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ABSTRACT: Superresolution is a procedure that produces a high-re-

solution image from a set of low-resolution images. Many of superre-
solution techniques are designed for optical cameras, which produce

pixel values of well-defined uncertainty, while there are still various

imaging modalities for which the uncertainty of the images is difficult
to control. To construct a superresolution image from low-resolution

images with varying uncertainty, one needs to keep track of the

uncertainty values in addition to the pixel values. In this paper, we de-

velop a probabilistic approach to superresolution to address the
problem of varying uncertainty. As direct computation of the analytic

solution for the superresolution problem is difficult, we suggest a

novel algorithm for computing the approximate solution. As this algo-

rithm is a noniterative method based on Kalman filter-like recursion
relations, there is a potential for real-time implementation of the algo-

rithm. To show the efficiency of our method, we apply this algorithm

to a video sequence acquired by a forward looking sonar
system. VVC 2008 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 18,

242–250, 2008; Published online in Wiley InterScience (www.interscience.

wiley.com). DOI 10.1002/ima.20137
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I. INTRODUCTION

Superresolution has been an interesting problem for the develop-

ment of digital imaging devices, and is currently an active area of

research due to the widespread use of digital images in industrial,

medical, and other everyday life applications. The term superreso-

lution can vary depending on the context, but in general, superreso-

lution means a procedure that produces a high-resolution image

from a set of low-resolution images taken in slightly different

conditions.

Producing a higher resolution image from a single low-resolu-

tion image is an underconstrained problem, and has been exten-

sively studied as an interpolation problem (Crochiere and Rabiner,

1981; Schoenberg et al., 1994; Unser et al., 1995). When we have

multiple low-resolution images, the number of constraints for the

possible ground truth images is increased, and consequently, given

a sufficient number of low-resolution images obtained from a target

object, we can produce a high-resolution version of the target image

that satisfies the constraints imposed by the low-resolution images.

The subcategories of superresolution algorithms include fre-

quency domain methods (Tsai and Huang, 1984; Kim et al., 1990),

nonuniform interpolation methods (Ur and Gross, 1992), projection

onto convex sets (Stark and Oskoui, 1989; Tekalp et al., 1992), iter-

ative back projection methods (Irani and Peleg, 1991, 1993; Mann

and Picard, 1994), and Bayesian approaches (Cheeseman et al.,

1994; Schultz and Stevenson, 1994; Shekarforoush et al., 1996). A

detailed explanation of these algorithms can be found in the litera-

ture (Borman and Stevenson, 1998; Park et al., 2003; Farsiu et al.,

2004). Many of the existing superresolution algorithms are devel-

oped for optical cameras that have regular receptive field size with

homogeneous illumination intensity, such that all pixels in an image

contribute to the superresolution with the same uncertainty. How-

ever, there exist many classes of images that have spatially varying

uncertainty of pixel values and one needs new algorithms to achieve

superresolution in such images. For example, changing illumination

conditions can cause variability in the light intensity distribution of

the images (Shashua, 1997), namely pixel values in poorly illumi-

nated areas have lower signal-to-noise ratio (SNR), whereas in

well-illuminated areas they have higher SNR (see Figs. 1d and 1e).

In sonar images, such variation of illumination intensity is observed

spatially as well as temporally (Garcı́a et al., 2000). Although

researchers have taken advantage of the varying illumination condi-

tions in optical cameras to reconstruct 3D structure of a target

object (Basri and Jacobs, 2001, 2003), the varying illumination con-

dition can cause a problem when one wants to apply existing super-

resolution algorithms to the images under such circumstances

(Chiang and Boult et al., 1997; Zhoa, 2004). Another example of

images with varying uncertainty is the images of a forward looking

sonar, a 2D sonar that produces images from a temporal series of

1D transducer responses. In these images, the spatial size of a pixel

varies depending on the distance between the viewed area and the

transducer of the sonar system (Kim et al., 2005). In that case, typi-

cal superresolution algorithms may fail to produce the desired

results by assuming spatially uniform uncertainty of the pixel val-

ues (see Figs. 1b and 1c).

