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Abstract. Interpretation of brain states from EEG single trials, multiple elec-
trodes and time points, is addressed. A computationally efficient and robust
framework for spatio-temporal feature selection is introduced. The framework
is generic and can be applied to different classification tasks. Here, it is applied to
a visual task of distinguishing between faces and houses. The framework includes
training of regularized logistic regression classifier with cross-validation and the
usage of a wrapper approach to find the optimal model. It was compared with two
other methods for selection of time points. The spatial-temporal information of
brain activity obtained using this framework, can give an indication to correlated
activity of regions in the brain (spatial) as well as temporal activity correlations
between and within EEG electrodes. This spatial-temporal analysis can render a
far more holistic interpretability for visual perception mechanism without any a
priori bias on certain time periods or scalp locations.
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1 Introduction

A major challenge in neuroscience is inferring how momentary mental states are mapped
into a particular pattern of brain activity. Inference, which is based on EEG single-trial
(i.e. short segment of the EEG) has practical implementations for brain computer in-
terface (BCI) applications. BCI applications are designated for people suffering from
physical disabilities, helping them to communicate with an electronic device through
real time interpretation of their brain signals ([1]-[4]).

A common way to analyze EEG single-trials is through classification (for review,
see [5]). One of the main challenges is the amount of data needed to properly describe
the different states; It increases exponentially with the dimensionality of the data and is
termed the curse of dimensionality [6].

To reduce the dimension of the data, many feature selection methods have been de-
veloped for identifying and choosing an optimal subset of features from the data. Often,
researchers focus on few electrodes based on algorithms for channel selection that pick
the most promising channels for classification. Muller et al. [7] utilized Spatial Pattern
Analysis and PCA for channel selection and compared it to a set of four electrodes
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chosen based on prior knowledge. Palaniappan et al. [8] and Schroder et al. [9] found
appropriate channels via a Genetic Algorithm; Lal et al. [10] used Recursive Feature
Elimination and Zero-Norm Optimization to reduce the number of electrodes from 39
to 12. Tomika and Muller [11] reduced the dimension of the data by down-sampling
the signals. Another way to alleviate the curse of dimensionality is via regularization
methods, which stabilize the solutions by introducing prior knowledge or by restricting
the solution ([12]-[13]). Cross-validation can be used to find the optimized model and
its regularization parameter ([11], [14]-[16]).

As data is becoming more readily available, it is more desirable to let the data
guide the choice of an optimal model (determine relevant electrodes and time points)
while minimizing a-priori assumptions. For this, a two-dimensional representation of
the spatio-temporal predictive information of the brain activity is highly desirable, es-
pecially for development of new paradigms, for which the neural correlates may not be
known in advance [17].

Modern data-driven analyses, such as microstate segmentation ([18]-[19]), have been
developed and used to study the spatio-temporal activity in the brain. Microstate seg-
mentation uses the spatial distribution of the ERP which involves averaging over multi-
ple trials of similar brain activity (for review, see [17]). Such a predictive map lacks the
correlated activity between electrodes, which is lost in the traditional ERP approach.
Moreover, the ability to assess the trial-to-trial variability in event-related potential ex-
periments can provide new insights into brain functioning which may be ignored during
ERP averaging.

Tomioka and Muller [11] suggested an EEG single trials spatio-temporal interpreta-
tion that was based on three different regularizers. The regularizers were used to reveal
different and complementary aspects of the localization of the discriminative informa-
tion. (The channel selection regularizer was used for spatially localizing the discrimi-
native information, the temporal-basis selection regularizer localized the discriminative
information in the temporal domain and the DS regularizer provided a small number of
pairs of spatial and temporal filters that showed both spatial and temporal localization
of the discriminative information in a compact manner). The regularizers were applied
on a block diagonal data matrix which was composed of first order changes (short seg-
ment of filtered EEG signal with C channels and T sampled time-points) and second
order changes (the covariance matrix of a short segment of band-pass filtered EEG).
Their method requires an estimation of a large-parameter model, which may be prone
to overfitting. Furthermore, reducing the sampling rate may ignore important properties
of the signal, which are visible in the EEG high temporal resolution. The use of differ-
ent regularizers [11] may be problematic as it may produce contrasting interpretations
with no clear ability to determine which of them is more accurate.

