlation 78 � 10 73 � 10 21 � 5

Euclidean 78 � 8 76 � 8 23 � 6

S-transform (ST) Correlation 82 � 7 76 � 10 20 � 7

Euclidean 78 � 8 80 � 9 22 � 5

Wigner–Ville distribution (WVD) Correlation 81 � 7 77 � 8 19 � 6
Euclidean 80 � 7 79 � 8 20 � 6

Choi–Williams distribution (CWD) Correlation 78 � 8 73 � 9 20 � 6

Euclidean 78 � 8 76 � 9 22 � 7

Mean and standard deviation of correct classification (CC1) and relative estimation error (EE) of all subjects, using different configurations of signal representation, distance

metric and classification algorithm (KNN = K-nearest neighbor, DA = discriminant analysis). Best results, obtained by ST, WVD and time-domain representations, are

indicated by boldface.
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calculated (Fig. 10). Spectral signal representation was obviously
insensitive to time shifts. Time representation, on the other hand,
was over sensitive, as the distance in this case is the autocorrela-
tion function, which fluctuates between high positive and negative
values. Time–frequency representations were more robust to
temporal shifts, providing a smooth change of the distance
(Fig. 10a). The sensitivity to changes in the signal’s frequency
was higher for WVD, spectral and time-domain representations,
compared to ST and STFT, which have lower frequency resolution
(Fig. 10b). Finally, lower signal-to-noise ratio affected ST and WVD
much more than STFT and spectral representations, with mediocre
noise sensitivity of the time-domain representation (Fig. 10c).

4. Discussion

The relations between the physiological processes producing
the heart sounds and the morphology of the externally acquired
acoustic signals are highly complex. The mechanical interplay
between myocardial contraction, blood flow and valve activity is
continuously regulated by the autonomous nervous system, and is
affected by hormonal and pulmonary activities. The filtering
effects of the thoracic cavity and the skin conducting the acoustic
vibrations considerably alter the morphology of the signal [28].
Nevertheless, the heart sounds, being a direct manifestation of the
mechanical cardiac cycle, bear valuable information about the
functioning of the cardiovascular system. Extracting this informa-
tion using pattern recognition techniques may provide new means
Fig. 7. (a) Estimated breathing pressure of 2057 test beats of S1 from all 12 subjects, plot

coefficient is 0.76. The absolute pressure differences were normalized by the peak-to-pea

Estimated peak-to-peak amplitude of breathing pressure of 12 subjects (4 resistance

amplitude of breathing pressure. The correlation coefficient is 0.92. Pressure values ar
of continuous monitoring and assessment of cardiovascular
mechanical function. In order to successfully predict the physio-
logical condition from the morphology of the signal, the analysis
techniques should be tailored to fit the properties of the analyzed
signals. There is no consensus in the literature regarding the most
suitable time–frequency representation of S1. Different studies
point out different techniques such as the binomial transform [13],
cone-kernel distribution [15] and continuous wavelet transform
[14] as the best choices. Indeed, when considering the problem of
accurate decomposition of the signal into its subcomponents, there
are marked differences between methods. Simple STFT is limited
by its fixed resolution, which imposes a tradeoff between temporal
and spectral resolutions. One way to avoid the resolution tradeoff
is to use linear transforms with frequency-dependent resolution
such as the wavelet transform and S-transform. Alternatively,
quadratic transforms such as WVD and its reduced-interference
derivatives like CWD, can be used. In our analysis framework, the
preservation of the relative morphological similarity between
signals, under a certain representation method, is more important
than the absolute accuracy of the signal’s decomposition. The
optimal signal representation and distance metric should have the
correct balance between sensitivity and robustness. Sensitivity is
important for detecting minute differences between beats, and
robustness is essential to reject noise-related differences. The
classification results obtained by simple time-domain representa-
tion were comparable in most cases with the results obtained by
time–frequency representations (TFR). Theoretically, both types of
ted against the actual breathing pressure associated with each beat. The correlation

k amplitude of pressure variation to obtain the reported average estimation error. (b)

levels per subject, indicated by marker symbols), plotted against the measured

e specified in arbitrary non-calibrated transducer units.



Fig. 8. Clustering results of 2725 beats of S1 acquired from a single subject during 29 min of Dobutamine stress test. Clusters are marked by different colors and by number

labels on the y-axis. The stress level is represented by the bold black line, labeled with the test stages. The time-domain and S-transform representations of the significant

clusters exhibit substantial morphological changes, strongly associated with stages of the stress test, with a return to the baseline morphology during recovery.
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representations hold the same amount of information about the
signal. In TFR, this information is represented in two dimensions,
with the cost of either sub-optimal time/frequency resolution, or
interference of artifactual cross-terms. When comparing a pair of
signals, the 2D representation is more robust to small alignment
differences between the signals, and there are significant
differences in the sensitivity to changes of the frequency and
the noise level (Fig. 10). The choice of signal representation is
therefore tightly related to the nature of the variability in the data.
In cases where the data exhibits large variability between classes
and small variability within each class, highly sensitive repre-
sentations would provide more accurate results, whereas when the
changes in the data are more gradual and there is small between-
class variability or large within-class variability, a representation
that is less sensitive but more robust should be preferred.