For the purpose of keeping track of uncertainty, a probabilistic

approach is advantageous in that it can do the bookkeeping of the

uncertainty of images. There are several probabilistic approaches toCorrespondence to: Kio Kim; e-mail: im@gmail.com
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a superresolution problem including various maximum a posteriori

(MAP) (Bose et al., 1994; Cheeseman et al., 1994; Schultz et al.,

1996; Hong et al., 1997) and maximum likelihood algorithms (Tom

et al., 1994; Tom and Katsaggelos, 1995). Among different MAP-

based superresolution approaches, those with Gaussian Markov

Random Field (GMRF) prior conditions are equivalent to Kalman

filtering. There have been Kalman filter approaches toward solving

superresolution problems (Dellaert et al., 1998; Elad and Feuer,

1999), which were particularly (Dellaert et al., 1998) focused on

simplifying the equations via assuming the covariance matrix has

negligible off-diagonal terms. Ready et al. (2006) implemented the

same idea with an additional prior compensation algorithm to sup-

press the amplified artifacts due to neglecting the off-diagonal terms

of the covariance matrix.

In this article, we derive an analytical expression for the MAP

superresolution image with GMRF prior, and describe that this

problem is equivalent to a Kalman filter. We solve the recursion

relations of the Kalman filter equations with the same assumption

as in the works of Dellaert et al. (1998) and Ready et al. (2006),

namely very low correlation between nearby pixels, and derive

expressions for the superresolution image and the covariance matrix

as a function of all the low-resolution images. As this approach still

retains the amplified artifacts which are resolved by regularization

algorithms such as Tikhonov regularization (Schultz and Stevenson,

1994), we suppress the noise using the knowledge of the calculated

estimation of the covariance.

The problem will be formulated in Section II. A MAP superreso-

lution problem with GMRF prior is rewritten as a Kalman filtering

problem in Section III, with the proposed solution of the recursion

relations of Kalman filter equations in the Appendix. In Section IV

we apply this method to produce a superresolution mosaic image

from a video sequence produced by a forward looking sonar system

called DIDSON (Dual-frequency Identification Sonar), which has

both and irregular receptive field size and an inhomogeneous illu-

mination condition. The result of this application is shown in Sec-

tion V.

II. PROBLEM FORMULATION

A typical procedure for obtaining superresolution images includes

image registration, image transformation, and image fusion. In the

registration step, one obtains appropriate transformations between

frames in the image sequence of interest. Depending on the image

acquisition model, the transformation between two images is char-

acterized by few parameters, which are in most of cases estimated

by matching feature points in the two images. In doing this, outlier

exclusion algorithms such as RANSAC (Random Sampling Con-

sensus) (Fischler and Bolles, 1981) or LMedS (Least Median of

Squares) (Rousseeuw, 1984) are employed to filter out wrong fea-

ture point matches. Once the transformation parameters between all

the neighboring frames are found, one needs to combine those pa-

rameters appropriately to transform all the frames in the sequence

to a single desired perspective. Then, in the image fusion step, all

the observed and transformed image frames are fused into one

image, which in general includes more information than the individ-

ual observed images. The problem we will address in this paper is

the image fusion step, particularly when the images have spatially

and temporally varying uncertainty.

We formulate the process of image acquisition as follows:

bi ¼ ðLiWiMiÞ>uþ g � P>
i uþ g; ð1Þ

where Mi: the ith down-sampling operation; Li: the ith illumination

matrix; Wi: the ith point spread matrix; g: Gaussian noise.

The ith observed pixel value bi is a scalar value of the intensity

of a low-resolution pixel. For n frames of low-resolution images

with mLR-by-nLR resolution, i is within the range of [1, n 3 mLR 3

Figure 1. A DIDSON image showing inhomogeneous uncertainty.

(a) A typical DIDSON frame. In a single frame of DIDSON sequence,

some pixels are large (b) and some are small (c), and some areas are
bright (d) and some are dark (e).
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nLR]. The vector y is a column vector of size (mHR 3 nHR)-by-1,
which is a lexicographical representation of the ground truth image

with the resolution of mHR-by-nHR. The matrices Li and Wi are the

illumination operator and the point spread operator, respectively,

and both are (mHR 3 nHR)-by-(mHR 3 nHR) diagonal matrices. In

this article, the registration and transformation are assumed to be

complete, so we have all the operating matrices such as Li, Wi, and

Mi known.

One thing to notice is that even if the variance of the Gaussian

noise g is spatially homogeneous, the SNR in the observed image

varies because Li and Wi may vary spatially and temporally. There-

fore, one needs to combine bis so that the fusion image has the min-

imum amount of noise, or in other words, the maximum SNR.

