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Abstract 

Using the theory of optimal receivers the range accuracy of echolocating systems can be 
expressed as a function of receiver bandwidth and signal-to-noise ratio through the well- 
known Woodward equation. That equation however was developed in the limit of very 
high signal-to-noise ratios, and- assumes that the correct peak of the crosscorrelation 
function is known a-priori. Echolocating animals such as dolphins and bats have 
developed a highly specialized receiver to optimize echolocation to different 
environments and conditions. In particular, they use a set of filters with different center 
frequencies but overlapping bands. We show that this structure can help in improving 
accuracy.in the case of relatively low signal-to-noise ratios when the ambiguity in the 
choice of the main peak of the crosscorrelation function cannot be avoided. 

. 

Introduction 
'The theory of optimal receivers studies the design of pulses and receivers to obtain 
optimal detection in the presence of noise. In this paper we analyze the role of multiple 
-filters on the receiver side to improve detection accuracy with respect to a given 
wideband pulse design. In our analysis we have been inspired by the structure of pulses 
and receiver in echolocating animals such as bats and dolphins, as the capabilities of the 
their sonar are still significantly better that any man-made system. 
Considerable work on the theoretical accuracy of range measurements has been done in 
the past, and the Woodward equation has been derived using different methods. A 
comprehensive description can be found in [l]. However, it appears that interest in the 
mathematical aspects of the derivation of that equation has faded [2], while its use has 
become a standard in the field. In this letter we show that the validity of this equation 

.depends on various assumptions in particular the assumptions of very low signal-to-noise 
ratios (SNR), therefore it must be reexamined for the case of low SNR's. The theory of 
optimal receivers shows that the matched filter receiver maximizes the output peak- 
signal-to-mean-noise (power) ratio [2, 31, and is the optimum m,ethod for the detection of 
signals in noise. Information about the distance of the target i:; extracted by computing 
the time at which the crosscorrelation between the echo and a replica of the pulse is a 
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maximum. This delay is converted into a distance by means of the sound velocity in the 
particular medium in consideration (e.g. water or air). This type of.receiver is generally 
referred to as a coherent receiver. 
The classical theory of optimal receivers describes the range accuracy of a sonar system 
via the well-known Woodward equation, which can be derived by using a variety of 
methods[l, 4-71, However, all of them rely upon the common crucial assumption of a 
large SNR, which implies a priori knowledge of the location of the central lobe in the 

For small SNRs, one of the parameters in the classical 
equation - i.e. the bandwidth - has to be modified, and the receiver .is then.called 
semicoherent. In this letter we show that the transition between the two types of 
behaviors occurs at different SNRs depending on characteristics of the pulses such as 
bandwidth and center frequency. With this observation, we devise a novel system based 
 on an adaptive choice of the pulse; this can improve accuracy in the case of relatively low 
SNR, when ambiguity in the choice of the correct peak of the .crosscorrelation function 
cannot be avoided. This method can he generalized to the case.of a fixed broadband 
pulse. In this case, both pulse and echo can be passed through a set of filters with 
appropriate center frequencies and bandwidths, and crosscorrelation can be performed 
separately in each frequency band. 

Woodward equation 
If we define ( t )  to be the pulse sent by the sonar and. \v e ( t )  to be the echo coming 
from a target at a distance d ,  then ~ ~ ( t )  =w P ( t  +zO)  +q(t)  , where z o  = 2 d / c ,  c is the 
sound velocity in the particular medium in consideration (e.g. water or air), and q(t) is in 
general .white noise. The crosscorrelation between pulse and echo can be expressed as 

- . crosscorrelation function. 

where the first term in the sum is the autocorrelation function of the pulse centered at z o ,  
and the second term is band limited white noise, with frequency limits defined by the 
spectrum of the pulse. In the absence of noise, only the first term survives, and the 
distance from the target can be computed from the delay in time corresponding to the 
maximum of the crosscorrelation function. When the noise level is sufficiently low, its 
effect is to jitter the position of the maximum around the true value of the delay 5 o .  To a 
first approximation, the jitter can be related to the width of the central peak in the 
autocorrelation function, which is a function of the signal's bandwidth and center 
frequency (Figure 1A). By using a rigorous argument based on the concept of inverse 
probability due to Woodward [6 ] ,  it is possible to demonstrate that the standard deviation 
of the location in time of the maximum around the true value z o  iso' = (27t B,,ws d ) - ' .  

