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a  b  s  t  r  a  c  t

Heart  sounds  carry  information  about  the  mechanical  activity  of the cardiovascular  system.  This  infor-
mation  includes  the  specific  physiological  state  of  the  subject,  and  short  term variability  related  to the
respiratory  cycle.  The  interpretation  of  the sounds  and  extraction  of  changes  in the  physiological  state,
while  monitoring  short  term  variability  is  still  an  open  problem  and  is  the subject  of this  paper.

We present  a novel  computational  framework  for  analysis  of  data  with  multi-level  variability,  caused
by externally  induced  changes.  The  framework  presented  includes  an  initial  clustering  of  the  first  heart
sound  (S1)  according  to the morphology,  and  further  aggregation  of clusters  into  super-clusters. The
clusters  and  super  clusters  are  two methods  of  data  segmentation,  each  reflecting  a  different  level  of
variability  in  the  data.

The  framework  is  applied  to  heart  sounds  recorded  during  laparoscopic  surgeries  of six  patients.  Pro-
cedures  of this  kind  include  anesthesia  and  abdominal  insufflation,  which  together  with  the  respiratory

cycle,  induce  changes  to  the  heart  sound  signal.  We  demonstrate  a separation  of the  heart  sound  morphol-
ogy according  to different  physiological  states.  The  physiological  states  considered  are  the  respiratory
cycle,  and  the  stages  of  the surgery.  We  achieve  results  of  90 ± 4%  classification  accuracy  of  heart  beats
to operation  stages.

The  proposed  framework  is general  and  can  be  used  to analyze  data  characterized  by multi-level
variability  for various  other  (biomedical)  applications.
. Introduction

The heart sounds are generated by blood flow and closure
f valves inside the beating heart. The heart sound morphology
hanges due to a complex interplay between pressure gradients in
tria, ventricles and arteries. These affect the timing, magnitude
nd morphology of the produced heart sounds [1].  The resulting
on-stationary signal can indirectly reflect the physiological state
f the subject. It changes due to alterations in bodily state and is
onstantly affected by the respiratory cycle and the presence of
oise.

Abdominal insufflation performed during laparoscopic surg-
ries and the respiratory cycle, are two processes affecting the heart
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

ound morphology. The first changes the pressure gradients in the
arge veins between those located in the abdominal cavity (inferior
ena cava) and in the lower limbs, thus affecting venous return to
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the heart. The second changes the pressure gradients in the lungs.
Both consequently affect the heart sound morphology [2,3].

When trying to recognize changes in heart sounds that are
related to pathology, we encounter the problem of separating
changes that occur due to the respiratory cycle from pathological
events. The goal of this research is to build a clustering/classification
framework that can handle both types of morphological changes
and produce a robust prediction of the physiological state, inde-
pendently of the large variability of heart sounds.

The heart sound is perhaps the most traditional biomedical sig-
nal, as indicated by the fact that the stethoscope is the primary
instrument carried and used by physicians. This signal reflects
mechanical changes in heart functionality and provides an indi-
cation of the general state of the heart in terms of rhythm and
contractility. The phonocardiogram is a recording of the heart
sound signal [4,5]. The heart sound signal or PCG signal of a nor-
mal  heart is comprised of two  distinct activities namely the first
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

heart sound, S1 and the second heart sound, S2 (Fig. 1). S1 occurs
at the end of the isometric contraction period during systole, and
S2 occurs after the isovolumetric relaxation period during diastole
[6].

dx.doi.org/10.1016/j.bspc.2011.08.001
dx.doi.org/10.1016/j.bspc.2011.08.001
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:nin@tau.ac.il
dx.doi.org/10.1016/j.bspc.2011.08.001
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ig. 1. A phonocardiogram recording of a single heart beat, showing the two  majo
tructure of S1 and S2 (b), showing their subcomponents [4].

The pulmonary system plays an important part in modulat-
ng the cardiovascular mechanical activity by respiratory-induced
hanges of the pleural pressure, arterial resistance and venous
eturn. Amit et al. observed significant differences between prop-
rties of S1 and S2 occurring during inspiration and expiration [3].