We assume that y is a random variable drawn from a multidi-

mensional Gaussian distribution with the mean �u and the covari-

ance V

PðuÞ � Nð�u;VÞ; ð2Þ

where p(y) denotes the probability of y. Conditioned on more and

more observations, V in (2) shrinks down, say, Tr(VN) < Tr(VN21),

when Pðujb1¼P>1 u;b2¼P>2 u; . . . ;bN ¼P>NuÞ�Nð�uN ;VNÞ; where

Tr(�) denotes the trace of a matrix. Our goal is to estimate y, the
ground truth image, given a set of observed pixel values b1, . . ., bN,
such that

uMAP¼ arg max
u

Pðujb1¼P>1 u;b2¼P>2 u; . . . ;bN ¼P>NuÞ: ð3Þ

III. METHODOLOGY

In this section, we formulate the MAP superresolution problem

with GMRF prior in terms of a set of recursion relations, which is

equivalent to a Kalman filtering. Using the assumption of negligible

off-diagonal terms in the covariance matrix (Dellaert et al., 1998;

Ready et al., 2006), we solve this recursion relations to obtain the

expression of the superresolution image and its covariance matrix

as functions of low-resolution images. Instead of suppressing the

amplified artifacts using typical regularization methods, we achieve

this via readjusting the image intensity so that the SNR is maxi-

mized through the image.

To obtain the distribution of y conditioned on the ith observa-

tion, we rotate the coordinate system of y so that

wi � Pi=jjPijj2; ð4Þ

is aligned to one of the axes in the coordinate system. By condition-

ing on the observed value, one can calculate the conditional distri-

bution of y with the variance along that axis shrunk in the rotated

coordinate system, and then rotate the conditional distribution back

to the original coordinate system. This procedure narrows down the

variability of the estimated ground truth image. The detailed

description of the procedure is provided later. For brevity, subscript

i is ignored for R, w, �u, �y, �z, b, and V in this subsection.

A. The Conditional Probability. In the rotated coordinate sys-

tem, (2) is rewritten as

PðRuÞ � NðR>�u;RVR>Þ: ð5Þ

The rotation matrix R is an arbitrary orthonormal matrix that

includes w as one of the columns.

R ¼ ðW?jwÞ ð6Þ

R>u ¼ W>
?

w>

� �
u � y

z

� �
ð7Þ

Note that b is the normalized version of the observation value b,
i.e., bi : bi/kPik2. The conditional distributions of y ¼ W>

?u given

the noiseless observation result b 5 z 5 w>y is, as derived in the

work of Press (1972),

Pðyjw>u ¼ bÞ � Nð�yþ V0
12V

0�1
22 ðb� �zÞ;V0

11;2Þ ð8Þ

where

�y ¼ W>
?�u

�z ¼ w>�u

V0
11 ¼ W>

?VW?
V0
12 ¼ W>

?Vw

V0
21 ¼ w>VW? ¼ V

0>
12

V0
22 ¼ w>Vw

V0
11;2 ¼ V0

11 � V0
12V

0
22
�1
V0
21:

However, in practice, the evaluation of z involves an observation

error, say gz, which we model as a Gaussian additive noise here;

b ¼ w>uþ gz: ð9Þ

Then,

PðzÞ � Nðb;VzÞ
Pðyjw>u ¼ b� gzÞ � Nð�yþ V0

12ðV0
22 þ VzÞ�1ðb� �zÞ;V0

11;3Þ;
ð10Þ

where Vz is the variance of the observation error gz, and V0
11,3 :

V0
11 2 V0

12(V
0
22 1 V0

z)V
0
21.

The conditional distribution of y, which is also a Gaussian distri-

bution, is obtained by rotating y back to the original coordinate sys-

tem:

Pðujb ¼ w>uÞ ¼ PðR>Rujb ¼ w>uÞ:

This rotation is equivalent to inverting the operation of (7) after the

conditioning;

�uopt ¼ W?�yopt þ w�zopt; ð11Þ

where the superscript ‘‘opt’’ denotes the optimal estimate of the

variable after the observation. In (11), �zopt is the optimal fusion of

the newly observed pixel value b and the previously known pixel

value w>�u, of which the variances are Vz and V
0
22, respectively;

