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ABSTRACT 
 
Time of Arrival (ToA) estimation is a cornerstone of 
many of the remote sensing applications including radar, 
sonar, and reflective seismology. The conventional 
Matched Filter Maximum Likelihood (MFML) ToA 
estimator suffers from rapid deterioration in the accuracy 
as Signal to Noise Ratio (SNR) falls below certain 
threshold value. In this paper we suggest an alternative 
method for ToA estimation based on the fusion of 
measurements from biased estimators which are obtained 
using a pair of unmatched filters. Suboptimal but not 
perfectly correlated estimators are combined together to 
produce a robust estimator for ToA estimation in high 
noise.  The unmatched filters pair is parameterized by a 
single parameter (phase shift) which is selected based on 
estimated SNR level.  
 
Index Terms-Time of Arrival, Threshold Effect 
 

I. INTRODUCTION 

 
In remote sensing applications such as radar or sonar, the 
common scenario starts by a transmitter sending out a 
pulse waveform������. The pulse is reflected from a target 
and it is picked up by a receiver at time ��� . The 
estimated two-way travel time (lag) can be used to 
calculate distance to the target assuming the speed of the 
pulse propagation in the medium is known.  
The signal recorded at the receiver might be represented 
as  

	��� 
 � � ���  ��� � ���� 
where ������is Additive White Gaussian 

Noise(AWGN) which corrupts the signal. The�� � � 
factor is used to account for all non-free space 
propagation losses (e.g. attenuation of the signal in the 
medium).  We are interested in estimating the Time of 
Arrival (ToA) parameter �� under the assumption that 
noise �� is large relative to c*s(t). The analysis of the 
performance of different time-of-arrival estimation 
methods is essential for Radar, Sonar and other remote 
sensing applications. Rather than compute the exact error 
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of a specific estimator, it is often more convenient to 
lower-bound the error of any estimators for a given 
problem. The conventional Matched Filter Maximum 
Likelihood (MFML) estimator is considered efficient as 
it asymptotically attains the Cramer-Rao Bound (CRB) 
under sufficiently high SNR conditions [10]. However, 
under lower SNR levels, the Cramer-Rao Bound appears 
to be over-optimistic and a more tight forms of bound are 
required if the level of noise is high. The Barankin Bound 
[9] and associated Barankin Theory provide tools for 
constructing useful bounds for mean error of an estimator 
under low SNR. Although in its general form the 
Barankin bound depends on the estimated parameter and 
therefore can’t be easily computed, it is able to account 
for well-known threshold phenomena in the estimation of 
the time-of-arrival parameter. 

According to Woodward who studied the threshold 
effect back in 1953 [6], it is “one of the most interesting 
features of radar theory”.  It appears that when SNR at a 
receiver falls below certain threshold value, the mean 
square error of the estimation is rapidly increasing 
causing dramatic drop in sensing accuracy. A receiver 
operating with SNR above this threshold value is said to 
be in a coherent state. The MFML estimator is usually 
used for the coherent receiver. For the SNR levels 
substantially below the threshold value, a receiver said to 
be noncoherent with the assumption that most of the 
information about the pulse carrier phase is lost due to 
the noise. For in-between levels of SNR, a receiver is 
said to be a semi-coherent receiver, balancing between 
coherent and noncoherent states.  

In this paper we describe a robust single pulse ToA 
estimation method for semi-coherent receiver. We show 
how to construct a pair of suboptimal and biased 
estimators, using phase-shifted versions of source 
waveform as unmatched filters. The outcomes of an 
estimator pair are fused together into a single ToA 
estimator which outperforms MFML estimator for a 
range of low SNR levels. We introduce an SNR-
dependent ToA estimator by selecting phase-shift value 
according to anticipated SNR at a receiver.  

II. MAXIMUM LIKELIHOOD MATCHED 
FILTER ESTIMATOR 

 
The standard method for ToA estimation employs 
Matched Filter (MF) applied to the received signal. The 
Matched Filter maximizes peak signal to mean noise ratio 
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 [1], [7], making its output suitable for the Maximum 
Likelihood (ML) estimator of the ToA. The Matched 
Filter Maximum Likelihood (MFML) estimator of ToA is 
obtained by taking the position of the global maximum in 
the output of the Matched Filter (MF). The output of the 
Matched Filter can be expressed as a correlation of the 
signal with the pulse waveform: 

���� 
 	��� � ���� 
 ���� � ���� 
Where  ����� is scaled and shifted version of the pulse’s 
autocorrelation function and  ���� is filtered noise. A 
typical Gaussian-modulated sinusoidal pulse and its 
autocorrelation function are shown in Figure 1.  

