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Time of arrival (ToA) estimation is essential for many types of remote sensing applications includ-

ing radar, sonar, and underground exploration. The standard method for ToA estimation employs a

matched filter for computing the maximum likelihood estimator (MLE) for ToA. The accuracy of

the MLE decreases rapidly whenever the amount of noise in a received signal rises above a certain

threshold. This well-known threshold effect is unavoidable in several important applications due to

various limitations on the power and the spectrum of a narrowband source pulse. A measurement

performed in the presence of the threshold effect employs a receiver which operates in the semi-

coherent state. Therefore, the conventional methods assuming a coherent state receiver should be

adapted to the semi-coherent case. In this paper, a biosonar-inspired method for the semi-coherent

ToA estimation is described. The method abandons the exploration of an echo signal by a single

matched filter in favor of the analysis by multiple phase-shifted unmatched filters. Each

phase-shifted unmatched filter gives rise to a biased ToA estimator. The described method uses

regression for combining these estimators into a single unbiased ToA estimator that outperform

the MLE in the presence of the threshold effect. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4730885]
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I. INTRODUCTION

In remote sensing applications such as radar or sonar,

the common scenario starts by a transmitter sending out a

pulse waveform (ping) sðtÞ. The pulse is reflected from a tar-

get and a receiver picks it up at time t0. The estimated two-

way travel time (lag) can be used to calculate the distance to

the target assuming the speed of the pulse propagation in the

medium is known.1 The signal recorded at the receiver might

be represented as

xðtÞ ¼ d � sðt� t0Þ þ nðtÞ;

where nðtÞ is additive white Gaussian noise that corrupts the

signal. The d � 1 factor is used to account for all non-free

space propagation losses (e.g., attenuation of the signal in

the medium). The goal of the time of arrival (ToA) estima-

tion is to produce an unbiased estimate t̂0ðx; sÞ that mini-

mizes the mean square error (MSE):

MSE ¼ Et0;n

�
t0 � t̂0ðx; sÞ

�2

:

The standard method for ToA estimation is based on a

matched filter.2 The matched filter is applied by convolving

a received signal with the source waveform and in order to

maximize the ratio of the peak signal power to the average

noise power at the output. The output of the matched filter

can be represented as

CðtÞ ¼ xðtÞ � sðtÞ ¼ sðtÞ � sðtÞ þ nðtÞ � sðtÞ ¼ RðtÞ þ gðtÞ;

where RðtÞ is the source signal’s autocorrelation function.

Using the matched filter, the maximum likelihood estimator

(MLE) for ToA could be constructed by selecting the posi-

tion of the peak (global maximum) in the matched filter

output:

t̂0ðx; sÞ ¼ arg max
t

CðtÞ:

The resulting estimator is unbiased and therefore its MSE

can be bounded by the Cramer–Rao lower bound (CRLB):3

MSEðt̂0Þ ¼ Varðt̂0Þ �
1

IðtÞ ;

where IðtÞ is a Fischer information matrix defined by

IðtÞ ¼ �E
@2lðx; tÞ
@t2

� �

and lðx; tÞ is a log-likelihood function. The MLE is asymp-

totically efficient under some regularity conditions,4

meaning that it reaches CRLB when computed over a large

sample which, in this case, is equivalent to a long (infinite)
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observation duration of the received signals. It turns out