�zopt ¼ V0
22bþ Vzw

>�u
V0
22 þ Vz

: ð12Þ
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The optimal estimate of w?�y conditioned on the observation of

b is

w?�yopt ¼ w? w>
?�uþ V0

12ðV22 þ VzÞ0�1ðb� �zÞ
� �

¼ w?w>
? �uþ Vw

b� w>�u
V0
22 þ Vz

� �

¼ ðI � ww>Þ �u� Vw
ðw>�u� bÞ
V0
22 þ Vz

� �

¼ �u� Vw
ðw>�u� bÞ
V0
22 þ Vz

� �wzopt ð13Þ

Thus, the expression for �uopt is

�uopt ¼ �u� Vw
ðw>�u� bÞ
V0
22 þ Vz

: ð14Þ

The optimal covariance matrix Vopt can be derived as described in

the work of Press (1972);

Vopt ¼ I � Vww>

V0
22 þ Vz

� �
V: ð15Þ

Thus, we obtain a set of recursion formulae between the nth and the

(n 1 1)th mean values and covariance matrices as follows:

�unþ1 ¼ �un � Vnwn
w>

n
�un � bn

w>
n Vnwn þ Vz

� �
ð16Þ

Vnþ1 ¼ I � Vnwnw
>
n

w>
n Vnwn þ Vz

� �
Vn: ð17Þ

The recursion relations in (16) and (17) can be calculated given

the initial estimation of the ground truth image y0 and the initial

prior condition, or the covariance matrix V0. As there is no prior

knowledge on the ground truth image when no observation was per-

formed, the initial ground truth image is a blank image with uni-

form pixel values. For the initial prior condition V0, recent studies

have suggested methods for choosing advanced priors (Pickup

et al., 2004; Joshi et al., 2005; Jiji and Chaudhri, 2006). In this

work, for the generality of application, it is assumed that the pixel

values in y are almost not correlated with its neighbors and there is

no abrupt spatial change of variances. With this assumption, one

can derive the following solution of �unþ1 from the recursion rela-

tions in (16) and (17) as done in the Appendix:

�unþ1 ’
Xn
i¼1

L2
iW

2
i þ m0V

�1
0

 !�1 Xn
i¼1

LiWiMibi

 !
: ð18Þ

This is the MAP solution of the ground truth image given, a GMRF

prior with a covariance matrix V0 with negligible off-diagonal

terms.

Because of neglecting the off-diagonal terms of the covariance

that provides information to suppress artifacts rising from noise,

registration error, misshaped point spread function, etc., (18) is sub-

ject to a severe degradation. This problem is addressed by adjusting

the intensity level so that the SNR becomes the maximum in all the

pixels of the superresolution image: �uMSNR
nþ1 , the (n 1 1)th fusion

image with the maximum SNR (MSNR) is

�uMSNR
nþ1 ’

Xn
i¼1

LiWi þ v0V
�1
0

 !�1 Xn
i¼1

LiWiMibi

 !
: ð19Þ

The MSNR artifact suppression is extremely memory efficient in

that it only requires two times of the size of the superresolution

image, while it is resilient to noise or other registration errors

because these errors are automatically penalized. In addition,

because of the nature of the resulting equation in (19), the amount

of required computation for adding a low-resolution image is con-

stantly small regardless the number of all the observed images,

which implies that any new observation can update the superresolu-

tion image in real time. These properties are desirable in many

applications, for example, for on-board calculation of the superreso-

lution mosaic image in a remotely operated vehicle or an autono-

mous underwater vehicle (AUV).

IV. APPLICATION

We applied (19) to DIDSON image sequence. In this section, DID-

SON is briefly introduced, and the algorithm used to register DID-

SON images is described.

A. Dual-Frequency Identification Sonar. DIDSON is a

novel forward looking sonar system that is made up of a set of 1D

acoustic lenses and an array of 96 transducers. The lens array is

electronically controlled to focus the outgoing beam onto the tar-

geted area, and the reflected beam onto the corresponding trans-

ducer. As this mechanism makes the beam forming of sonar com-

plete without any further computation of signals, DIDSON can rap-

idly produce images at a frame rate as high as 20 frames per

second. Because it operates with small power consumption and pro-

duces images at a high frame rate, the use of DIDSON is growing

in surveillance, object tracking, investigation of underwater struc-

tures, and in many other areas.

