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Abstract. We study various ensemble methods for hybrid neural net-
works. The hybrid networks are composed of radial and projection units
and are trained using a deterministic algorithm that completely defines
the parameters of the network for a given data set. Thus, there is no
random selection of the initial (and final) parameters as in other train-
ing algorithms. Network independent is achieved by using bootstrap and
boosting methods as well as random input sub-space sampling. The fu-
sion methods are evaluated on several classification benchmark data-sets.
A novel MDL based fusion method appears to reduce the variance of the
classification scheme and sometimes be superior in its overall perfor-
mance.

1 Introduction

Hybrid neural networks that are composed of radial basis functions and percep-
trons have been recently introduced [5,4]. Such networks employ a deterministic
algorithm that computes the initial parameters from the training data. Thus,
networks that have been trained on the same data-set produce the same solution
and therefore, a combination of such classifiers can not enhance the performance
over a single one.

Fusion of experts has been studied extensively recently. One of the main re-
sults is that experts have to be partially independent for the fusion to be effective
[13,14]. The bagging algorithm [1] can be used to de-correlate between classifiers
as well as to obtain some performance measure on the accuracy of the classifiers
using the “out of bag” sub-set of the data. Another technique Arcing – adaptive
re-weighting and combining – refers to reusing or selecting data in order to im-
prove classification [2]. One popular arcing procedure is AdaBoost [10], in which
the errors on the training data-sets are used to train more specific classifiers.
Sub-sampling of the input space as well as the training patters is extensively
used in the random forest algorithm [3]. A different flavor of combination of
classifiers use dynamic class combination (DCS) [11] and Classifiers Local Ac-
curacy (CLA) in order to select the best classifier when making a predication.
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This is done at the cost of saving the whole training set and then selecting the
predication of the best classifier at the vicinity of a given pattern.

The hybrid Perceptron Radial Basis Function Network (PRBFN) is con-
structed with strong regularization and with initial parameters that are esti-
mated from the data and not random. The strong regularization and excellent
approximation properties of a hybrid of projection and radial units leads to a
relatively small architecture, which, in addition to the strong regularization leads
to an estimator with low variance. Thus, ensemble combination, which is known
to reduce the variance portion of the error is more challenging. In this paper, we
investigate the use of ensemble fusion methods on a collection of low variance
classifiers with a deterministic training algorithm. Several ways to increase the
classifiers’ independence are studied as well as different combination strategies.

In addition, we use the MDL approach for expert fusion, and estimate the
accuracy of each classifier by using its description length. The description length,
is then used as a weight in a convex combination of the experts, where a shorter
description length, gives higher weight.

2 Training an Ensemble

Training of individual elements in an ensemble for improved independence can
be done in several ways. The random forest algorithm [3] uses sub-space re-
sampling for each node in the tree. AdaBoost [10] uses a fraction of the data
(which earlier classifiers performed poorly on) to train a classifier, thus differ-
ent classifiers train on different data-sets. We use both techniques to increase
classifier’s independence.

The output of the ensemble is given by:

f(x) =
M∑

k=1

akfk(x) ak ≥ 0,

M∑

k=1

ak = 1, (1)

where ak is the weight of the kth expert. Other forms of combination will be
discussed below.

2.1 Ensemble Generation

We have used “boosting” to generate data sets for the classifiers in the ensemble.
In boosting, the first classifier is created with accuracy on the training set greater
than chance, and then add new component classifiers to form an ensemble whose
joint decision rule has arbitrary high accuracy on the training set. This technique
trains successive components classifiers with the subset of data that is most
informative. Given a data set D = {xi, yi}N

i=1 where xi ∈ Rd and yi is the class
label. The input to the algorithm includes the maximum number of classifiers
kmax, the size of re-sampled sub set of D n < N , and γ ∈ [0, 1] the fraction
of features for the random subspace selection. We use the following boosting
algorithm:
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– Initialize: empty ensemble, k=0
– while k ≤ kmax

• test the ensemble on the full training-set.
• add to the current dataset Dk the misclassified patterns
• select randomly n − |Dk| from D − Dk and add them to Dk

• re-sample Dk on the features by using γ ∗ d features.
– end-loop

The above algorithm differs from the AdaBoost algorithm [10], as all the misclas-
sified patterns are added to the next subset (with probability 1). Each classifier
receives a different subsample of the training data and a different subsample of
the input variables as in Random Forests. Thus, dependency between experts is
greatly reduced.