 
Figure 1: Gaussian modulated sinusoidal pulse (top) and its 

autocorrelation function y(t). 
 

In the absence of noise, the maximum value of ���� is 
achieved at�� 
 ��.  As the level of noise increases, the 
filtered noise �����may cause a slight shift in the location 
of the peak of ����. However, at the high noise levels, a 
location around one of the side lobes of ���� may 
occasionally become the global maximum of ������  
  A side lobe of autocorrelation function mistakenly taken 
as its global maximum is a major reason behind 
deterioration in accuracy of MFML estimator known as 
threshold effect [6]. The threshold effect occurs as soon 
as Signal to Noise Ratio (SNR) � falls below the level 
that is given approximately by 

� � � ����� � �� � ��� 
where � is the detection interval and � is the signal 
bandwidth.  

The threshold effect manifests itself in rapid increase 
in the Root Mean Square Error (RMSE) of the MFML 
estimator as shown in the Figure 2. In semi-coherent 
state, the posteriori distribution of the possible lag 
locations becomes multimodal (Figure 3) because of the 
significant height of autocorrelation function’s side lobes.  
The height of the side lobes of the autocorrelation 
function is affected by the pulse bandwidth. Therefore, 
the threshold effect is considerable for low-frequency 
narrowband pulses. Under these circumstances, the 
Maximal Likelihood Matched Filter behaves poorly.  

Many of the commonly used source waveforms have 
side lobes in their autocorrelation function (e.g.  [13]). 
Therefore, although the effectiveness of the proposed 
method is demonstrated using Gaussian-modulated 
sinusoidal pulse, the method can be applied to other 
source waveforms as well. 

 
Figure 2: The MFML estimator threshold effect. The error 

increases rapidly as SNR falls below a threshold. 
 

 
 

Figure 3:  The probability density function for MFML 
estimator error. There are significant local maxima under low 

SNR 
 

III. UNMATCHED FILTER MAXIMUM 
LIKELIHOOD ESTIMATOR 

 
Given an arbitrary pulse waveform����, we construct a 
pair of Phase Shifted Unmatched (PSU) filters  !"���� and 
 !#���� by shifting the phase of each pulse by �$� and  
$ respectively.  
A Gaussian-modulated sinusoidal pulse and its PSU filter 
pair generated using $ 
 %

� are shown in Figure 4.   The 
cross correlation of the signal 	��� and a PSU pair’s filter 
can be expressed as: 

&$'��� 
 	��� � ($'��� 
 �$'��� � )$'��� 
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Figure 4: Phase shifted pulses (top) and their cross correlation 

functions (bottom). Note asymmetric shape of side lobes 
 

The Unmatched Filter Maximum Likelihood (UFML) 
estimators �!#�and �!"�corresponding to a PSU pair can be 
defined as: 
�!' 
 *+�,*- .&$'���/ 
 *+�,*-�	��� �  !'���� 

The side lobes of the cross-correlation function �$'�0� 

1��� � ($'���� have unequal heights, making the UFML 
estimators biased toward the higher side lobe as shown in 
Figure 5.  
 

 
 

Figure 5: Bias of UFML estimator pair. Unmatched filter pair 
produces biased estimator pair with bias of the same value but 

opposite sign. 
 
The bias of the two UFML estimators has equal absolute 
value but opposite sign due to symmetry in the heights 
and position of the cross-correlation side lobes. As SNR 
is increased, the bias decreases since the position of the 
cross-correlation maximum is less affected by the noise. 
Note that autocorrelation and PSU filter cross-correlation 
produce signals of the same power, however application 
of unmatched filter produces lower peak signal-to-mean-
noise ratio as compared to matched filter.  

The Root Mean Square Error (RMSE) of a single 
UFML estimator is higher as compared to the RMSE of 
MFML as shown in Figure 6. However, the UFML 

estimators corresponding to a PSU filter pair are not 
perfectly correlated as can be seen in Figure 7.  
 

 
 

Figure 6: Relative RMSE of UMFL estimators. Each UMFL 
estimator produces suboptimal error. 

 
Therefore we can define a new estimator by averaging 

results from a pair of UFML:   

�! 
 �!# � �!"
�  

At low SNR levels, the resulting Average of UFML 
(AoUFML) estimator has lower RMSE as compared to 
MFML (Figure 8).  