The field of automated analysis of the heart sound signals is
elatively new. Recent technological advances in digital electronic
tethoscopes, acoustic signal processing and pattern recognition
ethods have made possible the design of algorithms for auto-
ated heart sound segmentation and classification [7]. Research

n this field often focuses on two computational problems: the
egmentation of heart sounds into heart cycles [8,9] and the recog-
ition of the heart sound components (often only S1 and S2, and
ometimes also S3, S4 and murmurs) [10,11], and classification of
eart sounds for recognizing cardiac pathologies [12–14].

Much research was done on the classification of different
eart sounds (HS), each representing a different cardiac pathol-
gy. Heart sounds are often preprocessed by converting them to

 time-frequency signal representation scheme. Methods such as
hort time Fourier transform, Wigner–Ville distribution, continu-
us wavelet transform and reduced-interference distributions have
een previously applied on heart sound signals [8,15].  Classification
lgorithms such as multilayer perceptron networks, learning vec-
or quantization (LVQ) [12,14], and clustering analysis [13,16] were
sed to classify the different heart sounds. It was shown that it is
ossible to achieve a high classification performance after a short
raining time, and thus to carry out heart sound classification in
eal-time [8,9].

Work by Amit et al. [1],  described a framework for identifying
istinct morphologies of heart sounds and classifying them into
hysiological states. This work focused on the effect of the respi-
atory cycle and the respiratory resistive load on the morphologies
f S1 and S2. The framework presented in this paper builds on the
nalysis introduced by Amit et al.

In this work we extend the framework presented by Amit et al.
ur framework analyzes heart sounds characterized by multi-level
ariability, caused by physiological events as well as the respiratory
ycle. The extended framework enables a clear seperation between
orphological changes caused by the respiratory cycle, and those

aused by physiological changes. We  demonstrate that those phys-
ological changes, which are extremely important for monitoring
ardiac patients are better detected by the proposed method. The
emonstration is done on patients undergoing laparoscopic surg-
ries. We  further demonstrate that the method is applicable to
ther types of physiological changes [17].
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

. Methods

The following computational framework analyzes data with dif-
erent sources of variability, caused by externally induced changes.
t sounds S1 and S2, as well as S3 and S4 (a), and a detailed description of the inner

The analysis of heart sound that is characterized by multi-level vari-
ability is done using extensive clustering and then fusing several
clusters into super clusters based on sequential repetition of dif-
ferent clusters in a localized temporal region. The cluster centers
are then used to construct a new data representation which enables
identification and association of a new morphological signal into its
corresponding physiological state. The classification framework is
applied on the S1 component of the heart sound.

The computational framework consists of the following building
blocks (described below in detail):

1. Preprocessing – preparation of a raw recorded signal for further
analysis. Includes digital filtering of the acquired signal, segmen-
tation to cardiac cycles and the extraction of the first heart sound
(S1).

2. Pattern recognition – used to identify distinct morphological pat-
terns. The segmented S1 components are clustered using an
unsupervised learning method.

3. Feature extraction – the data set of S1 components is transformed
to a compact representation of cluster distance space. Each beat
is then represented by a vector of distances from the centers of
significant clusters.

4. Classification – used to test the accuracy of the clustering and to
determine whether the different signal morphologies revealed
by clustering represent different physiological states.

5. Super clustering – a super cluster aggregates a subgroup of clus-
ters within a time segment, to separate time segments with
constant patterns of morphological behavior.

2.1. Experimental setup

Heart sound signals from six patients were recorded dur-
ing upper abdominal laparoscopic surgery. Procedures of this
kind affect the cardiovascular function by reducing venous return
and increasing systemic vascular resistance, consequently caus-
ing decreased cardiac index, which eventually affect heart sounds
[18,19].

The phonocardiogram signal was  acquired from multiple
recording locations. Supplementary data, such as electrocardio-
gram was acquired simultaneously. Five patients underwent
laparoscopic cholecystectomy surgeries and a single patient under-
went a hernia repair surgery. The study population consisted three
males and three females, aged between 53 and 72. A detailed
description of the subjects is presented in Table 1. Recording was
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

done during 3 different phases of the surgery: following induction
of anesthesia, during pneumoperitoneum and after abdominal CO2
desufflation (end of pneumoperitoneum). The patients were intu-
bated during the surgery, meaning they had a constant respiratory

dx.doi.org/10.1016/j.bspc.2011.08.001
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Table 1
Test subject description.

