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Abstract 

 

Correlations and associations between variables tend to form or dissolve as a result of external effect. 

The effect can be temporal, or episodically – where it is related to a specific context or event. 

In some cases we can mark this specific context as a variable or set of variables. 

In this study, we want to map the associations that form with the appearance of the context variable, 

which we term as condition variable. The associations that will appear with the appearance of the 

condition variable will be termed as conditioned associations.       

Specifically, we studied a specific case of joint probability mapping, where the information 

presented is the probabilistic associations of random variables under a certain condition variable. 

Bayesian and Dependency networks graphically map the joint probabilities of random variables, 

though both networks may identify associations that are independent of the condition (background 

associations). Since the background associations have the same topological features as conditioned 

associations, it is difficult to discriminate between conditioned and non-conditioned associations, which 

results in a major increase in the search space. 

We introduce a modification of the dependency network method, which produces a directed graph, 

containing only condition-related associations. The graph nodes represent the random variables and the 

graph edges represent the associations that arise under the condition variable. This method is based on 

ridge-regression, where one can utilize a numerically robust and computationally efficient algorithm 

implementation. 

We illustrate the method’s efficiency in the context of a medically relevant process, the emergence of 

drug resistant variants of HIV in drug-treated, HIV-infected people. Our mapping was used to discover 

associations between variants that are conditioned by the initiation of a particular drug treatment 

regimen. We have demonstrated that our method can recover known associations of such treatment with 

selected resistance mutations as well as documented associations between different mutations. 

Moreover, our method revealed novel associations that are statistically significant and biologically 

plausible. 
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Chapter 1: Introduction 

The search methods of associations, dependencies, and correlations between random variables have 

been thoroughly studied during the last five decades, and in some cases, there is a need to recover a 

specific type of associations: those that result from the existence of a joint event or context. For example, 

dependencies between variables can change with the appearance of another variable; different pattern of 

associations are created with the appearance of this variable. This variable will herein be referred to as 

Condition, and the associations generated by this condition – Conditioned associations. 

Mathematically speaking, we want to find a subset   out of a set of random variables {          } 

where         significantly differs from     .    

Exploring the conditioned associations can recover hidden mechanisms or processes that operate 

only when the condition exists. Such mechanisms can be quantitative and qualitative modifications of 

elements of the immune system in response to pathogens, emergency services recruitment upon a 

catastrophic event, or DNA mutations in an infecting virus arising under the selection pressure of a novel 

treatment.    

Pearl [1] specifies the benefits of using a graph representation of joint probability mapping, including 

clarity, convenience and economical representation. Graphical notation and terminology will be used 

further in this paper. 

 

1.1 Problem Example 

Assume there are three random binary variables: Car rental shortage     , Airport closure     , 

Western wind      , and a Condition – Icelandic volcano eruption     .   

Exploring the correlations between   ,    and    will show that   correlates with   while none of 

them correlates with   . Thus, normally there is no apparent correlation between western wind and 

airport closure or car rental shortage, or                     . Yet, when an Icelandic volcano 

erupts, a western wind can carry the ash cloud over the airport, causing it to shut down, in which case 

                     . In a graph representation, retrieving the       edge will suggest that a 

new association was created under the Condition    (see figure 1). 
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Figure 1 – Graphical representation of the dependencies between three random variables. (a) is 

the general case and (b) cases under the condition   (Icelandic Volcano eruption) . The edge 

      is unique to cases under Condition  . 

         

 

1.2 Naïve testing of a single association 

Traditional hypothesis testing methods can be used to check whether a single association is 

conditioned.  In the example above, the cases in which    and    correlate under  , should be found to 

be significantly different from the cases in the general population. 

A new variable can be defined,    , that receives a true value in cases where   =   . The hypothesis 

testing will check whether                 . This can be done using a   
 test [2]; a positive answer 

may suggest that this association indeed arise uniquely under the condition. 

Edwards [3] suggests a stepwise selection method for building a graphical model of the data. 

Beginning in a fully connected graph, in each step the algorithm excludes edges based on assessment of 

their significance value resulting from hypothesis testing. Alternatively, edges are added to initially 

sparse graphs based on their tested significance.    

This simple tool becomes inefficient when the number of variables, n, is large. Exploring all the 

possible associations between any two variables requires  
 

 ⁄   tests. To test different patterns or subsets 

of variables,    tests are required, which may prove computationally difficult for n larger than a few 

dozens. 



3 

 

 

 

 However, this tool can be used to validate the results of an efficient method that locates conditioned 

associations. Given the resulting simpler graph, each edge can be tested to verify the significance of the 

association. Thus, after greatly reducing the search space, the robust hypothesis testing tool can be 

applied to assess the remaining edges.    

 

1.3 Using unsupervised learning for locating conditioned patterns 

Methods of unsupervised learning, such as Clustering [4], can be adapted to locate conditioned 

associations. In such a case, we compare the clustering results of data under the condition against the 

data in the general population. Unique clusters that appear in the conditioned population may imply of a 

conditioned association. 

This approach holds a major drawback: if the condition frequency is large enough, or the clustering 

tree is deep enough, conditioned associations will also appear in the general population clusters. In that 

case, conditioned associations in the conditioned population may be overlooked. 

Another drawback of this approach is that the clusters are mutually exclusive – each variable can 

only relate to one cluster. This will prevent the discovery of associations between several clusters of 

variables, which may appear in empirical data. 

 

1.4 Using Bayesian Networks to infer about conditioned patterns 

Bayesian Networks (BNT) represent the conditional dependencies between random variables, using a 

Directed A-cyclic Graph (DAG) [5], and are commonly used in similar problems to ours, mapping the 

associations between genes [6] and the associations between HIV DNA mutations [7]. 