that the finite set behavior of most non-linear estimators is

not quite understood and their performance usually ana-

lyzed by designing appropriate and hopefully tighter low

bounds such as Ziv–Zakai bounds and a family of Barankin

bounds.5,6 The Barankin bound,7,8 for instance, helps to

account for the threshold effect which causes a rapid

increase in the mean squared error (MSE) of the finite sam-

ple ML ToA estimator whenever the signal-to-noise ratio

(SNR) falls below a certain threshold.9

For narrowband signals, the threshold effect is triggered

whenever additive noise makes a side lobe of the signal auto-

correlation function to appear as the global maximum in the

MF output.10,20 In the absence of noise, the maximum value

of CðtÞ is achieved at t ¼ t0. As the level of noise increases,

the filtered noise gðtÞ may cause a slight shift in the location

of the peak of CðtÞ. However, at high noise levels, a location

around one of the side lobes of RðtÞ may occasionally

become the global maximum of CðtÞ. A side lobe of the

autocorrelation function mistakenly taken as its global maxi-

mum is the major reason behind deterioration in the accuracy

of MLE ToA estimator in the presence of the threshold

effect.11

Several characteristics of a source signal waveform

affect the severity of the threshold effect. The relative height

of the side lobs of the autocorrelation function compared to

the height of its main lobe and the distance between side

lobes and the main lobe have the crucial impact. In particu-

lar, since the height of the side lobes of the autocorrelation

function is affected by the pulse bandwidth, the threshold

effect is stronger for low bandwidth pulses.

There are a few methods for improving near-the-thresh-

old (semi-coherent) ToA estimation. Beyond apodization

and increasing the power of a pulse for improving SNR at a

receiver,12 one can average over several measurements cor-

rupted by high, but independent, additive noise. Then the

individual estimates could be combined (fused) together to

create a noise resilient estimator. In the presence of the

threshold effect, the fusion methods also require special

treatment. For instance, it has been shown that for a semi-

coherent estimation, some robust fusion statistics (median,

mode) give better results compared to the simple averaging

(mean).13

Interestingly, some echolocating animals are remarkably

good in processing reflected acoustic signals near or at the

threshold SNR zone. Echolocation, also called biosonar, is

biological sonar used by several mammals such as bats, dol-

phins, and whales. Echolocating animals emit pings out to

the environment, and listen to the echoes of those pings that

are reflected from objects in the environment. Animals use

these echoes to locate, range, and identify objects. It appears

that some echolocating animals could use their biosonar

capabilities with striking precision and can operate at very

low SNR levels. For instance, FM bats are capable of per-

ceiving objects with a resolution of the order of millimeters

and fractions of millimeters.14 In much more harsh under-

ground environment a blind mole rat uses sonar-like explora-

tion of its surroundings.15 This rat, which lives underground

and has no functioning eyes, generates ground stimulation

by banging its head on the wall of its tunnels. A mole rat can

dig a tunnel 300 ft long in one night while detecting and

avoiding voids and obstacles (e.g., stones) that are several

feet ahead.15

The ability of echolocating animals to extract useful

information from very weak echo returns apparently relies

on massive parallel processing of a returned signal by a large

amount of individual biological processing units.16 A bank

of filters with specific impulse responses is frequently used

for modeling of individual processing components. The

outputs of multiple filters are fused together by different

schemes to obtain a combined estimation. Following this

approach, our method employs a filter bank of phase-shifted

unmatched filters for parallel analysis of a returned signal. In

Refs. 10 and 11 we have used a pair of such filters for deriv-

ing a SNR-dependant semi-coherent ToA estimator which

requires knowledge of operational SNR level which should

be estimated separately.17

In this work, we continue with the biosonar approach to

design a robust estimation method especially suited for ToA

estimation in the presence of the threshold effect. Using a

family of phase-shifted unmatched filters, we construct a fea-

ture space for characterizing an echo return signal. Then,

using a vector of values obtained by these unmatched filters,

we train a regression model to predict an error (bias) intro-

duced to the MLE by an outlier event. Using the predicted

value of the bias, the MLE is corrected by this value result-

ing in the estimator that has smaller MSE for a range of

near-the-threshold SNR values. Since the regression model

is trained using a mix of samples generated using different

SNR values, no prior knowledge on operational SNR is

required for the estimation. Using the proposed method, the

effective range, and power efficiency of a remote sensing

application could be significantly improved.