A DIDSON image sequence is a good sample to test the pro-

posed algorithm because the image has inhomogeneous uncer-

tainty of pixel values. First, the pixel size varies within a single

frame. Each transducer records a temporal series of wave ampli-

tudes received from the designated angle, and the 96 transducers

produce a image of 512-by-96 or 512-by-48 resolution for each

frame (Belcher et al., 1999, 2001). The produced image is origi-

nally in the polar coordinate system, and is mapped to the Carte-

sian coordinate system for visualization. One pixel in the polar

coordinate system has the same field-of-view and rangewise

length, but when it is mapped to the Cartesian coordinate sys-

tem, the actual pixel size and shape varies depending on the dis-

tance of the pixel from the camera (see Figs. 1b and 1c). Fur-

thermore, the illumination profile varies in a frame for the fol-

lowing reason. The vertical viewing angle of DIDSON is limited

to 10.88. When the target object gradually leaves the vertical

viewing angle, it receives less phonons and appears darker, even-

tually becoming completely dark when it is out of the viewing

angle (see Figs. 1d and 1e). As a DIDSON system navigates

underwater, the vertical displacement of an object fluctuates

within the vertical viewing angle, which consequently causes the

varying illumination profile.
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B. Procedure for the Registration and Mosaicing. In this

subsection, we depict the full procedure for the registration and

mosaicing steps of a DIDSON video sequence. Because the regis-

tration and the mosaicing are simultaneously done using the same

variables and parameters, these steps are described as a whole.

The proposed algorithm for the registration and mosaicing of a

DIDSON video sequence is as follows:

1. Determine the perspective of the desired mosaicing plane

with respect to the perspective of the first frame.

2. Read the raw data (a lexicographical image vector and a

mapping vector) for the first frame. Transform the mapping

vector and point spread functions to the desired perspective

in 0. Store the weighted image and the weight, where the

weight is the point spread functions multiplied by the illumi-

nation profile.

3. Generate IM1 by mapping the image vector to the Cartesian

coordinates.

4. Separate the high frequency part HF1 and the low frequency

part LF1 from IM1.

5. Read the next raw data, and generate IM2, HF2, and LF2 by

repeating 2–3 for the next frame.

6. Find the transformation parameter T by registering HF1 and

HF2.

7. From T, generate a mapping vector of IM2 viewed from the

predetermined perspective in 0.

8. From T, generate a map of the point spread functions

MPSF2 of the pixels in IM2 viewed from the predetermined

perspective.

9. Make a weight image for the current observed image by mul-

tiplying LF2 and MPSF2, and the weighted image by multi-

plying the IM2 by the weight image. Add them to the existing

weight image and weighted mosaic image produced in 1.

10. Rename IM2, HF2, and LF2 with IM1, HF1, and LF1, and

repeat 4–8, until the end of the sequence.

11. Generate the superresolution mosaic image by point-to-

point division of the sum of weighted images by the sum of

weight.

The original data from DIDSON consists of a sequence of polar-

coordinate images and the mapping information of the images from

the polar coordinate system to the Cartesian coordinate system. The

mapping vector is calculated based on the shape and the size of the

viewed area. After the lexicographical image is mapped to the Car-

tesian coordinates, the mapped image IMj is separated into two

parts—the high frequency part HFj and the low frequency part LFj,

where the subscript j denotes the jth frame. The lowpass filtered

image LFj is calculated by lowpass-filtering the mapped image, and

is used as the estimated illumination intensity. The illumination

process is modeled as a homomorphic filtering, and thus HFj is cal-

culated accordingly, say,

IMjðuÞ ¼ LFjðuÞ 3 HFjðuÞ ð20Þ

HFjðuÞ ¼ IMjðuÞ=LFjðuÞ; ð21Þ

where IMj (u) refers to the pixel value at u in the jth frame.

The registration of two images—namely, IMj and IMj11—in the

Cartesian coordinates is performed with HFs as follows:

1. Detect Kanade–Lucas–Tomasi corner points (Tomasi and

Kanade, 1991) in HFj.

2. For each corner point in HFj, take a square patch around the

point, and find the best matching point in HFj11.

3. Using the RANSAC algorithm (Fischler and Bolles, 1981),

find the best parameters of the affine transformation between

IMj and IMj11.

This procedure is based on the registration method described in

detail in previous works (Kim et al., 2004, 2005).