2.2 Using MDL for Experts Fusion

The minimum description length (MDL) concept is typically used for model
evaluation and selection. It is used here for weighting the different experts for
optimal combination. In the MDL formulation, the coding of the data is com-
bined with the coding of the model itself to provide the full description of the
data [16]. MDL can be formulated for an imaginary communication channel,
in which a sender observes the data D and thus can estimate its distribution,
and form an appropriate model for that distribution. The sender then transmits
the data using the code that is appropriate for the observed distribution (data
model) but since the receiver does not observe the full data, the model has to
be transmitted to the receiver (in a predefined coding). Noise and insufficient
data to estimate the correct model lead to modeling errors. MDL has been con-
structed for the purpose of reducing such modeling errors. The MDL principle
asserts that the best model of some data is the one that minimizes the combined
cost of describing the model and the misfit between the model and the data.

This approach is formulated as follows: The sender composes a message which
is consists of the model description with the length �(M), and �(D|M) specifies
the length of the data given the model. The goal of the sender is to find the
model that minimizes the length of this encoded message �(M, D), called the
description length:

�(M, D) = �(D|M) + �(M). (2)

According to Shannon’s theory, to encode a random variable X with a known
distribution by the minimum number of bits, a realization of x has to be encoded
by − log(p(x)) bits [18,6]. Thus, the description length is:

�(M, D) = − log(p(D|M)) − log(p(M)), (3)

where p(M |D) is the probability of the output data given the model, and p(M)
is a − priori model probability. Typically the MDL principle is used to select
the model with the shorter description length. In this work we combine the
experts by using the description length as a weight for the convex combination
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in Eq. (1). Hinton and Camp [12] used zero-mean Gaussian distribution for the
neural network weights. We follow this idea, and define the simplest Gaussian
model prior,

p(M) =
1

(2π)1/2βd
exp(−

∑d
i=1 w2

i

2β2 ), (4)

where d is the number of weights in the second layer and β is the standard
deviation. Hinton and Camp [12] used a Gaussian with standard deviation α
for encoding the output errors. In addition, we assume that the errors that the
model makes are i.i.d with normal distribution. Clearly, a better assumption is
that the error are binomial, but for purpose of estimating the relative probability
of different methods the Gaussian assumption is good enough and easier to
handle mathematically. We also assume that the patterns in the training set are
independent.

Thus, the likelihood of the data given the model is:

p(D|M) =
1

(2π)
NC
2 αNC

exp(−
∑N

n=1
∑C

k=1(ykn − tkn)2

2α2 ), (5)

where tkn is the target value for the nth pattern at the k′th class, ykn is the
respected output of the expert and α is the standard deviation. Under these
assumptions the description length of the model is:

�(M, D) =
NC

2
log(2π) + NC log(α) +

∑N
n=1

∑C
k=1(ykn − tkn)2

2α2 +

d

2
log(2π) + d log(β) +

d∑

i=1

w2
i

2α2 . (6)

Differentiating Eq. (6) with respect to α and equating to zero, we obtain:

α2 =
1

NC

N∑

n=1

C∑

k=1

(ykn − tkn)2. (7)

Differentiating Eq. (6) with respect to β and equating to zero, we obtain:

β2 =
1
d

d∑

i=1

w2
i . (8)

Substituting Eq. (7) and Eq. (8) into Eq. (6) and discarding the constant terms
we arrive at:

�(M, D) = NC log(α) + d log(β) +
d

2
(1 + log(2π)). (9)

Equation (9) shows that the description length of the model is a tradeoff between
the errors and the number of parameters d and their average value. Considering
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description length as an energy and following Gibbs distribution formulation, we
use the description length as a weight for each classifier in the convex combina-
tion as follows:

ak =
exp(−�k(M, D))

∑M
k=1 exp(−�k(M, D))

, (10)

where M is the number of classifiers. Thus, a classifier with a shorter description
length gets higher weight when combining the output of the ensemble. This is
in contrast to other fusion methods when only the error is considered.