In this work, we follow the framework introduced by [16] and present an efficient
and robust computational model for brain state interpretation from EEG single trials.
Our approach is based on the use of regularization techniques to optimize classifier
coefficients. We further demonstrate how to identify the most relevant time points and
electrodes that might be most pertinent in contributing to differentiation between the
mental states investigated.
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Our approach employs a two-step classification scheme; First, potential time points
are selected (i.e. the electrode activity in these time points is found to best separate
between the two mental states). Second, the selected time points are fused to obtain a
holistic network related to the paradigm. This paper extends previous work [20] and
includes a comparison to time-points-selection via ERP method and to the sequential
fusion of time points method. This two-step framework leads to an effective feature
selection using a small number of parameters, dozens compared with thousands in [11],
while maintaining a high temporal resolution.

The proposed framework is generic and can be applied to different brain imaging
modalities and classification tasks. In this study we applied it to a visual task of distinc-
tion between faces and houses.

2 Materials and Methods

2.1 Experiment Setup

Four subjects (SUBJ1-SUBJ4, 4 females, two left handed, aged 23-28), participated in
this experiment. All subjects gave informed consent to participate in the study, which
was approved by the ethics committee of the Tel Aviv Sourasky Medical Center. Sub-
jects were presented with images from two different categories-faces and houses. The
images of faces were taken from the [21] and [22] databases and include fearful or
neutral facial expression. The experiment included 4 sessions, each of 138 epochs 2-
seconds-long. During each epoch, the subject was presented with one image of a fear-
ful face, neutral face, house or blank (32, 32, 64 and 10 epochs respectively). To achieve
visual field segregation, participants were explicitly instructed to ignore the pictures and
to concentrate on a fixation dot at the center of the screen. Throughout the experiment,
participants were asked to report the color change of the central fixation dot.

2.2 EEG Data Acquisition

Continuous EEG data was recorded simultaneously with fMRI acquisition. In this study,
we are focusing on the EEG data and have set aside the combined fMRI data for further
research. Good signal-to-noise ratio of the EEG data in the combined approach was
previously shown at our lab ([23]-[24]).

We used a 32-channel BrainCap electrode cap with sintered Ag/AgCl ring elec-
trodes (30 EEG channels, 1 ECG channel and 1 EOG cannel, Falk Minow Services,
Herrsching-Breitbrunn, Germany) and a MR-compatible, 32-channel, battery-operated
amplifier (Brain Products, GmBH, Germany). The electrodes were positioned accord-
ing to the 10/20 system. The reference electrode was between Fz and Cz [25]. The
signal was amplified, and sampled at 5000 Hz using the Brain Vision Recorder soft-
ware (Brain Products). The EEG data was transmitted from the scanner room via an
optical fiber to a PC in the control room. The exact timing of stimulus onset and MRI
scanner gradient switching was transmitted to the EEG amplifier and recorded together
with the EEG signal.
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2.3 EEG Analysis

EEG data analysis was performed with EEGLAB 6.01 software package (Schwartz
Center for Computational Neuroscience, University of California, San Diego), MAT-
LAB software and FMRIB plug-in for EEGLAB, provided by the University of Oxford
Centre for Functional MRI of the Brain (FMRIB). Pre-processing of the EEG data in-
cluded the following steps: MR gradient artifacts removal and Cardio-ballistic artifacts
removal using a FASTR algorithm implemented in FMRIB plug-in for EEGLAB ([23]-
[24]). For computational efficiency, the EEG signals were down-sampled to 250 Hz and
eye blinking artifacts were removed using ICA [26]. The data was then filtered with a
0.5-45 Hz band-pass filter and segmented into epochs starting 100 ms before the stim-
ulus onset and ending 600 after the stimulus onset. Baseline correction was performed
using the 100ms of pre-stimulus activity. In this manner for each subject, we obtained
several dozens of epochs, each containing 32 (number of channels) x 175 (number of
time sampling points in the segmented interval) values. Each epoch was associated with
a class label face or house according to the stimulus which was presented.

3 Brain State Modeling

This section introduces the proposed brain state modeling approach for EEG single
trials spatio-temporal analysis. Figure 1 demonstrates the flowchart of the ensemble
method.