Subject Gender Age Cardiac/vascular diseases Surgery S1 beats used

BU F 53 None Lap. cholecystectomy 781
ZU M 55 None Lap. cholecystectomy 298
SO M  68 Ischemic heart disease, hypertension Lap. cholecystectomy 573
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cycles, B = {(b1,l1), (b2,l2), . . .,  (bN,lN)}, where bi is the representa-
tion of a heart sound component (e.g. S1) during a single cardiac
TA  M 59 None 

NA  F 60 Hypertension 

HI  F 72 Ischemic heart d

ate. Each recording took at least 30 s. The recordings were class
abeled according to stages of the surgery.

.2. Signal representation and preprocessing

Details of the phonocardiogram recording are provided in Amit
t al. [16]. Following amplification, the heart sounds were filtered
ith a digital band pass filter in the frequency range of 20–250 Hz,
here the bulk of the heart sound energy is found. The signal was

hen partitioned into cardiac cycles using the peaks of the ECG-QRS
omplexes as reference points. The signal segment containing the
rst heart sound, S1, was defined from the beginning of the QRS
eak to 200 ms  after the QRS peak. S1 signals were extracted from
ach cardiac cycle, standardized and aggregated for further pro-
essing. Segments with peaks significantly bellow or above average
ere recognized as noisy or invalid segments and were filtered out.

he filtered heart sound signal and the S1 segments of it are shown
n Fig. 2.

.3. Hierarchical clustering

Hierarchical clustering is an unsupervised learning method,
hich requires the user to specify a measure of dissimilarity

etween (disjoint) groups, based on pair-wise dissimilarities in the
wo groups. The result is a hierarchical representation in which
he clusters at each level of the hierarchy are created by merging
lusters at the next lower level. At the lowest level, each cluster
ontains a single observation, at the highest level there is only one
luster containing all of the data. For recent advances in hierarchical
lustering, see [20].

The hierarchical clustering used in this work is agglomerative,
amely, it starts at the bottom of the hierarchical tree, and at each
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

evel merges the selected pair of clusters into a single cluster. The
hoice of the next two clusters to be combined is done using group
verage criterion, which chooses clusters such that the average

ig. 2. (a) A phonocardiogram recording filtered in the frequency range of
0–250 Hz. S1 segments are shown. (b) A simultaneous recording of electrocardio-
ram.
Rep. hernia 2931
Lap. cholecystectomy 657

 Lap. cholecystectomy 778

dissimilarity between the groups is minimal. The distance between
two clusters is defined by:

dGA(G, H) = 1
NGNH

∑
i ∈ G

∑
j ∈ H

dij

where NG, NH are the respective number of observations in each
group, and dij pairwise observation dissimilarity [20].

Dissimilarity is measured using a distance metric. The distance
metric we  used to compute the distance between observations is
correlation; for mi, mj signals of length n we compute:

dij = ||mi − mj|| = 1 −
∑

t(mi,t − ml)(mj,t − mj)√∑
t(mi,t − ml)

2
√∑

t(mj,t − mj)
2

,

where ml = 1
n

n∑
t=1

mi,t

To obtain the desired number of clusters the hierarchical clustering
tree is pruned. Observations beneath each cut are assigned to a
single cluster (Fig. 3).

2.4. Clustering and classification framework

The clustering and classification framework presented, divides
S1 heart sound signals into distinct morphological groups. Each
cluster represents a unique subclass of morphologies. The accuracy
of the clustering was tested on previously unseen test data using a
classification algorithm.

2.4.1. Clustering procedure
The input to the clustering procedure is a set of N heart sound
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

cycle, and li is the associated class label li ∈ {L1, . . .,  Lm}. The cluster
analysis procedure assigns a cluster identifier to each signal cycle,

Fig. 3. A hierarchical clustering tree is graphically represented by a dendogram. This
illustrates the process of iteratively merging similar clusters, followed by pruning
of  the hierarchical tree to obtain four clusters (C1, . . ., C4).