An important aspect of the proposed clustering-classification
framework is the compact representation of the data in the feature
space defined by the distances from the centers of the significant
clusters. It is impractical to use raw signal representation for
Fig. 9. Cluster-distance representation of 2725 beats of S1 from a single subject, plotted

indicate the stage of the beat in the stress test (baseline, 5 ascending stress levels and re

with a distinct separation between beats of consecutive stages and a return to the bas
classification as the data is too high-dimensional. Previous studies
on heart sound classification used domain-specific features such as
dominant frequencies, spectral bandwidth and signal intensities
[18]. More general feature extraction techniques used either model
estimation [19] or search-based feature selection [20]. While the
domain-specific features have physical meaning and can therefore
be easily interpreted, they need to be specifically determined for
every type of signal and for every dataset. Automatic feature
extraction and selection methods provide a more systematic
solution, but their loose relation with the underlying physiological
processes makes the classification results less traceable. The
weighted averages of the significant clusters constitute a concise
description of the most prominent signal morphologies. Cluster
belonging alone, as a one-dimensional feature, is too coarse to
reliably classify a data element. As there is also considerable
within-cluster morphological variability, and since boundaries
between similar clusters might be arbitrary, characterizing each
data element by measuring its distances from multiple cluster
centers is extremely informative, yet computationally efficient. For
by their distances from the centers of the three largest clusters. The marker colors

covery). The morphology of S1 seems to vary smoothly along the stages of the test,

eline morphology towards the end of recovery.



Table 2
Classification performance on S1 signals from HSDSE dataset

Signal representation Distance metric KNN CC1 (%) DA CC1 (%)

Time Correlation 81 � 8 85 � 8
Euclidean 81 � 9 82 � 8

Frequency Correlation 77 � 9 77 � 11

Euclidean 75 � 8 77 � 9

Short-time Fourier transform (STFT) Correlation 80 � 8 80 � 8

Euclidean 78 � 10 80 � 9

S-transform (ST) Correlation 85 � 7 86 � 7
Euclidean 84 � 0 84 � 8

Wigner–Ville distribution (WVD) Correlation 80 � 9 82 � 9

Euclidean 79 � 9 80 � 9

Choi–Williams distribution (CWD) Correlation 80 � 9 82 � 9

Euclidean 79 � 9 80 � 9

Mean and standard deviation of correct classification measure (CC1) of all subjects, using different configurations of signal representation, distance metric and classification

algorithm (KNN = K-nearest neighbor, DA = discriminant analysis). Best results, obtained by ST and time-domain representations, are indicated by boldface.
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heart sounds, typical distance-space representation had 7–10
dimensions, while raw time–frequency representation of S1 had
typically 3500 features (100 time points � 35 frequency bins).
Distance-space representation is a general approach, applicable to
different types of signals, and at the same time it has a simple
physical interpretation of morphological signal similarity, which
can be partially visualized using three-dimensional plots (Figs. 4
and 5).

Application of the analysis framework on experimentally
controlled heart sound data provides some physiological insights
about the nature of the morphological variability of heart sounds.
Analysis of the HSPRS data demonstrated the effects of the
respiratory activity on the morphology of the first heart sound.
The phase of the respiration cycle (inspiration or expiration),
indicated by the instantaneous breathing pressure, has a marked
effect on the heart sound signal. The unsupervised clustering
algorithm produced clusters that were separable by their
associated breathing pressure levels (Fig. 5). The best separation
between high-pressure (expiration) and low-pressure (inspira-
tion) clusters was observed when a delay of 200–600 ms was
taken between the measure of the instantaneous pressure and the
resulting morphology change. This indicates that the modulation
of the sound is a result of a regulation process, which involves the
Fig. 10. The sensitivity of the correlation distance under different signal representations t

signal-to-noise ratio (c). The baseline simulated signal is a 300 ms, 30 Hz sinus with a G

panels present examples of the simulated signals. Time–frequency representations are

representation and insensitivity of spectral representation (a). WVD, spectral and time-do

WVD and ST are more sensitive than STFT to changes in the signal-to-noise ratio (c).
changes in venous return, the volumes of the right and left
ventricles and the force of myocardial contraction [2]. The
increase of the breathing resistance makes the effects of
respiration more prominent. The morphological changes induced
by the resistance level are minor compared to the respiration-
induced changes. The average estimation error of the breathing
pressure from the morphology of S1 was roughly 20%, regardless
of breathing resistance. This indicates that there is indeed a strong
relation between the breathing pressure and the time–frequency
morphology of the first heart sound. This relation may be too
complex for an accurate direct modeling, but using computational
learning methodology it is possible to describe it and make fairly
accurate predictions of the respiratory pressure. This may have
implications for non-invasive assessment of cardiopulmonary
diseases.