The condition variable is usually referred to as a variable with a predefined value. Predefining the 

value of a variable is commonly termed as intervention or perturbation of the observed data. 

Pearl [1] uses the term Atomic Intervention to describe an external manipulation of a network 

variable value. He suggests [8] adding to the condition variable a parent variable that activates the 

induced state.  

Pe'er et al [9] explored the causal relationships between genes' expression level. In their paper, they 

note that external perturbations such as medical treatment, that have no direct influence over other 

variables (in this case gene expression level) but indirectly effect the values of many other variables, 

should be regarded as "indicator variables", and added to the Network with the constraint that they 

cannot have other variables as network parents.   
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Note that the above examples require manipulating or placing constraints over the discovered 

network structure.  

The result of inducing the condition variable to our data will be a joint probability map, containing a 

node representing the condition. In order to deduce the conditioned associations, one can traverse 

through the nodes connected to the condition node, or review the whole connected component 

containing the condition node. 

 

 

Figure 2 – Bayesian Network representing the joint distribution mapping of X1, X2, X3 and 

the condition C.  The edge       was retrieved using the BNT. 

 

 Figure 2 displays the joint probability mapping of our example, represented by a Bayesian Network. 

It is clear that the new edge,       which appears in the resulting network, suggests that this unique 

association has been discovered. 

 However, this case demonstrates the ambiguity encountered when trying to discover conditioned 

associations using BNT. The       association can result from existing correlation between      and 

     in the general population and is not specific to the conditioned case, in which c=true. When this 

graph is the only source of information, there is no way to distinguish between Background associations 

(in the general case) and Conditioned associations (in the conditioned case). 

 

This matter could be resolved by exploring the differences between the BNT without the condition 

variable and the BNT containing the condition variable. Yet in many cases, the proportion of the samples 

with positive value of the condition variable may be large enough for the conditioned associations to 

appear in the BNT without the condition variable. In other cases, when the proportion of the samples 
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with positive condition value is small enough, the conditioned associations will not be discovered in the 

BNT with the condition variable. In fact, the former ambiguity was clearly visible in the simulation 

described later in this paper (see paragraph 5e). 

 

Deforche et al. [7] overcomes this issue by preexamining the candidate variables for the BNT, and 

selecting variables that show significant correlation with the condition. This way the chance that 

background associations will arise is lowered; conversely, conditioned associations with variables that 

are not significantly correlated with the condition may be lost. In the above example, since western wind 

      is not correlated with the volcanic eruption    ,      will not be used in our BNT, therefore the 

      association will be lost. 

 

Another drawback might be caused by the stochastic nature of searching the BNT model and its 

Directed A-Cyclic Graph (DAG) structure. Reconstructing BNT structure from given observational data 

requires searching through all possible models, looking for the model that maximizes the log-likelihood 

of the data. Since this problem is NP-Hard [10], cases with more than a few variables require heuristic 

search methods [6]. Since prior causal knowledge is missing in many cases, our model search can result 

in structures that satisfy the observed statistical dependencies, but cannot accurately recover the 

underlying "real" structure or suggest an equivalent model that may hide the conditioned associations.  
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Figure 3 – Alternate Bayesian Network representation of our data. These networks maintain 

the d-separation criteria between the variables, though now the novel conditioned association 

(     ) should be searched within the whole connected component containing C.    

 

Consider the case displayed at figure 3a, where an additional variable is added to our network – Ash 

cloud     : this DAG can have observationally equivalent [1] DAGs (3b) where the statistical 

dependencies between the variables (herein, d-separation [1]) are still maintained, i.e.,     and      are 

independent given     . In the case displayed in (3b), the causal relationship is obviously wrong.  

This example shows the ambiguity faced when trying to draw conclusions concerning the 

conditioned association, while exploring the graph structure of the BNT. In cases where the network 

structure is unknown, a single criterion cannot be applied in order to locate the conditioned associations, 

since we can alternate between two different graph structures that represent a single conditioned 

association. 

This ambiguity effects the search procedure applied in order to locate the novel conditioned 

associations. To ensure that the conditioned association edges are covered by our search space, the edge 

directions should be ignored and the edges of the connected component containing the condition should 

be added to our search space. However, our search space will be greatly obscured by background 

association added to our result. Applying the methods described above, such as adding an activating 

variable [8] to the condition variables, or removing the edges from the parents of the condition variable, 
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while increasing the inference capabilities of the network, still does not eliminate the ambiguity 

regarding other variables.   

  

 

1.5 Dependency Networks 

Heckerman et al. [11] suggest a method that deals with some of the problems that arise, when 

interpreting a resultant BNT, especially the tight topology constraints, such as Directed A-cyclic Graph, 

and the dependencies implied from the d-separation criteria. 

This method iteratively regresses, using probabilistic decision trees. Each variable uses the rest of the 

model variables, and uses the prediction capabilities of the regressor variables as criteria for adding an 

edge between the regressor variables and the predicted variable. This method retains the "Markov 

Blanket" property of the BNT – given the parents' values for a network variable; it renders this variable 

independent of all other variables. 

Dependency Networks provide another advantage over other modeling methods – since the 

computation is done locally over the variable's immediate neighborhood, the computational effort is 

polynomial over the number of variables,  and as such, more efficient. 

Meinshausen et al. [12] suggest a method for reconstructing the variables' graphical neighborhood 

using an estimation of  Tibshirani's [13] Lasso method, applying penalty over the regression coefficients 

norm, and applying a zero value to coefficients with negligible prediction values. While regressing a 

variable using all the other variables as predictors. Non-zero coefficients will add an edge between the 

predictor and the predicted variables, that is, enabling a robust and computational efficient method for 

reconstructing a dependency network, especially in high dimensional cases. 