The essence of the modeling approach is creating a parametric family of classifiers
and seeking an optimal member of this family by model selection techniques. The pa-
rameter that forms the collection of classifiers controls the bias/variance tradeoff (i.e.
regularization parameter), thus a classifier with optimal bias/variance is chosen [27].
Each member of the family attempts to predict the mental states of the brain by finding
the coefficients of the model which mostly differentiate the EEG data into two mental
states. The selection of the optimal member is done based on classifier mental states
prediction.

3.1 Model Estimation

Cross-validation is used for choosing the best model and estimating its predictive ac-
curacy. This method is computationally expensive but is especially important when the
number of samples is small. Cross-validation is applied twice: first for dividing the orig-
inal data into train and test sets. We search for the optimal model on the train sets and
record its accuracy on the test sets. For this we used m-k-fold cross validation, where k
is the number of unique test sets, and m is the number of times, this process is repeated.
Second, an additional inner n-fold cross-validation procedure is applied for selecting the
optimal model on the training sets, where n is the number of averaged cross-validation
iterations.

In the first cross validation procedure, the original data is partitioned into k disjoint
sets. A single dataset is retained as the test data for testing the model, and the remaining
k − 1 disjoint datasets are used as training data. The cross-validation process is then
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Fig. 1. Brain state modelling flow chart

repeated k times, with each of the k sets used exactly once as the test data. We repeat
this process m times. The training sets are used for choosing the best model and the test
sets are used to check its predictive accuracy. The predictive accuracy of the model is
defined as the number of wrongly predicted samples divided by the overall number of
samples.

The second cross-validation operation is used for choosing the optimal model. The
training dataset is randomly splitted, n times, into 80-20% training and validation sets
respectively. The classifier runs on the training set with different values of the regular-
ization parameter (within the range of interest) and selects the one that yields the best
results (i.e. bring mean square error, MSE, to minimum) (see Fig. 2).

The range of regularization values of interest is determined using the singular val-
ues, which are obtained from SVD decomposition of the processed data matrix (used for
training and testing). The range is bounded between the minimal and the maximal sin-
gular values. For computational efficiency, the actual regularization values in that range
are distributed uniformly on the logarithmic scale (i.e. the ratio of the two successive
samples is constant).

3.2 Regularized Logistic Regression

The proposed regularized brain state interpretation can be used with a variety of linear
and nonlinear classifiers. The, logistic regression model is the appropriate one for a
binary classification task. It is also optimal in terms of simplicity, interpretability of its
coefficients and speed ([28]-[29]).

A useful variable is the odds ratio, which is defined as the ratio of the probability that
an event occurs to the probability that it fails. The logit (log odds) of the logistic regres-
sion model is given by the following equations, where wi are the model’s coefficients:

g(x) = w0 + w1x1 + w2x2 + ...+ wnxn (1)
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Fig. 2. MSE received on the validation set at the best time point versus the log of the regularization
parameter. The lambda that minimizes the average error across iterations is chosen to be the
optimal regularization parameter for the model.

P (Y = 1|x) = π(x) =
eg(x)

1 + eg(x))
(2)

logodds = log

(
π(x)

1− π(x)

)
(3)

The coefficients are often estimated via the Maximum Likelihood Estimation (MLE)
method, which seeks to maximize the log likelihood over the entire observed data:

l(w) =
n∑

i=1

logP (Y = yi|xi) (4)

The log likelihood value represents how likely the dependent variable can be predicted
from the observed values of the independent variables. Maximization of the above ex-
pression can be done in various ways, most popular being the Newton-Raphson (NR)
algorithm.

The regularized version of the logistic regression algorithm seeks to find the weights
(w) which maximizes the equation:

lλ(w) = l(w)− λ

2
wTw (5)

We use the Matlab-based MVPA toolbox [30], which implements regularized logistic
regression following notes from [31].