The results obtained on the HSDSE dataset demonstrate the
robustness of the proposed framework on data acquired in a
realistic clinical environment. The induction of the pharmaco-
logical stress agent Dobutamine increases the cardiac contrac-
tility, causing significant changes to the first heart sound. We
have previously characterized these changes of S1 as an increase
in the spectral energy, accompanied by an increase in the
frequency bandwidth as higher frequency components in the
o simulative changes of the temporal location (a), the frequency content (b) and the

aussian amplitude modulation and additive Gaussian white noise of 7 dB. Bottom

relatively robust to temporal shifts, compared to over-sensitivity of time-domain

main representations are more sensitive to frequency changes than ST and STFT (b).
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range of 50–150 Hz emerge and strengthen [17]. The current
results validate the relation between the Dobutamine dose,
which reflects increased cardiac contractility, and the time–
frequency morphology of S1. The clustering and classification
framework produced an excellent separation between beats at
different stages of the stress test (Fig. 9), confirmed by the ability
to predict the stage of the test from the signal’s morphology with
high average accuracy of 86%. The utilization of multiple heart
sound channels, acquired simultaneously from different loca-
tions, has an important contribution to the high classification
accuracy. While each separate channel provided a lower
classification rate of about 80%, the fusion of the four classifiers
made the analysis more robust and more accurate. This approach
can be extended to combining classifiers that use different signal
representations, distance metrics or classification algorithms to
further improve the accuracy.

On HSPRS dataset, KNN classification provides better results
than DA. Opposite results were obtained for HSDSE dataset,
where DA was consistently better. This can be explained by the
different structures of the cluster spaces created for the two
datasets. In the HSDSE data, the Dobutamine-induced stress
causes substantial spectral changes of S1 that are reflected as
extremely distinct clusters, separable by a linear projection. The
respiratory-induced variations in this dataset are masked by the
dominant stress-induced changes, and have a negligible influ-
ence on the clustering results. The morphological changes of S1
in the HSPRS data are more subtle. Most of the variation is related
to the respiratory phase, while the variation caused by changes in
the breathing resistance is smaller. Beats of different breathing
resistances are therefore intermixed in the cluster-distance
space, and the non-linear separation of KNN achieves better
results than linear DA.

One of the limitations of this study is the difficulty to
distinguish changes in the heart sounds triggered by the
modulations of the physiological processes from changes caused
by external factors such as body movements and ambient noise. As
the signals were externally recorded, they constitute an indirect
and possibly distorted representation of the producing processes.
This is almost fully handled by the clustering algorithm, which
identifies irregular morphologies and assigns them to insignificant
clusters. Significant clusters contain only recurrent signal
morphologies, and consequently irregular or noisy signals are
expressed as outliers in the feature space of cluster distances, and
are eliminated from the analysis. Another limitation is that the
data representation in the framework in inherently relative. Each
beat is characterized by its similarity to the prominent signal
morphologies, without any absolute measure of its properties. As
there is a large inter-subject variability of the signal’s morphology
it seems unrealistic to generalize a single classification framework
for multiple subjects. This requires training of the framework
separately for each subject. The clustering algorithm was not much
affected by the choice of the distance metric. The choice of
standard distance measures such as Euclidean or correlation
distances is a compromise on the accuracy of the signal similarity
measure, with the benefit of simplicity and efficiency. These
distance measures preserve similarity for simple signal transfor-
mations such as amplitude scaling, but they do no account for more
complex transformations such as scaling of the time axis. The
development of an advanced similarity measure, specifically suited
for multi-component, non-stationary signals such as the first heart
sound, is a future research direction, expected to further improve
the accuracy of the analysis framework. The utilization of ECG for
cycle segmentation and temporal location of S1 was another
simplifying choice, taken to ensure reliable, straightforward signal
segmentation. However, methods for heart sound segmentation
without ECG have been proposed [29], and their incorporation in
the analysis framework was left for future work.

Monitoring the dynamics of the mechanical cardiac function
continuously and non-invasively is an important clinical applica-
tion that is still unavailable in the common medical practice. The
proposed framework for analysis of acoustic heart signals can be
straightforwardly applied for patient monitoring. The framework
should be first trained on the patient’s signals acquired in
controlled conditions (for example, during a stress test). Following
training, the patient can be continuously monitored by classifying
each beat into the appropriate class of physiological condition (e.g.
contractility level), or estimating an associated physiological
quantity (e.g. pleural pressure). Such application can improve
the diagnosis and management of cardiac and respiratory
dysfunctions.

5. Conclusions

We have described a signal analysis framework for heart
sounds, which consists of time–frequency signal representation,
hierarchical clustering, cluster-distance feature space and classi-
fication algorithm. The framework, applied on two datasets of
variable acoustic heart signals, was able to accurately predict the
physiological condition from the signal’s morphology. On the first
dataset, the instantaneous breathing pressure and the level of
breathing resistance were estimated, while in the second dataset,
the level of stress, correlated with cardiac contractility, was
predicted. With the correct choice of signal representation and
analysis parameters, the proposed framework may be applied to
continuous non-invasive monitoring of cardiac and respiratory
functions, thus providing a new technology for detection and
diagnosis of mechanical dysfunctions caused by cardiovascular
and cardiopulmonary diseases.
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