Friedman et al. [14] later enhance this model, suggesting an efficient exact solution to the lasso peer 

regression problem, using the Banerjee et al. [15] blockwise coordinate descent approach. This method, 

herein graphical lasso, is demonstrated on cell signaling data from 11 different proteins.  

 

Dependency networks efficiently solve the above problems, providing a straightforward 

interpretation and usage of a robust numerical mechanism. Yet the ambiguity between the background 

and conditioned associations still needs to be solved, since the condition variable is still part of the 

resulting network.  
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1.6 Summary of current state of the art and the proposed method. 

 

The above sections display the inherent limitations of locating conditioned associations using BNT 

modeling, mainly the DAG structure that constrains the network structure and observational equivalency 

that may produce different graphical models for similar variable dependencies. Both limitations can 

cause the conditioned associations to appear far, or not on the path of the condition variable in the result 

graph, and so, largely increase the number of associations that need to be tested as candidates for 

conditioned associations. 

Dependency Networks and their recent adaptations solve this problem by addressing the local 

dependency neighborhood of the variable. Therefore, at least one of the conditioned association vertices 

should be a neighbor of the condition variable.  

Yet, both Bayesian and Dependency networks may identify associations that are independent of the 

condition (background associations). Since the background associations have the same topological 

features as conditioned associations, it is hard to discriminate between conditioned and non-conditioned 

associations, which results in a major increase in the search space. 

We introduce a modification of the dependency network method, which obtains a graph containing 

only conditioned related associations. 

We suggest a tool, based on an efficient and numerically robust implementation of ridge regression, 

which maps the associations of variables under the condition. These properties render it invariant to the 

proportion of the conditioned samples in the population. The resulting graph identifies the associations 

between variables that are correlated specifically under the condition variables, and so solving the 

ambiguity between associations in the general population (background associations) and conditioned 

associations.         
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Chapter 2: Method – Iterative  ridge regression (IRR)  

The previous chapter has demonstrated how current state-of-the-art algorithms, utilize graphical 

notation for better representation of associations between random variables. Yet, these algorithms hold 

certain limitations when trying to locate associations between conditioned variables.  

One major limitation is their inability to distinguish between background and conditioned 

associations, which appear in the same result graph.    

Bayesian Networks also have DAG structure constraints, which increase the search space needed to 

locate the conditioned association in the result graph. 

Dependency Networks, which solves this constraint by addressing the local dependency 

neighborhood of the variable, still shares the ambiguity between background and conditioned 

associations, in the result graph.   

We suggest a method that graphically maps conditioned associations between variables. Each 

association can be illustrated as a directed edge between the variables. The edges can be weighted 

according to the assumed prediction strength between the variables under the condition. The result will 

be a network structure (built as a directed Graph) that will map the variable associations under the 

condition.   

Exploring the network structure is done by regressing the condition variable using the remaining 

variables, observing the weight change of the regressor variables when omitting one, and then again 

regressing the condition variable by the remaining variables. 

We will show that the weight change in the remaining variables is relative to their predictive value 

over the omitted variable under the condition. 

Prediction capabilities of one variable by another, under the condition, can be used as a cue for 

conditioned association, which can later be tested separately by a simple hypothesis testing tool.  

 

2.1 Problem Definition 

Let    {          } be a set of random binary variables (features), random binary variable   

(Condition), and a data sample set D, where each sample represents a vector for the value of            

and their corresponding   value. Next, generate a graph (network)   {   }  where each node 

corresponds to a variable of {          }; add an edge      , if the association {  ,   } under the 

condition   is significantly better than in the general population. The direction of the edge is dependent 
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upon the prediction direction between    and     if    can predict the value of    under the condition  , 

there will be an edge directed from    to   , and vice versa.  

 

2.2 Selection or regularized regression method 

In a classic regression problem, we want to find a weight set W that satisfies the equation: 

      
 

 (  ∑     

     

)

 

                                                                                         

 

In order to handle the problem of regressing variables with high covariance (typical to the problems 

explored by the IRR), which cause instability when inverting the sample matrix, a statistical method 

called Ridge Regression or Tikhonov regularization [16] is utilized. This method adds a penalty over the 

weight vector norm.  

      
 

 (  ∑     

     

)                                                                        

 

Where the   parameter stands for the ridge parameter. 

Another method, called The Lasso regularization, suggested by Tibshirani [13], replaces the ridge 

regression's L2 norm penalty of the weight vector, with L1 norm penalty – 

 

       

While it also has an efficient solution of the weight vector, it also tends toward a zero value for 

negligible coefficients when using a large enough   value.     

As was recently suggested, the Elastic nets [17] use a mix of L2 and L1 regularization over the 

weight norm – 

                     

where the α parameter value determines whether the penalty leans toward L2 (which displays the ridge 

regression behavior) or L1 (Lasso). 

In their most recent paper, Friedman et al. [18], display a distinction between the above three 

regularization methods – Ridge regression, Lasso, and elastic nets – in regards to the effect of the weight 

change of regressor variables after omitting one of them. 

Since the L2 norm penalty amplifies an uneven weight distribution, Ridge regression tends to split 

the coefficient weight of the omitted variable between the highly correlated variables. Lasso, on the 
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other hand, tends to pick one correlated variable to receive the weight of the omitted variable. Elastic-

nets behavior depends on the value of the α parameter. 

In our case, the inter-relations between the variables are more relevant than the precision of the 

model's prediction. Therefore the ridge regression will be more suitable for our needs, while there is a 

need for a threshold value to filter the negligible interaction.  

 

2.3 Iterative interaction discovery 

Once the regularization method is chosen, the conditioned interactions are discovered while iterating 

over the model variables. 

At the first stage, the regression of the condition variable will be done, using the variables in S: 

  

          
 

 (  ∑     

    

)                                                                  

  

Later, in each iteration j, the values of variable    will be omitted from the samples' data and the 

condition variable will again be predicted using the remaining variables.  