2.3 Other Expert Fusion Methodologies

In addition to the MDL fusion method, we have used five more classifier combi-
nation rules. They are described in this section.

I. Majority Rule: The first is the familiar majority vote; Here, the final decision
is made by selection of the class with maximum number of votes in the ensemble.

II. Convex Combination: The second strategy relies on a convex combination
using the error values from the first stage of training [17]. Let ei be the classifi-
cation error of the i′th classifier. We set the weight of this classifier as follows:

ak =
1/ek∑M
i=1 1/ei

, (11)

where M is the number of classifiers in the ensemble. The output of the ensemble
is define as in Eq. (1).

III. Convex Combination: The third strategy relies on a convex combination
using the error values from the first stage of training. Let ei be the classification
error of the i′th classifier. To maximize the entropy of the ensemble, we set the
weight associated with this classifier in accordance with Gibbs distribution as
follows:

ak =
exp(−ek)

∑M
i=1 exp(−ei)

, (12)

where M is the number of classifiers in the ensemble. The output of the ensemble
is define as in Eq. (1).

IV. Dynamic Selection: The forth strategy involves dynamic selection of the
best classifier for prediction of the output value when a novel pattern is given
[11]. When the confidence of the best classifier (to be explained below) is below
a given threshold, we use a dynamic combination of the classifiers to produce the
output of the ensemble. We define a local accuracy for each classifier as follows.
Let k > 0 and x ∈ Rd be a novel pattern. Let Dk(x) be the k −nearest patterns
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in the training set to x. Set the local accuracy of the current classifier on x the
to be:

l(x) =

∑
xj∈Dk(x) δ(arg maxi p(yi|xj) − arg maxj(tj))

k
, (13)

where δ(x) is one for x = 0 and zero otherwise, and tj is the target for pattern
xj . Thus, the local accuracy is the number of correct classified patterns in the
k − neighborhood of x. Let l1(x) be the maximum local accuracy and let l2(x)
be the next highest accuracy. Define the confidence level as follows:

cl(x) =
l1(x) − l2(x)

l1(x)
. (14)

We further define the weights for each classifier as follows:

ak(x) =
exp(lk(x))

∑M
i=1 exp(li(x))

, (15)

The combination rule in this case is given by:

– Compute the local accuracy for each classifier as in Eq. (13).
– Compute the confidence level cl(x) from Eq. (14).
– If max cl(x) > threshold, select the output of the best classifier, otherwise

use Eq. (1).

V. Adaptive Boosting AdaBoost: The fifth strategy uses the AdaBoost algorithm
[10]. The boosting algorithm AdaBoost - from adaptive boosting - allows the
designer to continue adding weak learners until some desired low training error
has been achieved. In AdaBoost each training pattern receives a weight which
determines its probability of being selected for a training set for an individual
component classifier. If a pattern is accurately classified then its chance to be
selected again in a subsequent component classifier is reduced. In this way
AdaBoost focuses on the difficult-to-classify patterns. We start by initialize the
weights to be uniform. On each iteration we draw a training set at random
according to these weights. Next we increase weights of misclassified patterns
and decrease weights of patterns correctly classified. The new distribution of
patterns is used to train the next classifier.

3 Results

The following methods of combination were used:

– ENS1-PRBFN Ensemble using a majority vote strategy.
– ENS2-PRBFN Ensemble using a convex combination (II) as in [17].
– ENS3-PRBFN Ensemble using a convex combination (III) of classifiers where

the errors affect the weight of the different classifiers in the ensemble.
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Table 1. Comparison of correct classification (percentage) of several ensemble fusion
methods using 10 folds cross validation. Ensemble training is done by boosting.