3.3 Feature Selection

As mentioned before, one of the main challenges while working with EEG signals is
the high data dimensionality. In this case, feature selection is important for reducing the
dimensionality of the input signal, removing noise, improving learning performance,
speeding up the learning process and improving predictive accuracy. Feature selection
has been extensively researched by the machine learning/pattern recognition commu-
nity over the years (for review in the context of BCI, see [5]).
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A two step feature selection algorithm is implemented. First, potential time points
are selected, which are found to best separate between the two mental states. Second,
the selected time points are fused to obtain a holistic network related to the paradigm.
In the first step of the algorithm, the selection of the time points is done in two different
ways: using the ERP approach and using a predictive approach based on a single trial
performance evaluation. In the ERP approach the averaged EEG signal over trials are
constructed (separatly for each condition). Significant time points, that have the high-
est difference between the average signals are chosen. In the predictive approach, 32
electrodes are selected from a single time point as an input for the classifier in the same
manner as in [16]; A set of T trials labeled data samples is obtained, each represented
by NxM signal matrix, where N is the number of channels and M is the number of
time sampling points in the segmented interval. For each time point (from M), a feature
vector that contains the EEG data of the entire electrodes in this time point, is created.
(This reduces the dimension of the data from 32x175 to 32). Then, a family of classi-
fiers is constructed with different regularization parameters and applied on the different
time points. The model that achieved the minimum MSE on the validation set, over the
entire time points, is chosen.

After selecting the model, the predictive accuracy of each time point is evaluated
using the test sets, by applying the best model on each time point and averaging the
results. The outcome of this stage is a ranking of the entire time points according to
the performance of the model (Fig. 3). The coefficients of the regression equation at
the time point where minimal prediction error is achieved indicate the contribution of
activity in different electrodes in this time point towards the prediction. This can be
interpreted as the strength of activity in electrodes, which best contribute to the mental
states separation.

Fig. 3. (a) Predictive accuracy of each time point, on the testing set. The black line depicts the
average error rate over the cross-validation iterations and the blue line represents control results
obtained using the same algorithm on data with randomly scrambled target labels. It can be seen
that the best prediction is achieved around 200ms after the stimulus onset (N170). (b) The co-
efficients of the regression equation in the best time point. The coefficients indicate the most
contributing electrodes in this time point; Blue color indicates strong negative effect of faces
compared to houses.
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The formulation presented so far indicates the most predictive time point and the
configuration of electrodes at that time point. This spatial coding, where the prediction
depends on a configuration of electrodes activity at a single time point, may not be the
optimal code used by the brain in interpreting the stimuli. Therefore it is possible that
a temporal or spatio/temporal coding is more appropriate. The presented model can
address this question, although the computational problem involved becomes too big
for a single computer to handle, but using a computer grid of several hundred personal
computers, the model can be extended in this direction [32].

We sort the local minima in the prediction graph to find different distinct temporal
locations with prediction error minimum. The sorting is done in an increasing order
(starting from the most predictable time point to the least predictable time point). Then a
collection of models is applied, each using an increasing amount of information, where
new time points (electrode information) are added into the model. In each such input
data configuration we perform the full cross-validation estimation to estimate optimal
regularization and prediction error.

The selection of the ensemble time points is done in two different ways; Primary
selection using sequential assembling (i.e. the sorted time points are added to the model
one after the other without additional search) and secondary selection using a wrapper
algorithm [33], which is a technique for selecting an optimal subset of features from a
large search space. In the wrapper algorithm, the features are assessed by their predic-
tive power and are added to the subset one by one according to their contribution to the
overall prediction. In both methods the ten most predictable time points were included
in the process.

The outcome of the classifier for a different number of time points is compared and
the ideal number of time points which had significantly lower error prediction is chosen
(Fig. 4). Increasing the input vector adds electrode activity data, but also adds free
parameters to the model leading to higher chance of overfitting the training data. We
thus search for the ideal number of time points which balances between the two effects.
Figure 5 depicts the best time points found for one subject and the electrodes activity
in these time points contributing towards mental state discrimination.
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Fig. 4. Prediction error vs. number of time points. For this subject the optimal is 4, namely there
was a significant prediction improvement up to that point (*p < 0.05).
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Fig. 5. (a) The ideal number of time points chosen as input for the classifier. (b) The regression
coefficients received in those time points.

4 Results

4.1 Spatio-Temporal Analysis

Many studies have shown that pictures of faces elicit a much larger ERP of negative
polarity than other object categories. This component peaks at occipital-temporal elec-
trode sites at about 170 ms following stimulus onset [34]. The larger response of the
N170 complex to faces is an undisputed observation among researchers in the field of
face processing (Fig. 6).