 

          
 

 (  ∑     

       

)                                                              

 

This results in a new set of weights for the remaining features –    , that will be compared with the 

original set of weights. The weight difference of each feature can be computed              

As proved in subchapter d,     is the coefficients vector that gives the best regularized estimation 

of    
   . 

           
 

 (   
    ∑     

       

)                                                        

 

  At this point, the benefits of ridge regression come in hand. The best estimation of   
    is biased 

towards the selection of    , which evenly distribute the weights between variables that are correlated 

with    under C. 
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For instance, if    and    are fully correlated with   , the result will be [   ]
 
  [   ]

 
 

 

 
 , 

while in L1 norm penalty, the result may be [   ]   1 and  [   ]   , or vice versa. 

In this case, one can expect all of the variables that highly correlate with    under  , to receive 

significant value in the corresponding     index.     

Therefore, each element i in     represents the prediction level of    using    under the condition  .   

This element can be used as a cue for the conditioned association level between    and   . 

  If  [   ]  passes a known threshold t, the association       can be tested using an independent 

   test, whether it is statistically significant under the condition  . The    
 test results are adjusted for 

false discovery rate using the Hochberg-Benjamini correction [19]. 

Passing both criteria, an edge       will be added to our graph G. 

 

(See appendix A and B for Pseudo code and demonstration of the method). 

 

2.4 Analytical proof of the IRR method 

 Given a random variable set    {          } and a condition variable  , denote    as the basis 

weight vector of ridge regressing   using S: 

 

          
 

 (  ∑     

    

)          

  

Let     be the resulting weight vector, after the ridge regression of   using   excluding   : 

 

          
 

 (  ∑     

       

)          

 

In the case where   
   , i.e.    has significant part in estimating  , we receive: 

 

 (  ∑    
   

    

)              (  ∑   
   

       

)           
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Lemma 2.4.  Denote     to be the weight difference between the two results:            . 

We wish to prove that     is the coefficients vector that gives the best estimation of    
    , while 

maintaining the regularization expression small: 

           
 

 (   
    ∑     

       

)             

Proof. Suppose there is an alternative set of weights:   ̃      that offers better regularized 

estimation of    
    than    , hence: 

 (   
    ∑    

 ̃
  

       

)            ̃     

   (   
    ∑    

 
  

       

)               

  

Denote    ̃ as their weight difference:      ̃      ̃      . After decomposing    ̃ : 

 (   
    ∑     

 ̃
    

 
    

       

)             ̃      

   (   
    ∑    

 
  

       

)               

Hence: 

 (   
    ∑    

 
  

       

 ∑    
 ̃
  

       

)                 ̃     

   (   
    ∑    

 
  

       

)               

 

Since: 

 (  ∑    
   

    

)              (  ∑   
   

       

)            

After decomposing: 
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 (  ∑   
   

       

    
   )              (  ∑   

   

       

 ∑    
 
  

       

)           

 

Since we have a better regularized estimation for   
    : 

 (  ∑   
   

       

 ∑    
 
   

       

 ∑    
 ̃
  

       

)                  ̃     

   (  ∑   
   

       

 ∑    
 
  

       

)               

 

Therefore it can use    ̃ for better minimization of the condition variable estimation without using 

  :  

 (  ∑   
 
  

       

 ∑    
 ̃
  

       

)               ̃       (  ∑   
   

       

)            

 

And this contradicts with the argmin property of   .   

In the above procedure, we proved that by simple reduction of    from     we receive the best 

regularized estimation of the omitted variable by its co-variables. 

 

2.5 Complexity of the IRR algorithm 

Since the IRR algorithm uses both Ridge regression and    test, both have many robust and efficient 

implementations, its calculation time is a linear function over the sample size. 

Overall, using an N size variable set and an M size sample set, the IRR regresses the sample set N 

times, then tests again within the set all of the N variables for significant associations. 

In this case the IRR's asymptotic complexity is       .  
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Chapter 3: Comparing the IRR algorithm with Bayesian 

Networks 

The following chapter provides a performance comparison of the IRR algorithm, with state of the art 

Bayesian network algorithm. Both algorithms try to locate a-priory induced associations between 

variables that correlate under a condition.  

 

3.1 Data set construction 

The sample set contains 1000 samples with 20 variables. Each variable can hold a binary value of -1 

or 1. 

Each sample is assigned with a binary condition value; the total size of the condition vector is 1000 

samples. All sample values were initialized to -1, afterwards 0.2 of the samples had their values inversed 

to simulate background noise.  

Out of the 20 variables, 4 variables were randomly selected to hold the conditioned pattern – their 

values will be correlated under the condition and random otherwise. 

Out of the condition vector, a predefined ratio (0.8) of the samples were set as a condition and their 

values were set to 1. Out of the conditioned samples, a predefined ratio (0.2) was randomly selected to 

hold the pattern.  These samples will have a positive (1) value in the conditioned pattern variables. 

After the construction of the sample set, sampling noise was induced by inversing the values of a 

predefined ratio (Noise Level) of the sample set. 

  

3.2 Simulation overview 

Both the IRR and the BNT algorithms were used to extract the conditioned pattern variables. We 

used Kevin P. Murphy's BNT Matlab package [20] for BNT construction. The BNT was constructed 

using the K2 algorithm [21] that outperformed other network construction algorithms [22].  

As described in the chapters above, The BNT result DAG, was searched for the Connected 

Component containing the condition variable. All the variables in this Connected Component (ignoring 

edge directions) were tested as the result pattern. 

The BNT and the IRR result patterns were tested against the induced pattern, and scored using the 

Jaccard Index. For each noise level, 100 independent simulation executions were performed, and the 
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mean and standard deviation of the Jaccard score were used as a basis for performance comparison 

between the IRR and the BNT (see exact simulation details in appendix C). 