Method Breast-cancer Glass Iris Vowel Pima Image
ENS1-PRBFN 96.5±1.4 96.2±3.5 95.3±4.5 85.2±3.2 77.4±3.2 91.2±6.5
ENS2-PRBFN 96.7±1.4 94.8±4.7 96.7±5.3 86.7±3.9 77.0±3.3 89.4±6.9
ENS3-PRBFN 96.8±1.8 94.2±4.6 96.0±4.5 87.1±4.0 74.9±4.4 90.4±5.6
ENS4-PRBFN 96.4±2.3 94.2±5.2 95.3±5.3 89.3±4.5 76.7±3.7 90.6±5.8
ENS5-PRBFN 97.0±1.5 95.2±3.8 96.0±4.5 87.3±2.7 78.8±2.8 91.9±3.8
ENS6-PRBFN 96.7±1.7 95.0±4.2 96.3±4.5 86.4±2.8 75.8±3.7 92.3±5.6
PRBFN 96.0±2.0 92.8±3.9 95.3±4.6 81.8±2.6 76.6±3.4 88.6±5.4

– ENS4-PRBFN The ensemble using k nearest neighbors (IV) to select the
best classifier [11].

– ENS5-PRBFN Ensemble using MDL to set the weight of each classifier in
the convex combination.

– ENS6-PRBFN Ensemble using AdaBoost algorithm (V) as describe in [10].
– PRBFN the single classifier as described in [4].

Data Sets Description

The Breast-cancer dataset from the UCI repository was obtained from Dr.
William H. Wolberg at the University of Wisconsin Hospitals. This dataset has
9 attributes and two classes and the number of training patterns is 699. The
task is to classify the patterns to Benign or Malignant.

The Glass dataset from the UCI repository has 10 attributes and 7 types
of glasses. The study of classification of types of glass was motivated by crimi-
nological investigation. At the scene of the crime, the glass left can be used as
evidence if it is correctly identified! Ripley’s best result on this data-set is 80%
correct classification [15].

The Iris data-set [8] contains three classes, each with 50 instances. The classes
refer to a type of iris plant. Each pattern is composed of four attributes. We used
ten folds of cross validation in order to estimate the performance of the different
classifiers.

The Deterding vowel recognition data [7,9] is a widely studied benchmark.
This problem may be more indicative of a real-world modeling problem. The data
consists of auditory features of steady state vowels spoken by British English
speakers. There are 528 training patterns and 462 test patterns. Each pattern
consists of 10 features and belongs to one of 11 classes that correspond to the
spoken vowel. The speakers are of both genders. This data, unlike the other data-
sets that have been studied, has a fixed training and test set. We provide results
with cross validation in Table 1, where we compare experts on cross validated
test set. Previous best score on the fixed test set was reported by Flake using
SMLP units. His average best score was 60.6% [9] and was achieved with 44
hidden units. The single PRBFN network surpasses this result and achieves
68.4% correct classification with only 22 hidden units [4]. Thus, the additional
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improvement that is obtained here using ensemble, puts this result at the top of
performance for the vowel data set.

The Image Segmentation data from the UCI repository is composed of 210
instances for train. The instances were drawn randomly from a database of 7
outdoor images. The images were hand-segmented to create a classification for
every pixel. Each instance is a 3x3 region and has 19 continuous attributes. The
task is to classify to one of the seven classes: brickface, sky, foliage, cement,
window, path and grass.

The results in Table 1 are the average of three to ten times cross validation
tests of ten folds on each of the data sets. The average performance is given in
each entry as well as the variance of each predictor.