The rest of the paper is organized as follows. The next

section presents phase-shifted unmatched filters and biased

estimators which are obtained using these filters. Some inter-

esting properties of these filters and estimators are discussed,

extending previous presentation on the subject.11 In Sec. III,

the regression-based fusion method is described for extract-

ing unbiased ToA estimated from a feature vector generated

by phase-shifted unmatched filters. The concluding section

discusses simulation results and some possible extensions of

the proposed method.

II. PHASE-SHIFTED UNMATCHED FILTERS AND
BIASED ESTIMATORS

A phase-shifted unmatched filter pair is generated by

shifting a phase of every harmonic in the source signal using

a phase shift value of the same magnitude but of opposite

sign 6u. The phase-shifting operation can be performed

using the Hilbert transform

S6uðtÞ ¼ cosð6uÞsðtÞ � sinð6uÞŝðtÞ;

where sðtÞ is a source waveform and ŝðtÞ is its Hilbert trans-

form. Then the result of convolution of the received signal
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with the pair of phase-shifted unmatched filters has the fol-

lowing form:

C6uðtÞ ¼ xðtÞ � s6uðtÞ ¼ sðtÞ � s6uðtÞ þ gðtÞ � s6uðtÞ
¼ R6uðtÞ þ N6uðtÞ;

where R6uðtÞ are cross-correlations between the source

waveform and its phase-shifted replicas and N6uðtÞ is a fil-

tered noise. The cross-correlation of unmatched filter with

the source signal has side lobes of different height.11 This

property allows one to construct a pair of ToA estimators

that are only partially correlated. In particular, the pair of

ToA estimators corresponding to a pair of phase-shifted

unmatched filters could be defined by taking the position of

the peak in the filter output

t̂6uðx; sÞ ¼ arg max
t

C6uðtÞ:

As will be shown below, each estimator in the resulting pair

has a bias toward the higher side lobe of cross-correlation

function. The magnitude of the bias is equal for both estima-

tors but has opposite sign. The magnitude of the bias is

greater for lower SNR values, as the probability of an outlier

(a side lobe mistakenly taken for the main peak) is greater. A

biased estimator constructed using phase-shifted unmatched

filters is inferior to the optimal matched filter3 MLE mostly

due to the appearance of a strong bias component in MSE.

However, these biased estimators are not completely corre-

lated for a range of SNR values near the threshold. There-

fore, a pair of biased estimators with symmetrical bias can

be averaged to produce an unbiased estimator:

t̂uðx; sÞ ¼
1

2
ðt̂6uðx; sÞ þ t̂�uðx; sÞÞ:

For a fixed value of the phase shift, the estimator above will

produce lower MSE than an MF-based estimator for a range

of SNR values provided the gain obtained by averaging par-

tially correlated estimators would outplay the loss due to the

slight widening of the main peak of the cross-correlation

functions. Assuming that the range of operational SNR val-

ues is known, the best phase shift value could be selected

using simulations during the calibration phase to match a

particular environment. In Ref. 2 a large number of simula-

tions using different values of SNR and phase shift values

were performed and the phase shift value corresponding to

the minimal MSE was selected for each SNR value.

To obtain some insight regarding the behavior of biased

estimators, we analyze the effect of the phase shift value on

the estimator’s bias and the correlation among the estimator

pair. We carry out the analysis using a simple three-point

model that considers filtered noise and cross-correlation

function values only near the peak and two closest side lobes

of the cross-correlation function.

First, we estimate the bias of an estimator constructed

using a phase-shifted unmatched filter. Let us denote by p6u
þ1

and p6u
�1 the probabilities that the maximum will fall on the

left or on the right side lobe, respectively. The distance

between neighboring peaks of the cross-correlation function

is equal to 2p=w, where x is the angular central frequency of

a narrowband source signal. Then the bias for the estimator

could be expressed as

b6u ¼ Et̂6uðx; sÞ
¼ p6u

�1 � ð6u=x� 2p=xÞ þ p6u

þ1 � ð6u=xþ 2p=xÞ
þ ð1� p6u

�1 � p6u

þ1Þ � ð6u=xÞ;

b6u ¼
2p
x
ðp6u

þ1 � p6u

�1Þ6 u=x ¼ 2pDpu

x
6 u=x:

Figure 1 shows pu
0 and Dpu for a range of phases and SNR

levels. Using these values and the expression above, the bias

of estimators for different values of a phase shift and for dif-

ferent SNR values is shown at Fig. 2 (left). Comparing this

computed bias with the actual bias lines obtained by simu-

lation as shown in Fig. 2 (right), it can be seen that the

three-point model allows for a good prediction of a bias

value. Since pþu
þ1 ¼ p�u

�1 and p�u
þ1 ¼ pþu

�1 , it follows that

bþu þ b�u ¼ 0 and therefore the average of two biased esti-

mators generated using opposite phase shift values is

unbiased. Using the same notation, the MSE of a MFMLE is

e0 ¼ p�1ð�2p=xÞ2 þ pþ1ðþ2p=xÞ2 ¼ 4p2

x2
ð1� p0Þ:

For a phase-shifted version, the MSE is

e6u ¼ p6u
�1 ð6u=x� 2p=xÞ2 þ p6u

þ1 ð6u=xþ 2p=xÞ2

þ ð1� p6u
�1 � p6u

þ1 Þð6u=xÞ2 � b2
6u;

e6u ¼
4p2

x2
ð1� p6u

0 � Dp2
uÞ;

where Dpu ¼ p6u
þ1 � p6u

�1 ¼ p6u
�1 � p6u

þ1 . Since from the sym-

metry pþu
0 ¼ p�u

0 , we can denote MSE for the positively and

negatively shifted estimators as

eu ¼
4p2

x2
ð1� pu

0 � Dp2
uÞ:

Figure 3 (left) shows the actual root-mean-square error

(RMSE) and Fig. 3 (right), the predicted RMSE. The three-

point model seems to be adequate in this case as well.

FIG. 1. (Color online) Probability of left and right outlier: the probability

that the maximum of the cross-correlation function was detected at the main

peak (top) and the differences of the probabilities of outliers induced by two

closest side lobes (bottom). Different lines correspond to different phase

shift values.
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Denoting the correlation coefficient for the phase-

shifted estimator pair by cu, we can represent the MSE of

the unbiased estimator obtained by averaging two biased es-

timator as

eu;c ¼ eu
1þ cu

2
:

Therefore, to obtain an improvement in the accuracy, the fol-

lowing inequality should hold:

ð1� pu
0 � Dp2

uÞ
1þ c/

2
< ð1� p0Þ:

Ignoring the small second-order term we can simplify to

ð1� pu
0 Þ

1þ cu

2
< ð1� p0Þ:

The probability of outliers for the biased estimator could be

expressed using the outlier probability of MLE

p6u
61 ¼ ps 6 du

61:

Although generally du
þ1 6¼ du

�1 it is reasonable to assume

that, they are very close. Therefore, we can assume that

p/
0 � p0 since

p/
0 ¼ 1� p6u

þ1 � p6u
�1 ¼ 1� ps � du

�1 � ps þ du
þ1

� 1� 2ps ¼ p0:

It follows that an improvement in the accuracy is achieved

by reducing the correlation coefficient below the unity. Let

us consider the correlation between two events, which jointly

cause the largest outlier of size 2p=w. This outlier event hap-

pens when noise at both estimators cause the maximum to be

detected on a side lobe at the same side of the main peak of

the cross-correlation function. Instead of showing a certain

degree of independence between actual estimators, we will

consider two random variables defined as the difference

between noise samples at the peak and a side lobe of each bi-

ased estimator. We will show that these random variables

are not completely correlated. Therefore, we presume that

corresponding biased estimators also have some degree of

independence and, thus, they have correlation coefficient

less than unity.