In this formula B,, is the root mean square (RMS) bandwidth of the pulse and is 
112 

defined as B,, = ( r f2Psu( f )d f )  , where P,(f) is the power spectral density of 

the pulse, and the signal-to-noise ratio d = JTE/N, is a function of the ratio between 
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the total energy E of the echo (measured in Ws), and the spectral density N o  of the noise 

(measured in Wmz = Ws). In the case of uniform Gaussian noise with variance o i, the 
spectral density of the noise sampled at a rate f, can be expressed as N o  = 20 / f, . The 
signal-to-noise ratio is usually expressed in dB as SNRde = 2OXoglo d .  Notice that the 

RMS. bandwidth can be.written as Bi,  = B:RMs + f c 2 ,  where f, = rf. PsD (f)df is the 
112 

center frequency of the signal, ,and B?,, = ( r (f - f, PsD (f)df) is the centralized 

. . root mean square (CRMS) bandwidth. When the center frequency is much larger than 
the CRMS bandwidth (a condition which is generally satisfied for radar) then B,, = f, . 
.The above description corresponds the case of a coherent receiver. Such a receiver 
computes the crosscorrelation function of the pulse and the echo and estimates echo delay 
as the time. corresponding to the maximum peak in the $ne structure of the 
crosscorrelation function. An altemative type of receiver,. the semicoherent receiver, 
estimates echo delay as the time corresponding to the maximum of the envelope of the 
crosscorrelation function between the pulse and the echo. For the semicoherent receiver, 
delay accuracy can be expressed by modifying the Woodward equation by substituting 
the signal CFtMS bandwidth to the RMS bandwidth, so that (3, =: (271 B,, d)- ' .  

. .  

. .- 

SNR breakpoint 
Uncertainty in the delay estimate increases with noise. For relatively low levels of noise 
the time jitter falls within the central peak of the autocorrelation function and is inversely 

~ .proportional to the SNR. However, when the noise level becomes comparable to the 
difference in amplitude between the center peak and the first side lobe, ambiguity in the 
choice of the correct peak arises. . Figure 1 illustrates the effect of the noise level on the 
accuracy of the temporal measurement. Figure 1A shows a detail of the autocorrelation 
function in the neighborhood of the central peak for three pulses with the same bandwidth 
and different. center frequencies (solid line: smallest h; dotted line: intermediate h;. 
dashed line: largestf,). The jitter in amplitude introduced by the noise is translated into a 
jitter in time that is controlled by the width of the central peak: the higher the center 
frequency, the smaller the jitter in time. However, when the noke level is of the order of 
the difference between the amplitude of the central peak and the first side lobe, the 
situation is reversed (Figure 1B). In fact, the difference in amplitude is smaller for higher 
center frequencies, so that signals with high center frequencies are more susceptible to 
peak ambiguity. 
To study the effect of increasing levels of noise as a function of signal CRMS bandwidth 
and center frequency, we ran a set of Monte Carlo simulations. The pulses we considered 
are cosine packets of the form ty.,?(t) =KU,?  exp(-t2/20 ' ) ~ 0 : j ( 2 ~ ~ l t ) ,  where q is the 
center frequency; o controls the spread in time of the pulse and its frequency bandwidth, 

and KO,,  is a normalization factor such that (t)dt = 1. This signal can be used 

.without loss of generality. Analogous results would be obtained using different types of 
pulses with the same center frequencies and C M S  bandwidths used in our simulations. 
In each simulation white noise is added to the pulse to generate an echo, and the delay 

m 
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estimate is computed. as the time corresponding to the. maximum amplitude in the 
crosscorrelation between pulse and echo. In each set of simulations 200 realizations of 
the .noise were generated. Different sets corresponded to pulses with different center 
frequencies and CRMS bandwidths. Figure 2a shows the root-mean-square error 
(RMSE) computed using the Monte Carlo simulations, for a fixed center frequency and 
CRMS bandwidth. Confidence intervals have been computed through bootstrapping, by 
sampling with replacement from the empirical distribution of the delay estimates 
obtained from the simulation. For high SNRs (region IV), performance is in accordance 