      

3.3 Results 

 

Noise level IRR  K2 

0 0.39.0 0.2..0 

0.02 0..3.0 0.39.2 

0.04 0.3939 0.32.0 

0.06 0.39.0 0.29.9 

0.08 0..... 0.30.0 

0.1 0..3.9 0.3929 

0.12 0.309. 0.3.0. 

0.14 0...39 0..990 

0.16 0...9. 0....0 

0.18 0..930 0.3... 

0.2 0..009 0.93.2 

0.22 0.2090 0.92.. 

0.24 0.39.. 0.999. 

0.26 0....9 0..0.. 

0.28 0...3. 0..09. 

0.3 0.99.9 0.9930 

0.32 0....9 0.033. 

0.34 0.9..0 0.0.3. 

0.36 0.9039 0.0..2 

0.38 0.0.20 0.09.3 

0.4 0.0.3. 0.0920 

 

Table 1: Mean Jaccard index scoring over 100 iterations of the IRR and Bayesian Network K2 

algorithms along various noise levels 
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Figure 4: Graphic representation of the Jaccard index scoring mean and STD of the IRR and 

Bayesian Network K2 algorithms, over 100 iterations.  The IRR algorithm significantly 

outperforms the Bayesian Network K2 algorithm (p<0.01). The STD values show more stable 

performance by the IRR as compared with the K2 algorithm. 

 

3. 4 Summary of the comparison results 

The simulation results show that the IRR performs well when trying to locate conditioned patterns in 

data that have up to 25% noisy (i.e. reversed) values. At these noise levels, the IRR significantly 

(p<0.01) outperforms known state of the art algorithms such as the K2 BNT algorithm. 

These results emphasize the effect of association ambiguity of the BNT, as shown in the following 

simulation case: 

In this case, a 4 sized pattern that includes variables number 1, 16, 17 and 20, was induced to a 20 

random variables data set. These variables associate only under the condition; otherwise, they are 

randomly correlated. 
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Figure 5 shows that the IRR result is a fully connected graph, which includes the pattern variables. 

The BNT graph, which by nature is a DAG (directed a-cyclic graph), contains the pattern variables but 

also two other variables (var12 and var15) that were randomly associated with the pattern variables, 

regardless of the condition. 

As described before, we can only assume about the conditional nature of the BNT result by exploring 

the connected component of the graph containing the condition, and ignoring the direction of the edges, 

thus include variables 12 and 15 in the suggested pattern result. 

In this case the Jaccard index score of the IRR graph will be 1 (fully compatible with the pattern), 

while the BNT result will be 0.67. 

 

             

 

Figure 5:  Graphical result of pattern locating. The pattern contains 4 variables (Var1, Var16, 

Var17, Var20) in a 20 random variables data set. The IRR has fully located the induced pattern, 

while the BNT has also located two randomly correlated variables (Var12, Var15), not associated 

in the pattern under the condition.  

 

3. 5 Conclusions 

The simulation above shows that the IRR algorithm performs well in various noise levels, when 

trying to locate conditioned associations. The IRR significantly (p<0.01) outperforms a state-of-the-art 

Bayesian Network algorithm, yields better accuracy scoring (measured using Jaccard Index) and smaller 

variance of the results. The major cause of performance degradation of the BNT, is association 
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ambiguity, where background associations correlate with conditioned associations. Since the BNT does 

not differentiate between the two, it harms the specificity scoring of the BNT results. 
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Chapter 4: Application of the IRR for prediction of HIV 

resistance mutation patterns 

One possible usage of the IRR is to explore patterns of HIV DNA mutations that appear after 

treatment admittance; in fact, this was the trigger for the IRR development. 

The susceptibility of the HIV RNA to natural variation increases the probability that with time, RNA 

variants will appear. These variants might translate into a virus protein structure immuned to the 

admitted treatment. These DNA variants carry changes, termed as resistance mutations, and are a major 

cause for treatment failure in HIV patients.  

In most cases, the treatment is targeted to interfere with the activity of specific HIV proteins, such as 

viral protease, reverse-transcriptase and integrase. The mutation mapping is done in parts of these 

protein sequences, which translate into the protein active sites. These are the sites that are affected by the 

HIV treatment. Mapping the resistance mutations associations can be beneficial in the selection and 

optimization of a given treatment. It can be used to predict the appearance of resistance mutation or to 

explore the functional behavior of the mutant protein.   

Deforche et al. [7], have explored the resistance mutations interaction using a Bayesian Networks 

modeling. Their data set contained amino-acid samples of the protease site from HIV patients and their 

treatment history (specifically – Nelfinavir or NFV, a Protease Inhibitor (PI)).  At the first stage, a set of 

mutations was chosen, using a     test, to select the mutations that significantly correlate with the 

treatment. 

At the second stage, a new data set was created, where each variable was assigned with a Boolean 

value associated with a specific mutation appearance. An additional variable was assigned with the NFV 

treatment admittance of this sample.     

BNT modeling was used to explore the associations between the resistance mutations variables and 

between the resistance mutations NFV treatment variable and the resistance mutations variables. 

The result network has recovered some of the known interactions between the NFV mutations. It also 

points to strong associations later found to be biologically correlated.   
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4.1 Data and Method 

A total of 1745 sample protease DNA Sequences were obtained from the National HIV Reference 

Laboratory (NHRL). 1261 samples were of subtype C, of which 170 were treated with NFV, and 454 

samples were of subtype B, of which 29 were treated with NFV.    

DNA sub typing was done using the Stanford HIV reference center Database 

(http://hivdb.stanford.edu/) [23,24].  

DNA sequences were aligned using the ClustalW [25] program, and then translated to the matching 

Amino-Acid sequences. 