For a narrowband signal, the resulting cross-correlation

function could be represented as R6uðtÞ ¼ VðtÞcosðxt 6 uÞ,
where VðtÞ is the envelope of signal autocorrelation function

and x is the angular central frequency. The filtered noise,

samples N6uðtÞ are normally distributed N6u � Nð0;RðoÞr2
gÞ

with an autocorrelation function RðtÞ ¼ VðtÞcos tðxtÞ. The

probability of an outlier depends on the difference between

the heights of the side lobe and the main peak, and the thresh-

old effect appears when that difference is less than the differ-

ence between corresponding noise samples. Therefore, we

need to characterize the distribution of the random variable

corresponding to the difference between filtered noise samples

at the nearby extreme points. Let us observe that the correla-

tion between noise samples at the main peak and at either of

the side lobes depends only on the relative distance between

the side lobes and is equal to Rð2p=xÞ ¼ Vð2p=xÞ. There-

fore, the difference of these noise samples is normally

distributed:

Zs ¼ Nðt0Þ � NðtsÞ � Nð0; 2r2
gðVð0Þ � Vð2p=wÞÞÞ;

where t0; ts are the positions of the main peak and either

(s ¼ 61) of the closest side lobes in an autocorrelation func-

tion. For the phase shift 6u, the position of the main peak is

FIG. 2. (Color online) Predicted vs actual bias: The predicted bias com-

puted using estimated outlier probabilities (left) closely follows the actual

bias estimated using simulations (right). Different lines correspond to differ-

ent phase shift values.

FIG. 3. (Color online) Predicted vs actual RMSE: the predicted RMSE

(left) approximately match the RMSE computed using simulations (right).

Different lines correspond to different phase shift values.
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t6u
0 ¼ 6u=x. Side lobes are located at t6u

þ1 ¼ 6u=x
þ2p=x and t6u

�1 ¼ 6u=x� 2p=x. Random variables corre-

sponding to the difference between noise samples at peaks

of phase-shifted cross-correlation are

Z6u
61 ¼ N6u

61 � N6u
0 :

These variables have zero mean and their variance is equal

to that of Zs since the distance between peaks is the same:

2p=w. Since the envelope of cross correlation between sþu

and s�u is equal to the envelope of the autocorrelation V(t),

we can estimate the covariance among Zþu
1 and Z�u

1 as

CovðZþu
1 ; Z�u

1 Þ ¼ 2r2
g V

2u
w

� �
� V

2uþ 2p
w

� �� �
:

Therefore, the correlation coefficient is

c
^

u ¼
V 2u

w

� 	
� V 2uþ2p

w

� 	
Vð0Þ � Vð2p=xÞ ¼

h2u

h0

;

where hh ¼ Vðh=wÞ � Vðh=wþ 2p=wÞ is the difference

between the main peak and the lower side lobe of cross-

correlation with the signal phase-shifted by h. At Fig. 4 this

correlation coefficient is compared with the correlation

between the actual estimator pairs. It can be seen that for a

range of SNR values, both correlations are approximately

aligned.

If at least a part of the envelope around extreme points

is concave, then the correlation coefficient is less than unity.

For instance, if the envelope of autocorrelation functions

could be approximated by a Gaussian with bandwidth B, that

is VðtÞ ¼ e�t2=B2

, then we would have to keep the phase

shifted side lobes away from the envelope’s inflection point

B=
ffiffiffi
2
p

. Therefore,

2uþ 2p
w

<
Bffiffiffi
2
p ! u <

wB

2
ffiffiffi
2
p � p ¼ p

BFffiffiffi
2
p � 1

� �
:

If the envelope of the source signal is known, we can use the

expression above to find the optimal value of the phase shift

to minimize the correlation coefficient. Unfortunately, things

are little bit more complicated as we are interested in the tail

probabilities of these random variables and as we change

phase, the limits on the tail probabilities change.

III. FUSION OF BIASED ESTIMATORS USING
REGRESSION

Using a set of different phase shift values, we can con-

struct a feature space that will supply even more information

regarding the position of the ping within the received signal.

Then, using this feature space, we can train a regression

model to predict an offset between the value of the MLE and

the true location of the source signal in a received echo.

