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Abstract: An algorithm for image registration and mosaicing on underwater sonar image
sequences characterised by a high noise level, inhomogeneous illumination and low frame rate is
presented. Imaging geometry of acoustic cameras is significantly different from that of pinhole
cameras. For a planar surface viewed through a pinhole camera undergoing translational and
rotational motion, registration can be obtained via a projective transformation. For an acoustic
camera, it is shown that, under the same conditions, an affine transformation is a good
approximation. A novel image fusion method, which maximises the signal-to-noise ratio of the
mosaic image is proposed. The full procedure includes illumination correction, feature based
transformation estimation, and image fusion for mosaicing.
1 Introduction

The acquisition of underwater images is performed in
noisy environments with low visibility. For optical images
in those environments, often natural light is not available,
and even if artificial light is applied, the visible range is
limited.
For this reason, sonar systems are widely used to obtain

images of seabed or other underwater objects.
An acoustic camera is a novel device that can produce a

real time underwater image sequence. Detailed imaging
methods of acoustic cameras can be found in [1]. Acoustic
cameras provide extremely high resolution (for a sonar) and
rapid refresh rates [1]. Despite those merits of acoustic
cameras over other sonar systems, it still has shortcomings
compared to normal optical cameras:

(i) Limitation of sight range: Unlike optical cameras which
have a 2-D array of photosensors, acoustic cameras have a
1-D transducer array. 2-D representation is obtained from
the temporal sequence of the transducer array. For this
reason, it can collect information from a limited range.
(ii) Low signal-to-noise ratio (SNR): The size of the
transducers is comparable to the wavelength of ultrasonic
waves, so the intensity of a pixel depends not only on the
amplitude, but also on the phase difference of the reflected
signal. This is the reason for the Rician distribution of the
ultrasound image noise. In addition, there is often a
background ultrasound noise in underwater environments.
It follows that the SNR is significantly lower than in optical
images.
(iii) Low resolution with respect to optical images: owing
to the limitation in the transducer size, the number of
transducers that can be packed in an array is physically
restricted, and so is the number of pixels in the horizontal
axis. For example, a mine reacquisition and identification
sonar (MIRIS) has 64 transducers [1].
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(iv) Inhomogeneous insonification: The unique geometry
of an acoustic camera requires the sonar device to be aligned
parallel to the surface of interest, so that the whole surface
falls within the vertical field of view of the acoustic camera
[1]. This alignment is not always trivial, and the misalign-
ment often makes dark areas in acoustic camera images.

The above limitations can be addressed by image mosai-
cing, which is broadly used to build a wider view image
[2–4], or to estimate the motion of a vehicle [5, 6]. For
ordinary images, mosaicing is also used for image
enhancement such as denoising, deblurring, or super-
resolution [7, 8].

There has been extensive research on image mosaicing,
and its applications [9–13]. However, standard methods for
image registration [14, 15] are not directly applicable to
acoustic camera images, because of the discrepancy of
image quality, inhomogeneous insonification profile, and
different geometry. Marks et al. have described a mosaicing
algorithm of the ocean floor taken with an optical camera
[2]. Rzhanov et al. have also described a mosaicing
algorithm of underwater optical images resulting in high
resolution seabed maps [3]. Both of them deal with a similar
problem of illumination, but use different methods: image
matching by edge detection and Fourier based matching,
which are not directly related to our work. In addition, since
their mosaicing algorithms are not intended for image
quality enhancement, we need to come up with a different
mosaicing algorithm.

In this paper, we describe a mosaicing algorithm for a
sequence of acoustic camera images. We show that an affine
transformation is appropriate for images taken from an
acoustic camera undergoing translational and rotational
motion. We propose a method to register acoustic camera
images from a video sequence using a feature matching
algorithm. Based on the parameters of image registration, a
mosaic image is built. During the mosaicing, the image
quality is enhanced in terms of SNR and resolution.

2 Properties of acoustic camera images

Sonar image acquisition includes several steps, insonifica-
tion, scattering, and detection of the returning signal. In
this Section, we describe physical aspects of images
acquired from acoustic lens sonar systems, or acoustic
cameras.
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The emission and reception of ultrasound pulses by an
acoustic camera is restricted within the vertical field of
view, which is �5� from the plane of image acquisition.
When the object is out of this vertical field of view, it
appears dark in the image as it is poorly insonified. This
property makes a typical insonification pattern in acoustic
camera images, which consequently brings out the necessity
of insonification correction for registration and mosaicing of
the images.