Since the C and B subtypes can display different resistance mutation patterns [26,27,28] , we 

separated the IRR analysis to each subtype's samples. 

The amino acid sequences were compared to the subtype consensus sequences. The subtype 

consensus sequences were equal in naïve and in the general population. After the consensus comparison, 

a mutations variable set was established by including every diversion from consensus, which occurred at 

least twice 

For each mutation, a data set binary variable was created, stating whether the mutation has appeared 

in this sample (positive value) or not. The condition variable value holds the NFV treatment status for 

each sample. 

The binary frequency input matrix (non positive values were set to -1) of the mutation variables and 

the condition variable were used as an input for the IRR algorithm. 

The IRR algorithm setup used a value of 50 as the ridge parameter, and a p<0.05 as the     test 

significance threshold.  

http://hivdb.stanford.edu/
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4.2 Results 

Graphical representation of the IRR analysis of the HIV mutation data are displayed in figures 6a 

(subtype B analysis) and 6b (subtype C analysis). Associations that showed exceptionally significant   
 

scoring (p<  0.00000 ) and IRR scoring > 0.01 are marked in red bold edges. 

 

 

 

Figure 6: IRR graphical result of amino acid mutations associations found in subtype B (figure 

6a) and subtype C (figure 6b) HIV protease sequences, conditioned by Nelfinavir (NFV) treatment. 

Red edges suggest exceptionally significant associations with high IRR and   
 scoring. Edge 

directions are such that the presence of the edge source will increase the probability of the edge 

target.   
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4.3 Comparison to previous findings  

A comparison to Stanford HIV reference center Database [23] shows that out of the 31 mutations in 

the IRR result networks, 13 have been previously discovered as resistance mutations ( L10F, L23I , 

D30N, E35G, M46I, Q58E, A71V/T/I, T74P, N88D, N88S, L90M ). The IRR network contains directed 

paths that match known resistance mutation patterns (D30N-N88D, M46I-L90M, M46I-N88S, D30N-

N88D-L90M, N88S-L90M, M46I-N88S-L90M, D30N-M46I-N88D-L90M).  

Compared to Deforche et al.'s Bayesian network analysis [7], the IRR network shared 24 mutations 

with the Bayesian network. It also recovered the different pathways of N88D (directly connected to 

D30N) and N88S. It also reiterated the M89L-D30N path, which is specific to subtype C samples. 

 

4.4 Analysis of inconsistencies with previous findings 

The results above display some inconsistencies with previous publications. An in depth statistical 

analysis of these cases in the sample set shows that in most cases the correlation between the mutation 

and the treatment was not significant. Such cases are mutations L33F, I54V, I84V and V82A, which 

appear in the Stanford HIV DB [23].  Many of the mutation patterns have low correlation with NFV 

treatment (V82A has even small negative correlation with NFV treatment). This, together with their low 

frequency in the treated samples, makes them hard to discover via pure statistical means (see appendix 

7e for their distribution in the sample set). 

Another inconsistency is the undirected path from mutation D30N and L90M that are known not to 

appear together at the same case [26,29,30]. In this case, their network neighbor, E35D, is highly 

correlated separately with D30N and L90M, under treatment, this although there are 0 cases where 

D30N and L90M appear together. This appears to be an artifact of the locality property of dependency 

networks. In subtype B samples, E35D does not appear as an NFV related mutation; therefore, in the 

subtype B networks D30N and L90M appear separately in different connected components. 

 

4.5 IRR new findings 

In subtype C IRR network, mutation V15I appears with strong conditioned association to D30N 

resistance mutation. An analysis of subtype B patients samples shows that 15I appears as a wild type 

form (the consensus DNA sequence), as opposed to subtype C where it appears as a mutation. As was 

previously shown, 83.8% of patients with viral rebound on NFV, who had resistance mutations, had 

D30N [31]. It was also shown that the prevalence of D30N in subtypes C or A under NFV treatment is 

significantly lower than in subtype B under this treatment [4,29]. Our work may provide an explanation 
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for this phenomenon. We assume that the appearance of D30N requires the support of two amino acids: 

15I and 89L. Both mutations appear as the wild-type B virus. In subtype C, both mutations have to 

appear in order to support and stabilize the appearance of D30N. In the BNT analysis, Deforche et al. 

already found the 89L-D30N correlation. Our method strengthens this finding and adds 15I-D30N as an 

additional NFV-related association. 

Mutation K20T has highly significant correlation with the NFV treatment in the subtype C sample 

set. The network analysis shows its high association ratio with other resistance mutations under NFV 

treatment. This property, known as Network Hub, indicates a possible significant role of this mutation in 

many resistance pathways. Since it also appears in Deforche et al.'s analysis, it suggests that a 

phenotypic survey of this mutation (along with its associate's mutations) can indicate a significant 

biological role of this mutation in resistance mechanism.  
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Chapter 5: Summary and Conclusions 

This thesis displayed the problem of locating conditioned association. Where we want to recover 

specific type of associations between variables, which occur in the presence of another variable – the 

Condtion. 

Current state-of-the-art algorithms, that graphically map the joint probability of random variables, 

lack the ability to differentiate between the conditioned and non-conditioned associations. Some 

algorithms, such as Bayesian Networks, apply structural constraints over the result network which may 

cause the conditioned association to appear distant from the condition variable, thus largely increase the 

search space for these associations.    

The thesis introduced IRR, a modification of the dependency network method, which produces a 

directed graph containing only condition related associations. We have described a robust and 

computationally efficient estimator algorithm used to uncover such a network.  

We showed that the IRR algorithm performs better than current state of the art Bayesian networks 

when the purpose is to identify conditioned associations. 