dx.doi.org/10.1016/j.bspc.2011.08.001
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sing the hierarchical clustering algorithm, producing a clustered
ataset C = {(b1,c1), (b2,c2), . . .,  (bN,cN)}, where ci ∈ {1, . . .,  M} are
rbitrary cluster identifiers. Using this notation, a cluster Cj is the set
f signal cycles with cluster identifier cj: Cj = {i|(bi,cj) ∈ C}. The cen-
er of a cluster Cj is a weighted average of the clusters elements, in
hich each signal cycle is weighted by its similarity to the clusters

rithmetic mean:
C̄j

∑
i ∈ Cj

wibi, wi = 1 − D(bi, (
∑

i ∈ Cj
bi/|Cj|), where D is a dis-

ance function with a maximum distance of 1 [16].
Clusters that contain more than a certain minimal portion of the

eart beats in a label are denoted as significant clusters, i.e. cluster
j is significant if there is a label Li such that | {bk|(bk, Li) ∈ B and (bk,
j) ∈ C} | > | {bk|(bk, Li) ∈ B} | · ˇ. (In this experiment  ̌ is set to 0.1.)
uch a definition of a significant cluster prevents the state when

 class label has no representation of its dominant clusters in the
ignificant clusters set due to its small size in relation to other class
abels.

Insignificant clusters are created due to noise or short term,
ingular physiological events (e.g. the process of abdominal insuf-
ation causes the creation of multiple clusters). Those clusters are
liminated by merging them into significant clusters. Each beat bi
rom an insignificant cluster is moved to a significant cluster Cj such
hat di

j
= D(bi, C̄j) is minimal. Cluster centers are recalculated after

he merging process.

.4.2. Feature extraction
The centers of the significant clusters provide a compact rep-

esentation of the morphological variability in the entire dataset.
urthermore, a signal beat bi can be efficiently characterized by

 vector of distances from the centers of the significant clusters.

dl = (di
1, di

2, . . . , di
M̂

), di
j
= D(bi, C̄j). The classification algorithm is

pplied in this new feature space [1].

.4.3. Classification algorithm
The classification algorithm determines the accuracy of the clus-

ering procedure. The algorithm attempts to predict class labels of
eart beats in a previously unseen test set, using their representa-
ion in cluster distance space.

The data set B is divided into subsets Btrain and Btest. Only Btrain

s used in the clustering procedure. Btest is used to measure the
orrectness of the clustering.

The division of data set B to Btrain and Btest is performed sepa-
ately for each class label Li. The group Btrain is defined as a subgroup
f Btrain, where all the heart beats belong to class label Li (Btest

i
is

efined similarly). Btrain
i

is constructed in the following way: the
roup Bi = {bk|(bk, Li) ∈ B} is divided to r (r = 5) equal subgroups, each
ontaining consecutive beats from Bi: Bi = B1

i
∪ B2

i
∪ . . . ∪ Br

i
. Those

ubgroups are divided equally between Btrain
i

and Btest
i

:

train
i = U�r/2�

j=1 ˇ2j−1
i

, Btest
i = U�r/2�

j=1 ˇ2j
i

train = Um
i=1Btrain

i , Btest = Um
i=1Btest

i

or r = 5, Btrain is 60% of the data set, and Btest is the remaining 40%.
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

The classification algorithm used is k-nearest-neighbors. This is
 simple, non-parametric method, based on closest training exam-

les in the feature space. Given a query point
−→
d0 ∈ Btest , and a

et of labeled training points Btrain, we find the k training points

dl ∈ Btrain, r = 1, . . . , k closest in distance to
−→
d0, and then classify to

abel l̃0 ∈ {L1, . . . , Lm} using majority vote among k neighbors. Ties
re broken at random [20].
 PRESS
ing and Control xxx (2011) xxx– xxx

Different distance metrics were tested:

1. Euclidean – D(i)||
−→
dl − −→

d0| = 2
√∑M̂

k=1(di
k

− d0
k
)
2

2. Mahalanobis – based on correlations between variables by which
different patterns can be identified and analyzed. It differs from
Euclidean distance in that it takes into account the correlations

of the data set. Defined by D(
−→
dl ,

−→
dj ) = (

−→
dl −

−→
dj )V−1(

−→
dl −

−→
dj )

T

where V the covariance matrix of is
−→
di and

−→
dj [20].

The clustering and classification outline is summarized below:
Let B be the data set of a single patient.