First, we construct a family of filters by employing sev-

eral phase-shifted unmatched filter pairs

fuign
i¼�n; where ui ¼ �u�i:

Combined with the matched filter, this gives a family of 2n
þ 1 filters that can be applied to the received signal to obtain

2n þ 1 estimates defined as

t̂iðx; sÞ ¼ t̂uiðx; sÞ ¼ arg max
t

CuiðtÞ; i ¼ �n;… ; n:

These 2n þ 1 values constitute a feature space that contains

enough information to improve accuracy of ToA estimation

for a wide range of SNR values. We explore two regression

methods for extracting this information to obtain robust

semi-coherent ToA estimator. The employed regression

methods are neural network and support vector regression.18

Both regression methods use Gaussian as a radial base func-

tion (RBF) kernel19 with exact parameters tuned by cross-

validation process. A resulting regression model is used for

correcting a possible error in the MLE due to misidentifica-

tion of the main peak in the cross-correlation function. This

error is corrected by an additive offset Dt0 which is predicted

based on the output of biased estimators t̂ i. Since we are

interested only in predicting the relative offset, feature vec-

tors for training, validation, and test sets are normalized by

subtracting the MLE from the rest of biased estimators.

Therefore, the input vector of features supplied to a regres-

sion becomes

t̂
n
i ¼ t̂i � t̂0:

The simulation process proceeds as follows. About 20 000 of

random samples are generated using ten SNR values within

the semi-coherent SNR range. A bank of 21 filters corre-

sponding to ten pairs of phase shift filters and the zero-

shifted (matched) filters is used to produce a feature vector

of 21 values. Then these vectors are normalized by subtract-

ing the value of MLE as described above. The resulting data

set is split into training, validation and test sets. The true

value of the corrective offset is computed as a difference

between the MLE value and known true value of the lag.

The samples corresponding to all SNR values are mixed

together for training and validation set while test set samples

are kept grouped by the SNR value. The training set is used

for training two regression models and the validation set is

employed for tuning the regression parameters (the spread

parameter for RBF NN regression, and the threshold parame-

ter for SVR).

The resulting regression models are used to evaluate the

test error for each simulated SNR values separately. The

FIG. 4. (Color online) Predicted vs actual correlation coefficient. For

SNR¼ 13 dB, the actual correlation coefficient closely follows predicted

values.
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resulting relative improvement in RMSE compared to the

standard MLE ToA estimator is shown in Fig. 5. The neural

networks-based regression method is found to be the best

performing methods resulting in up to 10% improvement in

RMSE for a range of near-the-threshold SNR values.

IV. SUMMARY AND CONCLUSIONS

We have presented a biosonar-inspired method for the

problem of the semi-coherent ToA estimation. The method

is based on a regression modeling for fusion of a multitude

of biased but only partially correlated estimators. These esti-

mators are obtained using a filter bank of phase shifted

unmatched filters that are easily constructed from the source

waveform. The bias, MSE, and pairwise correlation between

these biased estimators were analyzed using simple three-

point model. The simulation results were used to compare

predicted and actual values of these statistics. Between two

tested regression methods, the neural network regression

using Gaussian RBFs was found to be superior, resulting in

up to 10% improvement in RMSE compared to the conven-

tional matched filter based estimator. The described method

does not rely on explicit knowledge of operational SNR val-

ues and, thus, could be employed as a robust ToA estimator

in the presence of the threshold effect. The proposed

approach could be extended further by considering usage of

more advanced machine learning techniques for fusion of

partially correlated estimators. For instance, it might include

an explicit classification of outlier events according to the

originating peaks of cross-correlation function. A similar

approach could be applied to the problem of semi-coherent

signal detection by employing the described feature space

for detecting the presence of signal in a heavy noise. The

practical implication of our work includes an increase in the

operational range and/or a reduction in required operational

power for remote sensing devices operating under high noise

(e.g., underwater sonar or underground exploration by low

power signals).
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