The weight image is obtained by adding up the point-by-point

multiplication of the PSF image and the illumination profile of each

image. The point spread functions are assumed to be Gaussian, and

the size is set to be proportional to the pixel size in the low-resolu-

tion images in the Cartesian coordinate system. The LF of the

image is used for the illumination profile of an image.

To construct the superresolution mosaic image in (19), we keep

track of the sum of weights, and the sum of weighted images. After

the sum of weights and the sum of weighted images are calculated

for all of the frames in the sequence, the superresolution mosaic

image is calculated by a point-to-point division of the sum of

weighted images by the sum of weights. Figure 2 describes this

fusion algorithm in a block diagram.

V. RESULTS

The algorithm has been tested on a DIDSON video sequence that

was produced for ship hull inspection. An AUV equipped with a

Figure 2. Block diagram for

implementing the proposed super-

resolution algorithm to DIDSON

images.
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DIDSON system was put to move on a ship hull surface to scan the

surface area while the vehicle wanders around.

The fusion image produced by the proposed algorithm is shown

in Figure 3a. Figure 3a is the fusion image of 80 frames. Besides

providing a wider view of the target object, one notices that the

fusion of images improves the overall image quality in Figure 3,

including the noise level, the intensity contrast, and the uniformity

of illumination intensity.

Four structures that are commonly found in the mosaic image

and in the original image are marked with rectangles. The structures

in the original images are hard to recognize mainly due to the

Rician noise (Wagner et al., 1983; Sijbers et al., 1998) and the con-

sequent bias in the intensity profile (Kim et al., 2005). After the

fusion, the image quality is drastically improved and the structures

are strongly pronounced. For example, in the region around the

marker D in Figures 3a and 3b, detailed features of the cylindrical

object such as the reflection on the rim or border of the object can

be much more easily identified in the improved image than the orig-

inal image (see Fig. 4).

VI. CONCLUSION

In this article, we formulated a MAP based superresolution problem

in terms of a conditional distribution with constraints imposed by

Figure 3. Comparison of the mosaic image and

the original images. (a) Mosaic of 80 frames of DID-
SON images. (b) Common structures shown in the

original frames are marked in original frames.
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observed images. Instead of applying the Bayesian rule that

involves a complicated integral or inversion of a large matrix, we

sought an analytical solution to the problem with the minimum

amount of approximation. In doing this, we employed a multivari-

ate Gaussian model. Each time a new low-resolution image is

acquired, the low-resolution image is fused into the high-resolution

image, and this relationship is expressed as a set of recursion rela-

tions of the mean and the covariance matrix of the high-resolution

image. Because of the dimensionality of the covariance matrix,

additional approximations had to be made to yield a computation-

ally feasible algorithm.

The idea of calculating the image of the MAP probability is

equivalent to Kalman filtering, which provides the best estimation

of the true reflectance values. In our work, a much simpler covari-

ance matrix is assumed, which is basically simplifying the Kalman

filtering, which consequently causes an amplification of noise in the

resulting superresolution image. This has been noted by other

researchers (Dellaert et al., 1998), and attacked with a locally itera-

tive treatment for noise suppression (Ready et al., 2006). However,

we noted that, in most of underwater imaging tasks, the users of the

images are more interested in the overall layout of underwater cir-

cumstances rather than true reflectance profile. Therefore, we traded

off accurate estimation of the true reflectance profile of underwater

scenes for the best visualization of the region of interest.

One of the major novelties of this work is that it takes into

account spatially and temporally varying illumination profiles and

point spread functions when it produces the MAP high-resolution

image from low-resolution images. In addition, this algorithm is

free from iteration and it keeps track of the variance of the current

high-resolution image based on recursion relations. These proper-

ties are desirable for a real-time implementation of the algorithm.

This algorithm has been tested on a video sequence produced by a

forward looking sonar system called DIDSON, and has shown satis-

factory performance in generating a superresolution mosaic image

from the sequence.

In summary, we proposed a new algorithm for a superresolution

mosaicing using a conditional probability distribution, and imple-

mented the algorithm to construct a superresolution mosaic image

from a DIDSON video sequence. Significant noise reduction and re-

solution enhancement was observed during the process.