The pixel size and angular coverage of acoustic cameras
vary depending on the type of the camera. We have used a
dual-frequency identification sonar (DIDSON) system,
which has been developed for the purpose of underwater
target exploration [1, 16].

The DIDSON system has 96 transducers and the
horizontal field of view is 28�: A set of acoustic lenses
focuses the returning signal such that each sensor has a
receiving beamwidth 0:3� in the horizontal axis, and 10�

in the vertical axis. Each transducer produces an intensity
profile that corresponds to a specific angle where the range
information is obtained from the focal length of the
acoustic lens array. The result is either a 96� 512 or a
48� 512 polar coordinates image, which has to be
mapped to Cartesian coordinates in order to recover the
original geometry.

Since the shortest range a DIDSON system can scan is
0.75m and the maximum window length is 36m, the ratio of
the largest pixel size and the smallest pixel size can be up to
ð36:75=0:75Þ ¼ 49: This means, a pixel in the polar
coordinates image can occupy from one to 49 pixels in the
Cartesian coordinates image.

Like other B-scan ultrasonic devices, acoustic cameras
obtain pixel values by calculating the intensity of the
returning signal. Owing to the diverse sources of back-
ground noise, the actual water pressure observed at a
transducer is the sum of multiple waves with different
phase. This is often approached through a random walk
problem in the phase space, and brings a different noise
structure called Rayleigh distribution when a signal is not
present in the image, and in general the noise is modelled
by Rician distribution [17]. A Rician probability density
function (PDF) is in many cases approximated by a
Gaussian PDF with the justification that when the SNR is
high, their probability density functions are almost the
same [18].

3 Imaging geometry

The transformation between two acoustic camera images
can be calculated by putting one image into the coordinate
system where the image is on the xy-plane with the positive
y-axis along the centre line of the image and the centre of the
arc at the origin (Fig. 1). During the imaging process, a point
denoted by a position vector x ¼ ðx; y; zÞ> is projected to the
polar coordinates (r, a) as follows

r ¼ jxj ð1Þ

a ¼ sin�1 x

rxy
ð2Þ

where rxy � ðx2 þ y2Þ1=2; or to the Cartesian coordinates
(u, v)

u ¼ r sin a ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b

q
ð3Þ
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v ¼ r cos a ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b

q
ð4Þ

where b is the angle between x and the imaging plane. When
the camera is translated by dx ¼ ðdx; dy; dzÞ> and rotated by
ðf; y;cÞ; the new coordinates of x are

x0 ¼ ðx0; y0; z0Þ> ¼ Rfycðx� dxÞ ð5Þ

where the rotation matrix Rfyc is a 3� 3 matrix

Rfyc ¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

0
@

1
A ð6Þ

R11 ¼ cosf cosc� sinf sin y sinc

R12 ¼ � sinf cos y

R13 ¼ cosf sinc� sinf sin y cosc

R21 ¼ sinf coscþ cosf sin y sinc

R22 ¼ cosf cos y

R23 ¼ sinf sinc� cosf sin y cosc

R31 ¼ � cos y sinc

R32 ¼ sin y

R33 ¼ cos y cosc:

The linear transformation T between two images should
satisfy

u0

v0

1

0
B@

1
CA ¼

x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b0

p
y0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b0

p
1

0
B@

1
CA

¼ T

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b

p
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 b

p
1

0
B@

1
CA

¼ T

u

v

1

0
B@

1
CA ð7Þ

where
b0 ¼ tan�1 z0

ðx02 þ y02Þ1=2

When the reflecting points of the target object are located
roughly on a plane such as the sea floor, z can be
approximated by