We reinforce this result using EEG single trial classification (Fig. 7). For all subjects
the best prediction achieved around 200 ms after the stimulus onset and the electrodes
that contribute to the maximum separation between the mental states investigated are
located in the occipital area. The coefficients obtained on single trial training correlated
to the ERP of the corresponding electrodes. Negative coefficients indicate the ERP for
faces is lower than the ERP for houses. In addition, both occipital electrodes (P7 and
P8) are correlated in that time point.
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Fig. 7. Best time points found and the coefficients in these time points for different subjects in the
houses and faces experiment. As expected, for the entire subjects the best prediction is achieved
around 200ms after the stimulus onset and the most activated electrodes are in the occipital-
temporal area.

The resulting spatial-temporal weight matrix provides a summary representation
which is easily interpretable. A result of the dimensionality reduction, which is per-
formed during the pre-processing stage, where relevant time points and electrodes are
chosen, leads to simpler computational model training. This is in contrast to reducing
the dimensionality via reducing the sampling rate [11]. The lowest error rates achieved
for each subject using a single time point are summarized in Fig. 8 (the prediction error
with the optimal number of time points is lower). The results were compared to the con-
trol experimental results, which were obtained using the same algorithm on randomly
scrambled labels. The difference between the mean error estimates is significant for all
subjects (P < 0.05).

Fig. 8. Classification error rate for all 4 subjects. The classification error is compared to control
results obtained using the same algorithm on randomly scrambled labels. The difference between
the mean error estimates is significant for all subjects (P < 0.05).
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4.2 Comparison with Existing Methods

As described in 3.3, our algorithm employed a two-step classification. The first step
included selection of time points that were used to predict the two mental states. The
time points were selected using two criteria: the ERP approach, which is based on
the EEG signal average over trials and a predictive approach based on a single trial
prediction performance. Table 1 demonstrates the first 10 time points selected by each
method, ordered by their corresponding selection criteria. Following the time-points
selection, the wrapper algorithm, which was described in 3.3 was employed to select
the ensemble of time points with the highest prediction power. The time points selected
by the wrapper, are marked in gray. The results indicate that the optimal time points
found by the wrapper were found earlier in the prediction approach than in the ERP
approach. However, the performance is similar since points which are not useful are
later eliminated due to a comprehensive search of the wrapper.

Two methods for selection of the ensemble time points were compared: sequen-
tial selection and a wrapper algorithm. Figure 9 depicts the prediction error for in-
creasing number of time points using the different approaches for time points selection
and time point assembling; The results suggest that the contribution of the wrapper to
eliminate time-points, which do not contribute to ensemble performance, is significant
(P < 0.05).

Table 1. The first 10 time points found by the ERP and the predictive approaches. The time points
which were selected by the wrapper are marked in gray.

4.3 The Impact of Regularization

The amount of data needed to properly describe the different mental states increases
exponentially with the dimensionality of the feature vectors. As the amount of training
data is small compared to the size of the feature vectors, the classifier is likely to overfit
to the training data and thus producing a model which does not uncover the true brain
state discrimination. The only way to avoid this and still get a reliable brain state in-
terpretation is a robust training with a regularizer which has to be carefully picked. To
demonstrate the effect of non optimal regularization selection, we applied the same al-
gorithm, with and without a regularization parameter on feature vector of size 96 (three
best time points). As it can be seen in Fig. 10, the classification error with regularization
is significantly lower (P < 0.05).
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Fig. 9. Classification error rate vs. number of time points for different time-points selection and
time-point assembling. It is evident that the contribution of the wrapper is significant (P < 0.05).

Fig. 10. Prediction error (Error rate and MSE) received for 3 best time points chosen, with and
without regularization. These figures show that results with regularization are significantly better
(*P < 0.05).

5 Conclusions

This paper proposed a robust and efficient framework for brain state interpretation using
EEG single trials. This framework is based on extensive feature selection using a regu-
larized logistic regression classifier and can be used for spatial-temporal analysis of the
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EEG data as well as other 2 or 3 dimensional brain imaging modalities. The proposed
framework was compared to time-points selection via ERP method and to the sequential
fusion of time-points. The results indicate that the wrapper approach offers a significant
improvement over sequential selection. This spatial-temporal analysis can render a far
more holistic interpretability without any a priori information on certain optimal time
points or electrode locations. It can thus indicate whether the coding related to the brain
state discrimination task is spatial, temporal or joint, and can indicate the network of in-
formation propagation (at high temporal resolution) following the stimuli. This method,
which can also be applied to a Time/Frequency representation of the signal, can reveal
the different frequency bands at which brain state discrimination is optimal.
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