1. Split data set B is into subsets Btrain and Btest.
2. Apply the clustering procedure on the training set Btrain, to pro-

duce a clustered data set Ctrain.
3. For each cluster in Ctrain, calculate cluster center Ctrain

j
.

4. Determine significant clusters.
5. Eliminate insignificant clusters, by moving the heart beats in

them to significant clusters.

6. Recalculate cluster centers Ctrain
1 , . . . , Ctrain

M̂
of significant clusters

in Ctrain after the merge.
7. Transform the heart beats bi ∈ Btrain ∪ Btest to a compact repre-

sentation
−→
dl = (di

1, di
2, . . . , di

M̂
) of distances from the centers of

significant training clusters.
8. Use KNN classifier to calculate the clustering accuracy. For each

beat bi ∈ Btest, in its representation in cluster distance space, cal-
culate

KNN(
−→
dl ) = l̃l, l̃l ∈ {L1, . . . , Lm}

9. Calculate classification accuracy of the patient by averaging the
classification accuracy of all the class labels:

CA(Li) = |{bj ∈ Btest and (bj, Li) ∈ B|̃lj = Li}|
|{bj ∈ Btest and (bj, Li) ∈ B}| , CA =

∑
i=1,...,mCA(Li)

m

The above equation gives each class label the same weight, disre-
garding the number of heart beats in it.

2.5. Super clustering

As mentioned before, the morphological changes in data set
B are caused due to two simultaneously occurring physiological
processes: the respiratory cycle and the laparoscopic surgery. Mor-
phological changes caused by the respiratory cycle manifest as
cyclic transitions of adjacent heart beats between two or more clus-
ters. Morphological changes that are caused by the laparoscopic
surgery create a new set of clusters with cyclic transitions between
them (Fig. 7a). The purpose of the super clustering is to divide data
set B into physiological states caused by the surgery alone.

A super cluster is defined as a segment of time, in which the heart
sound cycles are characterized by a small constant set of alternat-
ing morphological behaviors. This pattern manifests as transitions
between a small set of clusters, and appears as cyclic transitions
between two or more clusters. The criterion for the end of a super-
cluster and the beginning of the next is a change in the set of clusters
adjacent heart beats belong to.

The algorithm for partitioning the time line to super clusters
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

is based on hierarchical clustering. The input to the algorithm is
the clustering result of heart sound cycles. C = {(b1,c1), (b2,c2), . . .,
(bN,cN)}, where bi ∈ B, is a data set of heart sound components (i.e.
S1), and ci ∈ {1, . . .,  M}  are arbitrary cluster identifiers. C is ordered

dx.doi.org/10.1016/j.bspc.2011.08.001


ARTICLE IN PRESSG Model

BSPC-286; No. of Pages 10

S. Kofman et al. / Biomedical Signal Processing and Control xxx (2011) xxx– xxx 5

F heart 

r  40 cl
m

b
n

S

T
w
i

W

H
d
J
i
u
l
c
c

D

T
t
r
d

3

a
w
r

ig. 4. Hierarchical clustering results of 781 S1 beats. After extracting of the first 

espect to their mean. Hierarchical clustering is applied on the data with cutoff at
orphologically distinct, and have a small variability compared to other clusters.

y the occurrence in time of bi. The resulting super-clusters SCi are
on overlapping subgroups of C.

Ci = {(bj, cj), . . . , (bj+t , cj+t)}
he super-clustering algorithm begins with the partitioning of C to
indows of constant size d (d = 5). Each window containing cluster

dentifiers:

 = {W1, . . . , Wk}, Wi = {cd(i−1)+1, . . . , cd(i−1)+d}
ierarchical clustering is applied on the data set of windows W.  The
istance metric used to compare between windows is Jaccard. The

accard coefficient measures similarity between sample sets, and
s defined as the size of the intersection divided by the size of the
nion of the sample sets. The Jaccard distance measures dissimi-

arity between sample sets, and is complementary to the Jaccard
oefficient. Jaccard distance is obtained by subtracting the Jaccard
oefficient from 1 [21].

Jaccard(Wi, Wj) = 1 − |Wi ∩ Wj|
Wi ∪ Wj

he choice of the next two clusters to be combined is done using
he average criterion. The result of the hierarchical clustering algo-
ithm is smoothed to obtain super-clusters conforming to the above
efinition.