4 Discussion

The performance of ensemble methods on a tight architecture, which has been
shown to have a low variance portion of the error, was evaluated on several bench-
mark data-sets. Partial independence of the experts was achieved via boosting
or cross validation, and several methods were used for expert fusion. PRBFN
is a deterministic classifier with a tightly controlled variance, therefore, simple
fusion methods do not improve its performance. For instance, the best known
result on the Glass data set is 80% accuracy [15], while PRBFN obtained 92.8%
accuracy. We considered few approaches, to enhance the independence of several
PRBFN, on the same data set. We note that the improvement of ensemble of
such architectures is smaller than improvement that can be achieved on other ar-
chitectures which posses higher variance, nevertheless, improvement still exists,
and is sometimes quite significant.

Most of the fusion methods we have studied, do not appear to be significantly
different in their improvement over a single expert. The key factor affecting the
improvement is the degree of decorrelation of experts, which in this case, due
to the deterministic nature of the architecture, depends on data re-sampling
methods. The DCS fusion (ENS4) achieved a noticeable improvement on the
Vowel data set. However, we note that this fusion method has large variance.
This is due to the fact that quite often, prediction of a single expert (the best
classifier) is selected, and thus there is no averaging that reduces the variance.
The fusion based on the MDL principle (ENS5-PRBFN) appears to have a lower
variance compared with other fusion methods. This is due to the higher emphasis
that the MDL approach gives to lower description length and, thus, to simple
models with a lower variance. The MDL fusion does not have to store the training
data for future prediction and is thus faster in recognition compared with the
DCS method.

References

1. L. Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
2. L. Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.



A Study of Ensemble of Hybrid Networks with Strong Regularization 235

3. L. Breiman. Random forests. Technical Report, Statistic Department University
of California, Berkeley, 2001.

4. S. Cohen and N. Intrator. Automatic model selection in a hybrid perceptron/radial
network. Information Fusion Journal, 3(4), December 2002.

5. S. Cohen and N. Intrator. A hybrid projection based and radial basis function
architecture: Initial values and global optimization. Pattern Analysis and Appli-
cations special issue on Fusion of Multiple Classifiers, 2:113–120, 2002.

6. T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.
7. D.H. Deterding. Speaker Normalisation for Automatic Speech Recognition. PhD

thesis, University of Cambridge, 1989.
8. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7:179–188, 1936.
9. G.W. Flake. Square unit augmented, radially extended, multilayer percpetrons.

In G. B. Orr and K. Müller, editors, Neural Networks: Tricks of the Trade, pages
145–163. Springer, 1998.

10. Y. Freund and R.E. Schapire. A decision theorethic generalization of on-line
learning and application to boosing. Journal of Computer and System Sciences,
55(1):119–139, 1995.

11. G. Giacinto and F. Roli. Dynamic classifier selection. In First International work-
shop on Multiple Classifier Systems, pages 177–189, 2000.

12. G. E. Hinton and D. van Camp. Keeping neural networks simple by minimizing
the description length of the weights. In Sixth ACM conference on Computational
Learning Theory, pages 5–13, July 1993.

13. M. P. Perrone and Leon N Cooper. When networks disagree: Ensemble method
for neural networks. In R. J. Mammone, editor, Neural Networks for Speech and
Image processing. Chapman-Hall, 1993.

14. Y. Raviv and N. Intrator. Bootstrapping with noise: An effective regularization
technique. Connection Science, Special issue on Combining Estimators, 8:356–372,
1996.

15. B. D. Ripley. Pattern Recognition and Neural Networks. Oxford Press, 1996.
16. J. Rissanen. A universal prior for integers and estimation by minimum description

length. The Annals of Statistics, 11:416–431, 1983.
17. F. Roli and G. Fumera. Analysis of linear and order statistic for combiners for

fusion of imbalanced classifiers. In Third International workshop on Multiple Clas-
sifier Systems, pages 252–261, 2002.

18. C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech. J.,
27:379–423 and 623–656, 1948.


	1 Introduction
	2 Training an Ensemble
	2.1 Ensemble Generation
	2.2 Using MDL for Experts Fusion
	2.3 Other Expert Fusion Methodologies

	3 Results
	4 Discussion
	References