. with the standard Woodward equation for the coherent receiver. As the SNR decreases, 
the performance shows a sharp transition (region Ill) to the modified version of the 
Woodward equation, corresponding to the semicoherent receiver (region 11). For very 
low levels of SNR (region I), the intensity of the noise is so high that the accuracy rapidly 
decreases to zero. This behavior is common to all pulses. However the transition region 
is different according to the center frequency and CRMS bandwidth (figures 2b and 2c). 
Figure 2b shows the RMSE of the delay estimates as a function of signal to noise ratio in 
dB ( S N ~ B )  and CRMS bandwidth, for a fixed center frequency. For high signal to noise 
ratios, all signals follow the standard Woodward equation (Figure 2a). As the SNR 
decreases, signals with lower CRMS bandwidths are affected by peak ambiguity first, and 
their performance degrades to that of a semicoherent receiver. Signals with larger CRMS 
bandwidths are more resilient to peak ambiguity, and continue to perform according to 
the standard Woodward equation for even lower SNRs. The breaking point for each 
signal is marked with a square. 
Figure 2c shows the case of a fixed CRMS bandwidth and different center frequencies. 
For high signal to noise ratios, all signals follow the standard Woodward equation (Figure 
2a). As the noise level increases, signals with higher center frequencies are affected by 
peak ambiguity first, and their performance degrades to that of a semicoherent receiver. 
Signals with lower center frequencies are more resilient to peak ambiguity, and continue 
to perform according to the standard Woodward equation for lower signal to noise ratios. 

Conclusion 
We show that for increasing levels of noise the accuracy of the range estimate undergoes 
a sharp transition from the Woodward equation for a coherent receiver to a modified 
Woodward equation for a semicoherent receiver, due to ambiguity in the choice of the 
correct peak of the crosscorrelation between pulse and echo. We find that the breakpoint 
appears for lower SNR's in pulses with lower center frequencies and larger CRMS 
bandwidths, so that it is possible to optimize the pulse for a given SNR. The same ideas 
can be extended to the case of a fixed broadband signal, by performing the 
crosscorrelation at the receiver end separately in a set of frequency bands with the 
appropriate center frequencies and bandwidths. Auditory processing in biosonar involves 
transduction of wideband echoes in numerous narrow frequency bands, with independent 
gain control and thresholding at multiple levels in each band. This system encodes 
wideband signals in a timelfrequency representation whose advantage may be to facilitate 
the adaptive shut-off of frequency channels where SNR is too low for coherent 
processing. The auditory brainstem processes the time-of-occurrence of spikes 
synchronized to sounds by successive stages of convergence and coincidence-detection to 
eliminate spikes that fall outside of the coincidence acceptance window. This neural 
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mechanism might serve to prevent frequency channels from contributing to subsequent 
delay processing where spike timing is overly dispersed by noise. 
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Figure 1. Effect of noise level on the accuracy of the temporal measurement. Plot A 
shows a detail of the autoconelation function in the neighborhood of the central peak for 
three signals with the same bandwidth and different center frequencies (solid line: 
 smallest fc; dotted line: intermediate fc; dashed line: largest 5). The jitter in amplitude 
introduced by the noise is translated into a jitter in time that is controlled by the width-of 
the central peak; the higher the center frequency, the smaller the ,jitter in time.. However, 
when the noise level is of the order of the difference between the amplitude of the center 
peak and the first side lobe, the situation is reversed (Plot B). In fact, the difference in 
amplitude is. smaller for higher center frequencies, so that signals with high center 
frequencies are .more susceptible to peak ambiguity. 
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Figure 2. Results of the Monte Carlo simulations. (a) RMSE of the delay estimates for a 
fixed center frequency and CRMS bandwidth; (b) RMSE as a function of signal to noise 
ratio in dB and CRMS bandwidth, for a fixed center frequency; (c) RMSE as a function 
of signal to noise ratio in dB and center frequency, for a fixed CRMS bandwidth. 
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