We also describe, here and in a forthcoming publication [32,33], a real life application of the IRR 

method to the analysis of HIV mutation patterns that emerge in HIV infected patients treated with a 

particular antiretroviral drug. We have demonstrated that our method can recover from a pool of viral 

sequences known associations of such treatment with selected resistance mutations as well as 

documented associations between different mutations. Moreover, the IRR method revealed novel 

associations that are statistically significant and biologically plausible.  

The IRR can be utilized as a simple and straight forward framework for locating conditioned 

association in various empirical studies, such as molecular biology, physiology and earth studies.  
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Appendix 

Appendix A 

IRR Pseudo code 

A pseudo-code for describing the iterative ridge regression (IRR) construction of variable correlation 

under condition. See text for details of the algorithm steps. 

 

/* variables initialization*/ 

K = number of variables 

N = number of samples 

Variable List = 1..K variables 

Sequence Samples = 1..N sequences 

Condition Vector = 1..N boolean (index i is true is sample i was treated) 

Variable interaction matrix = KxK real 

Variable Matrix = NxK matrix 

 

/* build the variables frequency matrix */ 

Foreach Sequence Sample i = 1..N 

Foreach Variable j = 1..K 

if Sequence Sample i contains Variable j 

Variable Matrix(i,j) = 1 

else 

Variable Matrix(i,j) = -1 

endif 

endforeach 

endforeach 

 

/* build the Variables interaction matrix */ 

 

Base Weight Vector = apply Ridge Regression to estimate Condition Vector with 

Variable matrix as data; 
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for i = 1..K 

Omitted VariableMatrix = NxK-1 

Omitted Variable Matrix(1..N,1..i-1) = Variable Matrix(1..N,1..i-1) 

Omitted Variable Matrix(1..N,i..k-1) = Variable Matrix(1..N,i+1..k) 

Omitted Weight Vector = apply Ridge Regression to estimate Condition 

Vector with Ommited Variable matrix as data; 

Weight Diff Vector = Omitted Weight Vector - Base Weight Vector 

Variables interaction matrix(1..k,i) = Weight Diff Vector 

end 

 

threshold = get a p value threshold from the distribution of all interactions 

 

/* network buildup */ 

 

Variables Interaction Graph = Create empty Graph matrices with variables as vertices 

foreach i = 1..K , j =1..K 

if  Variables interaction matrix(i,j) > threshold  and 

Variable I and j is significant (FDR corrected) under condition 

add directed arc from variable i to j  

endif 

endforeach 

 

return Variables Interaction Graph 
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Appendix B 

Detailed Algorithm demonstration –  

Follows a simulated example of finding a conditioned association. The left column shows the 

condition variable value, applied to each of the samples, while the columns to its right show the 

existence of several mutations in each of the samples.  

 

Var. AVar. BVar. CVar. DCondition

10110

01000

11110

10000

01110

00000

00111

11001

11001

11111

11001

00111
 

 

Table 2:  Example data set of four random variables (Variables A, B, C, D) and a condition 

variable, over 12 samples.  Positive sample value is marked with gray.  

 

At first stage, the 0 values are replaced with -1 for more robust calculations.   
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Variables C and D are fully correlated, but with low correlation with the condition (-0.169). In the 

full sample set, variables A and B have low correlation between themselves (0.314) and with the 

Condition (0.169). Yet it is clearly visible that under the condition, variables A and B are highly 

correlated, hence creating a pattern. When we omit Variable D we will receive the following weights 

values after ridge regression: 

 

Variable Ridge Reg. 

Weights 

Weights After 

Omission of 

Variable D 

Weight Difference 

A    0.090.      0.090.  0.0000 

B     0.090.      0.090.  0.0000 

C     0.0093      0.009.  0.0002 

D     0.0093  N.A. N.A. 

 

Table 3:  Weights of the variables after ridge regressing the condition variable, and after ridge 

regressing the condition variable without variable D. 

  

 

The change in the weights of the other variables is relatively small, and not affected by the initial 

weight of the feature. 

However, after omitting one of the pattern’s members we will receive the following weights: 

 

Variable Ridge Reg. 

Weights 

Weights After Omission 

of Variable A 

Weight 

Difference 

A 0.090. N.A. N.A. 

B 0.090. 0.0993 0.0017 

C 0.0093 0.000. -0.0008 

D 0.0093 0.000. -0.0008 

 

Table 4 :  Weights of the variables after ridge regressing the condition variable, and after ridge 

regressing the condition variable without variable A. 
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The weight change in the other pattern member (Variable B) is significantly bigger than the change 

in the other weights, and positively directed. 

Iteratively applying the same step over the whole set of variables results in an NxN table consisting 

of the weight change of each of the features when a different feature omitted. 

  

    Weight Diff 

Ridge 

Regression 

Weights 

Var. D omitted Var. C omitted Var. B omitted Var. A omitted Variable  All Variables  

0 0 0.0016677 0 A 0.090. 

0 0 0 0.00167 B 0.090. 

0.000279 0 0 0 C 0.0093 

0 0.0002792 0 0 D 0.0093 

 

Table 5: Weights of the variables after ridge regressing the condition variable after omitting 

each of the variables. IRR Significant associations are marked in gray. 

 

 

Pattern validation using    test: after a filtered interaction table, each cell holds a value that 

describes an “IRR significant” directed interaction between two features (mutations). These filtered 

interactions will comprise our Region of Interest (ROI), which will be the basis for an independent 

statistical test – this test will filter out the significant interaction from the previous “IRR significant” 

interaction. 

For each     interaction, we will test whether the     association frequency under the condition 

is significantly different from its frequency in the general sample's population – i.e.           

        . Resulting P values will be adjusted according to the Benjamini-Hochberg algorithm for P value 

adjustment. We will sort the interactions that pass our threshold P value. 