. Results
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

The clustering and classification framework was applied sep-
rately on the data set of each of the six patients. The data set
as constructed from a single recording channel, chosen by its

ecording quality. Only the S1 component of the heart sound cycles
sound (S1), the beats were aligned using the time-shift averaging algorithm with
usters. Only significant clusters are presented. The signals within each cluster are

was used. The number of heart beats processed per subject ranged
between 300 and 2930. During the preprocessing stage a mean of
10 ± 3.5% of S1 beats were removed due to noise.

Each heart sound cycle was labeled by a class label describing
the stage in the operation it was  recorded in (“before operation”,
“during operation”, “after operation” and intermediate labels). The
number of labels ranged from 3 to 5.

The data set was  divided to train and test. 60% of the S1 beats
were used for training, and 40% for testing. Consecutive heart beats
were selected to ensure the unbiased representation of beats occur-
ring in different stages of the respiratory cycle, since there are
respiratory-induced morphological variations of S1 [1].

Hierarchical clustering was  applied on the training set, and the
clustering tree obtained was  pruned at 40 clusters. The number of
clusters was  decided upon empirically. Experiments with less clus-
ters showed results that were not sensitive enough. Experiments
with more than 40 clusters created too many small insignificant
clusters. The number of significant clusters varied from 7 to 13
among subjects. Signal averaging within each cluster exhibited a
small morphological variability compared to the variability of sig-
nals in different clusters, providing a more accurate description of
the data (Fig. 4).

K-nearest-neighbor classification was used to test the accuracy
of the clustering. The algorithm attempts to predict class labels of
heart beats in the previously unseen test subset, using their repre-
sentation in cluster distance space. The algorithm was  applied with
K ∈ {1,3,5} and Euclidean and Mahalanobis distance metrics. The
Mahalanobis distance metric was  also used by Amit et al. [1] for the
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

classification of heart sounds. It significantly improved prediction
results in this study as well. The value of K = 1 and the Mahalanobis
distance metric gave best prediction results for the majority of the
subjects. With those parameters, the classification success (CA) over

dx.doi.org/10.1016/j.bspc.2011.08.001
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Fig. 5. (a) Three respiratory cycles. The lowest point of the cycle corresponds to the end of expiration and beginning of inspiration, and the highest point to the end of
inspiration and the beginning of expiration. (b) Mapping of the respiratory cycle to the range 0–360. The graph shows a sinus of this map. The red intervals are times of S1
beats.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 6. (a) Classification accuracy (CA) values for 6 subjects for data subsets Binspiration , Bexpiration and the entire data set. The X axis are the patients, the Y axis is the classification
a  slight
d ts. Pat
b

6
a
s
c

T
C

M
c
r
v

ccuracy in percents. We can see that for 5 of 6 patients the CA of subset Binspiration is
ata  subsets Binspiration , Bexpiration and the entire data set. Each bar is CA for five patien
etter  for Binspiration .

 patients was 90 ± 4%. The CA of a patient is calculated by aver-
ging the CA of all his class labels. This gives each class label the
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

ame weight, disregarding the number of heart beats in it. Detailed
lassification results can be seen in Table 2.

able 2
lassification performance of S1 signals using the KNN algorithm.

K Distance metric CA

1 Euclidean 85 ± 5
Mahalanobis 90 ± 4

3 Euclidean 82 ± 7
Mahalanobis 89 ± 6

5  Euclidean 78 ± 8
Mahalanobis 87 ± 7

ean and standard deviation of the classification accuracy for all subjects were
alculated with different parameters of the K-nearest-neighbor classification algo-
ithm. The Mahalanobis distance metric gives significantly better results for all
alues of K. Best performance for K = 1.
ly higher than the CA of all the data. (b) Mean classification accuracy (CA) values for
ient HI was  excluded from this calculation. We can see that the mean CA is slightly

The super clustering algorithm was  further applied on the train-
ing subset. The clustered data, Ctrain, was  partitioned to windows
of size d = 5. The windows were clustered using hierarchical clus-
tering algorithm, with Jaccard distance metric. The clustering tree
was pruned at 10 clusters for five of the patients, and at 9 clus-
ters for a single patient. The number of clusters was decided upon
empirically. The number of super clusters was  between 5 and 8.