 
 

Figure 7: Cross-Correlation coefficient of UFML pair. At 
larger SNR the main peak becomes dominant; therefore 

correlation coefficient is close to one. For very small SNR, the 
estimate is mostly affected by the noise shape thus resulting in 

correlated estimators. For intermediate values of SNR the 
correlation is small. 

 
The AoUFML estimator outperforms MFML estimator 

at SNR levels corresponding to semi-coherent receiver 
state. At higher SNR levels, the effect of side lobes is 
insignificant therefore the shape of the main peak of 
cross-correlation function have critical impact on the 
estimator’s RMSE. Since an unmatched filter produces 
smaller peak signal-to-mean-noise ratio and the UFML 
pair is almost perfectly correlated at higher SNR levels, 
the MFML estimator outperform the AoUFML estimator  
�! at coherent receiver state.  

The cross-over points between AoUFML and MFML 
RMSE curves can be controlled by choosing appropriate 
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phase shift parameter $ as described below. 

 
Figure 8: RMSE improvement by fixed and adaptive phase 

AoUFML estimators. For each SNR there is the best 
performing value of a phase shift (color lines). The black line 

shows error for adaptive selection of phase-shift value  

IV. PHASE SELECTION 
 
There are two factors affecting the selection of the value 
$ for generating PSU filter pair. It is desirable to 
minimize the correlation between the values of the 
additive noise )$"��� and�)$#���, while keeping peak 
signal-to-mean-noise level of &$'����close to that of a 
Matched Filter output������.   
Since the average noise level is not affected by PSU 
filtering, the peak SNR level depends on the height of the 
main of the peak of the cross-correlation function. The 
peak height is smaller with larger values of the phase 
shift $, meaning that  $� should be decreased as the SNR 
level approaches the coherent range. On the other hand, 
the correlation between the noise phases decreases with 
larger phase, becoming zero when  $ 
 %

�,  making the 
noise phases of )$"��� and�)$#���  orthogonal.  
 

 
 

Figure 9: The optimum value of phase shift as a function of 
SNR for different values of pulse bandwidth. For larger 

bandwidth, the optimal phase shift value is smaller. The optimal 
phase shift value is learned from the simulation data.  

 
In general, the optimal value of $� from the interval 
2�3 %�4 can be selected according to the estimated levels of 

noise present in the signal. This principle is illustrated in 
Figure 8 which shows the RMSE curves for several 
values of $ and the RMSE curve corresponding do 
adaptively selected phase shift value�$. Using curves 
presented in Figure 9 and Figure 10, the optimal value 
of the phase-shift for a given pulse can be selected based 
on estimated level of SNR (the review of SNR estimation 
techniques can be found in [8,14]). The optimal value of 
the phase shift value used in AoUFML estimator depends 
on the pulse central frequency and the pulse bandwidth. 
A pulse with larger bandwidth has a narrower envelope 
of the auto-correlation function. Therefore smaller values 
of phase shift produce larger changes in the height of a 
side lobe. As a result, the optimal value for AoUFML 
phase shift is smaller for pulses with larger bandwidth 
(Figure 9).  

In a similar manner, as the central frequency of the 
pulse is increased, the peaks of autocorrelation function 
become more closely spaced. Therefore larger values of 
phase shift can be used in UFML in order to produce 
significant difference in side-lobes height (Figure 10). 

Given the above consideration, the optimal value of a 
phase shift can be learned (tabulated) from simulated data 
produced for a range of SNR and phase shift values. 
Based on the simulation results, the optimal filter pair for 
the measurement can be selected after the anticipated 
SNR level is estimated using techniques described in 
[8,14]. 

 

 
 

Figure 10:  The optimum value of phase shift as a function of 
SNR for different values of pulse central frequency. For larger 
central frequency, the optimal value of a phase shift value is 

larger. The optimal phase shift value is learned from the 
simulation data. 

V. CONCLUSIONS 
 
We showed that using Phase Shifted Unmatched (PSU) 
filters, a pair of Unmatched Filter Maximum Likelihood 
(UFML) estimators can be applied to obtain biased Time 
of Arrival estimators. In semi-coherent receiver state, the 
UFML estimators are not perfectly correlated and, 
therefore, can be combined together into estimator that 
outperforms conventional Matched Filter Maximum 
Likelihood estimator. There is an optimal phase shift 
level that produce lowest RMSE for given SNR. 
Therefore a phase shift level can be selected adaptively 
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according to estimated SNR level in order to achieve best 
accuracy in a semi coherent state. Since the proposed 
estimator does not require special pulse waveform or 
additional pulses, it can be used during a post-processing 
phase in remote sensing applications operating under 
high noise.   
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