Fig. 1 Imaging geometry of an acoustic camera

The camera is located at the origin of the xyz-coordinate system with the
pitch, yaw, and roll each set at 0. In the next frame ðx0y0z0-coordinateÞ; the
camera is displaced by dx ¼ ðdx; dy; dzÞ> and rotated by ðf; y;cÞ
IEE Proc.-Radar Sonar Navig., Vol. 152, No. 4, August 2005
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z ¼ axþ byþ z0 ð8Þ
u0and v0 can then be rewritten as

u0 ¼ 1þ z02

x02 þ y02

� �1over2

� fðR11 þ R13aÞxþ ðR12 þ R13bÞy
� ðR11dxþ R12dyþ R13ðdz� z0ÞÞg

v0 ¼ 1þ z02

x02 þ y02

� �1
2

� fðR21 þ R23aÞxþ ðR22 þ R23bÞy
� ðR21dxþ R22dyþ R23ðdz� z0ÞÞg

ð9Þ

where a, b, and z0=ðx02 þ y02Þ1=2 are sufficiently small that
their squares are negligible. For example, the maximum
deviation angle bmax of a DIDSON system is 5�; thus tan2

bmax ¼ 0:0038:
Up to a first order of approximation, we have

u0

v0

1

0
@

1
A ¼ T

u

u

1

0
@

1
A ð10Þ

where

T¼
R11þR13a R12þR13b �ðR11dxþR12dyþR13ðdz�z0ÞÞ
R21þR23a R22þR23b �ðR21dxþR22dyþR23ðdz�z0ÞÞ

0 0 1

0
B@

1
CA

ð11Þ

This serves as a first order approximation of the transform-
ation between two acoustic camera images. Further
approximation will be studied in subsequent work by
segmenting the image into local planes depending on levels
of elevation.
The six unknown parameters of the affine transformation

can be obtained by matching features in two images.
However, other parameters such as Rij; a, b, or dx in (11)
cannot be figured out separately because those parameters
are coupled and under-constrained. Consequently, under the
above approximation, it is impossible to reconstruct the
precise motion of the acoustic camera merely based on
image registration parameters.

4 Methodology

The typical four steps of image registration are: feature
detection, feature matching, transformation estimation,
and image resampling and transformation [14]. Feature
detection is the process of finding objects such as
corners, edges, line intersections, etc., manually or
automatically. The features from the sensed image are
paired with the corresponding features in the reference
image in the second step. In the third step, the
transformation is estimated based on the displacement
vector of each feature. Once the mapping between
images is established, the multiple images are combined
to generate a mosaic image.
In our work, we have found that high curvature points can

be useful as features of interest in acoustic camera images.
The sum of squared difference is used to measure the
dissimilarity between two images in the second step.
Transformation parameters are estimated via a random
sampling based method. After the parameters of the affine
IEE Proc.-Radar Sonar Navig., Vol. 152, No. 4, August 2005
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transformation are obtained, all images are combined by
weighted average.

4.1 Coordinate mapping and inhomogene-
ous insonification equalisation

In order to restore the spatial homogeneity of the image, a
transformation to the Cartesian coordinates has to be
performed. Owing to the fact that the field of view in the
angular coordinate of different sensors does not overlap, the
resulting pixel size in the Cartesian coordinates is not
homogeneous. Therefore, nearest neighbour interpolation
was applied to fill the gaps in the image in the Cartesian
coordinate system.

Owing to the acoustic acquisition of images, which was
performed by insonifying the area with a single source,
an inhomogeneous intensity profile is obtained. This has
to be corrected for efficient image registration and
mosaicing. For example, Rzhanov et al. have subtracted
a 2-D polynomial spline of the image from the original
image [3]. Previous work on separation of illumination
from reflectance was based on the Retinex theory [19];
The Retinex theory was designed for optical images with
low noise. Using a homomorphic filtering method with a
Gaussian retinex surround [20], Jobson et al. estimated
the illumination of an image, and reconstructed the image
under uniform illumination. While noise is stronger with
an acoustic camera, we demonstrate that, when including
the noise term in the model, the sum of squared
difference is still a good dissimilarity measure after the
retinex rendition.