3.1. Respiratory modulation within a super cluster

The respiratory cycle modulates heart sound morphology. Heart
beats during high thoracic pressure (early expiration) are mor-
phologically different from beats following high negative thoracic
pressure (early inspiration) [16]. This physiological behavior should
be taken into consideration when analyzing heart sound clusters.
Another physiological process characterizing the data is pneumo-
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

peritoneum, which further changes thoracic pressures. This process
affected the class labels of the data.

The super-cluster is a time segment in which there are transi-
tions of heart beats among a small set of clusters. Those transitions

dx.doi.org/10.1016/j.bspc.2011.08.001
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Fig. 7. (a) Clustering progress. The X axis is 781 S1 beats ordered by time of occurrence. Y axis are clusters. Each cluster differs both in color and in value. (b) The division of
the  time line to super-clusters. We  can see the correlation between super clusters and class labels. (c) Histogram of the respiratory phase of the S1 beats in a super cluster.
The  X axis is in the range 0–360 that maps the respiratory cycle, the Y axis is the number of samples in each bar. Each color in the histogram is a different cluster within the
super  cluster. We can see that when there is more than one dominant cluster in a super cluster, each cluster belongs to different respiratory phase. (For interpretation of the
r  the a

c
s
t
T
B
e
c

d
n
T
p
n

eferences to color in this figure legend, the reader is referred to the web version of

an be explained by the respiratory cycle. An example of cyclic tran-
itions can be seen in Fig. 7a. In the first label “Before operation”
he S1 beats are classified periodically to both clusters 5 and 6.
he morphological differences between them can be seen in Fig. 4.
y showing that S1 beats in each of those clusters occur in differ-
nt stages of the respiratory cycle, we show correlation between a
luster and a respiratory phase.

The respiratory signal is generated by the movement of the chest
uring respiration. It can be extracted from the heart sound sig-
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

al by filtering it using a band pass filter in the range 0–0.5 Hz.
he breathing signal is divided to respiratory cycles. The lowest
oint of the cycle corresponds to the end of expiration and begin-
ing of inspiration, the highest point to the end of inspiration and
rticle.)

the beginning of expiration. The respiratory cycle is mapped to the
range of 0–360, the sinus cycle. Inspiration corresponds to values
0–180, and expiration to 180–360 (Fig. 5).

By examining the respiratory cycle stages of S1 beats in different
clusters within a single super-cluster (Fig. 7c), we  observe that each
cluster corresponds to a different part of the respiratory cycle, thus
showing that the morphological differences within a super-cluster
are caused due to respiration.

The existence of several super-clusters reveals morphological
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

changes to the heart sounds that are caused by the alternating
thoracic pressure in different stages of the operation, caused by
pneumoperitoneum. Correlation between the super-clusters and
class-labels only emphasizes this notion (Fig. 7b).

dx.doi.org/10.1016/j.bspc.2011.08.001
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ig. 8. Clustering and super clustering results for 298 S1 beats of patient ZU. This
nflation stage itself and recordings from different states of the patient during and a
o  color in this figure legend, the reader is referred to the web  version of the article

.2. Application of the framework to subsets of the data

The respiratory cycle induces significant morphological changes
o the heart sound signal [1].  Therefore, the division of the S1
eats into subsets according to the respiratory phase they occur

n reduces the variability of the data. We  describe an attempt to
mprove classification accuracy by applying the clustering and clas-
ification framework on subsets of the data, when the S1 beats in
ach subset belong to different phases of the respiratory cycle.

The S1 components in data set B are mapped to stages of the
espiratory cycle as described in Section 3.1.  Each S1 beat bi receives

 pair (RPstart
i

, RPend
i

) such that RPstart
i

, RPend
i

∈ [0,  360], indicating
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

he respiratory phase it begins and ends in.
The data set is divided into two subsets:

. Binspiration – heart beats bi such that RPstart
i

, RPend
i

∈ [0,  180].
nt does not have a recording from before the surgery, only a recording from the
he surgery. For detailed explanation see Fig. 7. (For interpretation of the references

2.  Bexpiration – heart beats bi such that RPstart
i

, RPend
i

∈ [180, 360].