APPENDIX: SIMPLIFICATION OF THE RECURSION
FORMULAE

Provided that the pixel values in the ground truth image y are

almost not correlated with its neighbors, and the variance of the

pixel values vary smoothly in space, because wn defined in (4) has

its nonzero entries only around the nth observed pixel, it can be

assumed that

Vnwn ’ vy;nwn; ðA1Þ

where vy;n � w>
n Vnwn. With this assumption, we obtain the follow-

ing from (17):

Vn � Vnþ1 ¼ Vnwnw
>
n Vn

vy;n þ vz;n
¼ vy;nwnw

>
n vy;n

vy;n þ vz;n
¼ v0p

�4
y;nwnw

>
n

p�2
y;n þ p�2

n

ðA2Þ

¼ v0p
2
nwnw

>
n

p2y;nþ1p
2
y;n

ðA3Þ

¼ v0wnw
>
n

1

p2y;n
� 1

p2y;nþ1

 !
; ðA4Þ

where pn, py,n, and py,n11 are defined as follows:

p2n �
v0
vx;n

ðA5Þ

p2y;n �
v0
vy;n

¼ v0
w>

n Vnwn
ðA6Þ

p2y;nþ1 � p2y;n þ p2n: ðA7Þ

To reveal the relationship between Vn11 and py,n11 we multiply

both sides of (A4) by w>
n and wn,

w>
n Vnwn � w>

n Vnþ1wn ¼ v0
p2y;n

� v0
p2y;nþ1

; ðA8Þ

) w>
n Vnþ1wn ¼ v0

p2y;nþ1

� vy;nþ1: ðA9Þ

Plugging in (A6) and (A9) into (A3) and apply the assumption of

slowly varying covariance matrix,

Vn � Vnþ1 ’ v�1
0 VnPnP

>
n Vnþ1: ðA10Þ

Figure 4. Comparison of the resolution enhanced image and the

original image. A cylindrical object is viewed (a) in the superresolution
image and (b) in the original image. In the superresolution image,

about 10 frames of original DIDSON images are fused around a

recognizable structure.
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Multiply V21
n11 and V21

n to both sides,

V�1
nþ1 � V�1

n ¼ v�1
0 PnP

>
n

) V�1
nþ1 ¼ V�1

n þ v�1
0 PnP

>
n

¼ V�1
n�1 þ v�1

0 PnP
>
n þ v�1

0 Pn�1P
>
n�1

. . .

¼ V�1
0 þ v�1

0

Xn
i¼1

PiP
>
i ðA11Þ

) Vnþ1 ¼ v0
Xn
i¼1

PiP
>
i þ v0V

�1
0

 !�1

; ðA12Þ

where V0 is the initial covariance matrix, or the prior condition,

which includes any GMRF priors.

In the same way, the assumption of slowly varying covariance

matrix simplifies the recursion relation of the mean values in (16)

as follows:

�unþ1 ¼ �un � Vnwn

vy;n þ vz;n
ðw>

n
�un � bnÞ

¼ �un � p2n
p2y;nþ1

wnðw>
n
�un � bnÞ

¼ �un � v�1
0 Vnþ1ðPnP>n �un � p2nwnbnÞ

¼ �un �
Xn
i¼1

PiP
>
i þ v0V

�1
0

 !�1

ðPiP>i �un � p2nwnbnÞ:

ðA13Þ

Multiplying both sides by
Pn

i¼1 PiP
>
i þ v0V

�1
0 ,

Xn
i¼1

PiP
>
i þ v0V

�1
0

 !
�unþ1 ¼

Xn�1

i¼1

PiP
>
i þ v0V

�1
0

 !
�un þ p2nwnbn

¼
Xn�2

i¼1

PiP
>
i þ v0V

�1
0

 !
�un

þ p2nwnbn þ p2n�1wn�1bn�1

. . .

¼
Xn
i¼1

p2iwibi; ðA14Þ

) �unþ1 ¼
Xn
i¼1

PiP
>
i þ v0V

�1
0

 !�1 Xn
i¼1

p2iwibi

 !
ðA15Þ

¼ v�1
0 Vnþ1

Xn
i¼1

p2i wibi

 !
: ðA16Þ

Remembering that pnbn 5 bn and pnwn 5 LnWnMn, the recur-

sion relation in (17) is reduced to

�unþ1 ¼
Xn
i¼1

L2
iW

2
i þ v0V

�1
0

 !�1 Xn
i¼1

LiWiMibi

 !
: ðA17Þ
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