The noisy image is modeled by

IðuÞ ¼ LðuÞÎIðuÞ þ �sGðuÞ ð12Þ

where I(u) is the observed image, L(u) the insonification
intensity, ÎIðuÞ the normalised image under uniform
insonification, and �sGðuÞ a Gaussian noise with standard
deviation sG at u. The estimated insonification intensity ~LL is
calculated by applying a Gaussian filter to the original
image, ~LLðuÞ ¼ IðuÞ � e�juj2=2s2 and the estimated uniform
insonification image is

~IIðuÞ ¼ LðuÞ
~LLðuÞ

ÎIðuÞ þ �ðuÞ
~LLðuÞ

’ ÎIðuÞ þ �ðuÞ
~LLðuÞ ð13Þ

The sum of squared difference between two uniform
insonification images is

SSD1;2 ¼
ZZ

ð~II1ðuÞ � ~II2ðuÞÞ2d2u

’
ZZ

ðÎI1ðuÞ � ÎI2ðuÞÞ2d2u

þ
ZZ

�1ðuÞ
~LL1ðuÞ

� �2ðuÞ
~LL2ðuÞ

� �2

d2u ð14Þ

The second integral in (14) is independent of the true image,
and may be regarded as a constant, provided the noise is
uniform.

A regularisation factor that is added to ~LL prevents
erroneously excessive intensity in the equalised image
from the speckles in low insonification regions. The
computation speed is improved by calculating the convolu-
tion in the frequency domain.
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4.2 Feature detection and putative matching

Feature detection and matching are computationally
demanding. A Gaussian pyramid algorithm has been
proposed as a multiscale approach for efficient feature
detection and matching [21, 14]. As mentioned in Section
2, a pixel in the polar coordinates image corresponds to 1
or several pixels in the mapped image. For example, in
an image with the range 8.25–44.25m, the number of
pixels that correspond to a single pixel in the polar
coordinates image varied from 1 to 28. Magnified pixels
result in jagged edges in the mapped image. In our
images, feature detection at the third level of the
Gaussian pyramid reduces false detection of corners at
the jagged edges.

Feature detection and putative matching is initialised by
translational displacement detection. Translational displa-
cement between the sensed image and the reference image is
calculated by an exhaustive search on the fourth level of the
Gaussian pyramid. This process drastically reduces the area
of exhaustive search.

After translation is estimated, high curvature points of the
sensed image are detected using the Harris corner detector
[22]. The second moment matrix M is computed using the
following relationship

M ¼ e�xT x=2s2s � ððHIÞðHIÞTÞ ð15Þ

where ss is the scale factor of the corner, and HI is the
gradient vector of the image. The response after the Harris
corner detection is

R ¼ detM � kTrðMÞ2 ð16Þ
where k is set to 0.04. The local maxima of R correspond to
corners. These corners are matched to the corresponding
points in the reference image by another exhaustive search
on the third level of the Gaussian pyramid.

4.3 Transformation estimation

Image changes due to the sonar system movement
are modelled by an affine transformation as derived in
the previous Section. The affine transformation describes
the image changes by yaw, small pitch and roll and
translational movement of the sonar system. This is valid
when multiple objects are not present at the same range
and angle. This is the case with the great majority of
images in our dataset [1].

The detailed procedure of the algorithm is as follows:

(i) Feature points estimation: Using the Harris corner
detector, compute 50 interest points from an equalised
acoustic camera image.
(ii) Corresponding points search: For a square patch around
each feature point in the sensed image, find the sub-pixel-
wise displacement in the next image, using a cross-
correlation based matching.
(iii) Transformation parameter estimation: Repeat the
following (1)–(3) for 1000 samples.

(1) Select 3 putative matching pairs.
(2) Using the matching pairs, estimate the parameters of
the affine transform.
(3) Find the inliers of the estimated transform, and repeat
(2) with the inliers until the estimated inliers are
stabilised.

(iv) Set a certain k percentile to define a threshold n of
feature points. Then, find the n pairs of points that are
closest to each other. The least mean squared error of the
pairs is used as the criterion.
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In general, we can get better registration if we find and
match more feature points from images. However, the
structure in an acoustic camera image is not sophisticated
owing to the resolution and noise. In step (i), 50 turned out
to be a reasonable number of feature points that we can
reliably find from most of acoustic camera images.