The clustering and classification framework was applied sep-
arately on each of the data sets. The same methodology was  used
for the subsets as for the entire data set. K-nearest-neighbor clas-
sification algorithm was used with K = 1 and Mahalanobis distance
metric, parameters that were shown to improve classification
results. The application of the framework on the Binspiration data
set showed slightly better classification accuracy (CA), for most
subjects. For a single subject the CA was  significantly lower for this
subset (Fig. 6a). Classification results of Bexpiration did not improve
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

CA. Mean classification accuracy for both data subsets is presented
in Fig. 6b. Since the results are not unanimous among subjects,
and the increase in classification accuracy is small, we cannot
conclude that the use of S1 beats from the inspiration stage alone is

dx.doi.org/10.1016/j.bspc.2011.08.001
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Fig. 9. Clustering and super clustering results for 573 S1 beats of patient SO. This patient has a recording from the inflation stage itself and recordings from different states
o n of th
o

r
d
c

4

h
t
d
c

f  the patient after the surgery. For detailed explanation see Fig. 7. (For interpretatio
f  the article.)

ecommended. More subjects and further studying of data set
ivision methods should be done in order to reach a decisive
onclusion.

. Discussion and conclusions

We have proposed a framework for the analysis of a multi-level
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

eart sound variability. Our goal was to provide computational
ools for recognizing morphological changes in the signal that occur
ue to pathological events, and are not related to the respiratory
ycle.
e references to color in this figure legend, the reader is referred to the web  version

The framework initially clusters the first heart sound (S1)
according to its morphology, and later aggregates clusters into
super clusters. The clusters and super clusters are two methods
of data segmentation, each reflecting a different level of variability
in the data. The results demonstrate that significant morphologi-
cal changes occur during physiological state changes and in each
physiological state; there are morphological changes that are due
to the respiratory phase. Clusters within a super cluster were often
vel heart-sound morphological variability resulting from changes in
bspc.2011.08.001

distributed within the respiratory cycle, the S1 beats in each clus-
ter belonging to a different range of respiratory phases. The results
further support the findings of Amit et al. [16] which were found on
healthy subjects, demonstrating that the phase of the respiration

dx.doi.org/10.1016/j.bspc.2011.08.001
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ycle (inspiration or expiration), indicated by the instantaneous
reathing pressure, has a marked effect on the morphology of the
eart sound signal.

Super clusters were found useful when cluster members dif-
er in more than one dimension. Specifically, the morphology
f heart sounds depends on the physiological condition of the
atient (abdominal pressure), and in each such physiological
ondition it depends on the respiratory cycle. The result of seg-
enting data to super clusters was characterized by the division

f a single class label into several super clusters. This indi-
ates that super clustering was able to uncover physiological
hanges that are not marked by class labels. Class labels reflect
nly external observations on the patient’s state, and thus did
ot accurately describe the full physiological states during the
urgery.

Stability in morphology due to physiological state was observed.
he length of a super cluster varied from a few second during fre-
uent position changes, to over 5 min  during surgery. This indicates
hat a constant physiological state induces a constant set of heart
ound morphologies.

The super clustering algorithm was found to be an essential step
n characterizing physiological states based on morphological clus-
ering, as it enables us to separate the variability of the morphology
nto the two basic causes of that variability.

In summary, the framework we introduced analyzed heart
ounds characterized by multi-level variability caused by physi-
logical events as well as the respiratory cycle. It enabled a clear
eperation between morphological changes caused by the respi-
atory cycle, and those caused by physiological changes such as
nsufflation.

This framework is general, and can be used to analyze differ-
nt kinds of data characterized by multi-level variability in time.
n this paper the framework was demonstrated on heart sounds
ecorded from patients undergoing laparoscopic surgeries. In a
hesis by S. Kofman, it was also tested on a data set of heart
Please cite this article in press as: S. Kofman, et al., Discovery of multiple le
physiological states. Biomed. Signal Process. Control (2011), doi:10.1016/j.

ounds recorded from patients during hemodialysis, and showed
ood classification accuracy [17]. Due to its general nature, the
ramework could also be used to analyze other biomedical signals
Figs. 7–9).
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