Network construction – we will now construct an interaction network out of the filtered interactions, 

each mutation will become a vertex, while every filtered     interaction will add a directed edge 

between the   and   vertices. Since the significant interactions found are between variables   and   the 

result network will be:      . 
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Appendix C  

Exact details of the IRR – BNT simulation 

i) Data Simulation  

(1) Parameters –  

(a) Number of Features – N  

(b) Number of Samples – M 

(c) Condition ratio out of samples – ratio of samples that are conditioned. 

(d) Pattern description –  

(i) Pattern size – number of features in the pattern. 

(ii) Pattern-Condition ratio – the ratio of the conditioned samples which contains the 

pattern.  

(e) Background noise level – ratio of random data members which have positive value 

(before pattern induction). 

(f) Sampling noise level – ratio of random data members, which will have their value 

inverted. 

(2) Data creation 

(a) Allocate an N by M data matrix (Samples). 

(b) Allocate an M size vector (Condition vector). 

(c) Reset the sample matrix and the condition vector values to -1. 

(d) Randomly select cells out of the sample's matrix, until selecting total cells ratio of 

background noise level. Inverse their value to 1. 

(e) Randomly select cells out of the condition vector, until selecting an amount of cells 

corresponding to the Condition ratio multiplied by the samples set size. These are the 

condition indices, Inverse their value to 1. 

(f) Pattern induction –  

(i) Randomly select total of pattern size indices out of the features indices. These are the 

Pattern indices. 

(ii) Randomly select samples, until reaching total of  (Pattern-Condition ratio * size of 

condition indices) , which their corresponding indices in the Condition vector are 

positive. These are the Conditioned samples associated with the condition vector. 

(iii) Change the values of the Conditioned samples in the Pattern indices to 1. 
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(g) Sampling noise induction – 

(i) Randomly select values until reaching a ratio of sampling noise level out of the 

samples values, and inverse their values. 

ii) Single Simulation execution 

(1) IRR execution and scoring 

(a) Use the sample matrix and the condition vector as an input to the IRR algorithm. 

(b) IRR result is the estimated conditioned pattern; use Jaccard Index to evaluate the 

similarity between the original induced pattern and the estimated IRR result pattern. 

(2) Bayesian network (BNT) execution and scoring 

(a) We used the BNT package [20] for executing a Bayesian network analysis over the 

simulated data. 

(b) We compared the IRR with the K2 Bayesian network algorithms [21], showed to 

outperform or match other BNET algorithms [22] 

(c) Input for the BN was created by concatenating the sample matrix and the condition vector 

– the condition vector becomes another feature in the sample features. 

(d) We used the DAG result of the Bayesian Network Power Constructor (BNPC) algorithm 

[5], for topological sorting used to deduct the variable order, needed as an input for the 

K2 algorithm.  

(e) The scoring was done by searching the connected component of the DAG result that 

contains the Condition feature. 

(f) We assemble a variable set containing the variables in the connected component. 

(g) The set is regarded as the result estimated pattern of the algorithm. 

(h) We use Jaccard Index to evaluate the similarity between the original induced pattern and 

the estimated Bayesian Network result pattern. 

iii) Comparison method and parameters 

(1) In each comparison iteration, we simulated an input data matrix with parameters values as 

follows –  

(a) Number of Features – N = 20 

(b) Number of Samples – M = 1000 

(c) Condition ratio out of samples = 0.8 

(d) Single Pattern induced–  

(i) Pattern size = 4 

(ii) Pattern-Condition ratio = 0.2.  

(e) Background noise level = 0.2 
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(f) Sampling noise level = variable across the simulation 

(2) We used the simulated data as an input to the IRR, BNPC and K2 algorithms. 

(3) For each set of parameters, we used 100 executions to get an average score on each sampling 

noise level. 
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 תקציר

 

בין  הינו הקשרים ההסתברותיים המידע הנדרשמיפוי הסתברויות משותפות, כאשר   לשבעיה ייחודית נתייחס ל זהבתזה זו 

 קשרים מותנים. -התנאי. קשרים אלו יכונו   –תחת משתנה מקרי אחר המתרחשים משתנים מקריים שונים, 

ממפות בצורה גרפית את הקשרים בין משתנים מקריים. אך  (Dependency Networksרשתות בייסיאניות ורשת תלויות )

רשתות אלה ימפו גם קשרים בין משתנים שאינם תלויים בתנאי. מכיוון שמבנה הרשת אינו מאפשר להבדיל בין סוגי הקשרים 

 נאלץ לחפש בכל הרשת אחר הקשרים המותנים,  דבר שיגדיל את מרחב החיפוש בצורה משמעותית. השונים,

צמתי הגרף ייצגו את  שיטה המבוססת על רשת תלויות, המייצרת גרף מכוון המכיל רק קשרים  התלויים בתנאי. נציגאנו 

, המאפשרת לנו  Ridgeעל רגרסיית המשתנים המקריים והקשתות את הקשרים הנוצרים תחת התנאי. שיטה זו מבוססת 

 לאלגוריתם זה.הקיימים להשתמש במימושים יעילים ויציבים 

מטופלים העמידות לטיפול תרופתי, בחולי איידס  DNAנדגים את יעילות שיטה זו  לתחום הרפואי, לאיתור מוטציות 

 מגלהטיפול תרופתי מסויים. שיטה זו  פות קשרים בין מוטציות שהותנו במתןבתרופות אלה. השתמשנו בשיטה זו בכדי למ

תחת טיפול זה. קשרים ידועים בין מוטציות עמידות לבין טיפול תרופתי מסויים, וכן קשרים ידועים בין המוטציות לבין עצמן 

  .  תביולוגי בעלי משמעותבנוסף, שיטה זו זיהתה קשרים חדשים בין מוטציות, שהינם מובהקים סטטיסטית ו