We use the criterion of least square error of k% of
samples, where k is determined empirically. It is similar to
the least-median of squares (LMS) method [23] in
addition to the random sample consensus (RANSAC)
algorithm [24], but it differs in that it can have a lower
breakdown point (k instead of 0.5 of LMS), and it uses the
mean squared error instead of the k percentile as
the measure of error. It works well with a small number
of feature point pairs with a high percentage of outliers.
In addition, it yields a measure of goodness of the
transformation, which helps to decide whether to continue
mosaicing or to stop, for example, because the risk of
mismatch is high.

Fig. 2 Original and transformed images, and estimated and
corrected insonification images

a An original polar coordinates image from a DIDSON system. The
resolution is 48� 512: The range coverage is 8.25m to 44.25m and the
angle coverage is 28�

b Panel amapped to the Cartesian coordinates. The resolution is 512� 844
c The estimated insonification of panel b. This image was produced by
convolving panel b with a 2-D isotropic Gaussian kernel with sG ¼ 50
pixels. The regularisation constant was set to 15
d The estimated uniform insonification image of b
IEE Proc.-Radar Sonar Navig., Vol. 152, No. 4, August 2005
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Provided that there are about 40% of inlier feature point
pairs, the probability that three inlier pairs are drawn is 0.48
with 10 samples, 0.9987 with 100 samples, and 1� 10�27

with 1000 samples. The repetition time in step (iii) may vary
depending on the quality of the images.

4.4 Mosaicing and resolution enhancement
via image fusion

After the registration, a mosaic image is constructed.
Since the noise is present regardless of the insonification
condition, it can deteriorate the mosaic image if not
treated properly. For example, if we average well-
IEE Proc.-Radar Sonar Navig., Vol. 152, No. 4, August 2005
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insonified images and poorly-insonified images, the SNR
will be deteriorated because noise may accumulate. In this
case, mosaicing via averaging can be described as the
following relationship

ImosaicðuÞ ¼
1

N

XN
i¼1

IiðTiuÞ ð17Þ

where Ti is the transformation matrix from the perspective
of the mosaic image to the perspective of the ith image.
The SNR of the mosaic image is
Fig. 3 Matched (circle) and non-matched (triangle) feature points obtained from the third level of the Gaussian pyramid using the Harris
corner detection

Features from a sensed image are paired with corresponding points in the reference image. A 15� 15 patch around each feature point in the sensed image is
matched with the same sized patch from the corresponding 21� 21 area in the reference image. The outliers (features with weaker matching) are defined by
those pairs with higher matching error after the estimated transformation

Fig. 4 Demonstration of weighted averaging effect

Mosaicing was performed with 38 images which were averaged after the corresponding motion compensation transformation was applied to each of them
a Uniform average of the whole images
b Weighted average, in which insonification profile was utilised during averaging (see Section 4.4 for details)
c Same target from different image sequence
d Same target from different image sequence utilising the insonification profile during averaging
267
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Fig. 5 Resolution enhancement by averaging images

a Ship wreckage image juxtaposed with a mosaic image of 5 consecutive frames followed by a geometric transformation (see Section 4.3)
b Coral image with a mosaic image of 7 consecutive frames
SNRmosaicðuÞ ¼
P

i LiðTiuÞ
s

ð18Þ

where LiðuÞ is the insonification intensity of the ith image
at u. Note that the SNR is a function of u because the
insonification intensity varies within the image.

In our algorithm, poorly insonified regions receive
lower weight in the averaging. Denote the weight of the
ith image by aiðuÞ; where

P
i aiðTiuÞ ¼ 1: Then, the

mosaic image is

ImosaicðuÞ ¼
X

aiðTiuÞIiðTiuÞ ð19Þ

of which the SNRmosaic is

SNRmosaicðu; a1; . . . ; aNÞ ¼
P

aiLið Þ
s

ffiffiffiffiffiffiffiffiffiffiffiP
a2i

p �
ffiffiffiffiffiffiffiffiffiffiffiP

L2i
p

s
ð20Þ
268

Downloaded 07 Jan 2006 to 128.148.206.57. Redistribution subje
Equality holds when akðuÞ ¼ LkðuÞ=
P

LiðT�1
k TiuÞ: Thus,

the maximum SNR of the mosaic image is achieved when
the transformed images are combined as follows

ImosaicðuÞ ¼
P

LiðTiuÞIiðTiuÞP
LiðTiuÞ

ð21Þ

This weighted averaging method reduces the influence of
noise in poorly insonified regions.

5 Results

The algorithm was tested on a boat wreckage sequence
[Note 1]. A DIDSON system scanned a shipwreck at

Note 1: The data has been provided by E. O. Belcher from Applied Physics
Laboratory, University of Washington under ONR support.
IEE Proc.-Radar Sonar Navig., Vol. 152, No. 4, August 2005
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approximately 30 metres depth for 285 seconds and took
446 frames of images. About 40 frames among them show
the vessel from head to stern, and another 40 frames show
it from stern to head. The body of the ship exposed in
each frame is less than 20% in each frame. The algorithm
was applied to those two sub-sequences to build two
mosaic images.
Figures 2a and b depict the same acoustic image in the

original polar coordinates and the transformed Cartesian
coordinates, respectively. A collection of pixels with the
same pixel intensity can be seen in the Cartesian coordinates
image.
Estimated insonification based on the method described

in Section 4.1 is depicted in Fig. 2c. The insonification
corrected image is depicted in Fig. 2d. The insonification
correction, which equalises the image, increases the
dynamic range of the averaged (mosaiced) image.
Figure 3 depicts two consecutive acoustic images

together with a set of matched (circle) and non-matched
(triangle) feature points. These matched feature points in the
reference image, which were found using the cross-
correlation of patches around the feature points in the
sensed image, are used to estimate the geometric trans-
formation between the two images.
Cross-correlation was found to be more robust than a

conventional approach [25] in which features are
independently found and matched between the two
images. This is a consequence of the high noise in the
image and the fact that the exact location of the features is
not well defined. Figure 4 represents the main result of the
paper, a mosaic image of multiple acoustic images. The
mosaiced image contains information which spans mul-
tiple frames, each frame corresponding to a small portion
of the insonified object. The combination images, which
have been transformed to be in the same coordinate
system, provide subpixel image resolution enhancement.
Left panels of Figs. 5a and b show the original single
frames detail of the target before mosaicing. The
resolution enhancement follows from the fact that one
pixel in the original polar coordinate system is mapped
to multiple pixels with the same intensity in the Cartesian
coordinate system. Different frames lead to partial
overlap of these multiple pixels, so that after averaging,
a subpixel resolution is achieved (see right panels of Figs.
5a and b).
Averaging of different acoustic images after bringing

them to the same coordinate system (same viewpoint) leads
to the classical effect of denoising. This is clearly seen in
Fig. 4 on the whole target, and in particular in the
comparison of two frames of the targets in Fig. 5. The top
two panels of Fig. 4 depict a mosaiced image from the same
sequence of acoustic images. In panel b, the insonification
profile was utilised during averaging. Panels c and d
represent the same target from a different acoustic image
sequence with panel d utilising the insonification profile
during averaging.

6 Conclusion

Acoustic camera technology is becoming essential for
underwater exploration in noisy environments with low
visibility. The acoustic camera, with its specific sensor
design, poses some challenges in terms of image resolution,
noise removal and area coverage.
In this paper, we have presented a complete algorithm to

achieve image mosaicing, denoising and resolution
enhancement from a sequence of acoustic camera images.
IEE Proc.-Radar Sonar Navig., Vol. 152, No. 4, August 2005
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We described the steps that were required to achieve this
mosaicing. This included modelling the specific geometry
of acoustic camera images which sharply differs from
pinhole camera geometry.

The different geometry, and in particular, the fact that the
images are acquired in a polar coordinate system,
complicates the search and matching of feature points in
consecutive images. Moreover, in this particular geometry,
pixels in the polar coordinate system are mapped to a
collection of pixels with the same intensity in the Cartesian
coordinate system. Since consecutive images were taken
from different viewpoints, a subpixel enhancement effect
was achieved in the process of averaging in addition to the
denoising effect. We have presented a novel method in
which features extracted by the Harris corner detector are
matched locally to the reference image via cross-corre-
lation. This method was found to be more robust than a
conventional approach in which features are found inde-
pendently and matched between two images. In particular,
this is more pronounced when the number of pixels
available for feature comparison is limited.
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