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Abstract 
 
The ability of sonar to detect objects is strongly influenced by the operating signal-to-noise ratio 
(SNR).  As sound amplitude decays very fast in water this sensitivity reduces the effective sonar 
range.  It is well known that the range accuracy decays for increasing levels of noise until a 
breakpoint is reached after which accuracy deteriorates by several orders of magnitude.  In this 
paper we present a robust fusion of time-delay estimates from multiple pings that reduces the 
SNR corresponding to the accuracy breakpoint.  We show that a simple average of the time-
delay estimates does not shift the breakpoint to a lower SNR.  The method can improve the 
resilience to noise of a sonar system, hence increasing its potential range of operation. 

 
 

I. INTRODUCTION 
 

The theory of optimal receivers studies the design of pulses and receivers to obtain optimal detection 
in the presence of noise. Considerable work on the theoretical accuracy of range measurements has 
been done in the past starting with the Woodward equation, which has been derived using different 
methods. A comprehensive description of earlier work can be found in [1].  The validity of the 
Woodward equation depends on various assumptions in particular the assumptions of very low 
signal-to-noise ratios (SNR), therefore it must be reexamined for the case of low SNR's. The theory 
of optimal receivers shows that the matched filter receiver maximizes the output peak-signal-to-
mean-noise (power) ratio [2, 3], and is the optimum method for the detection of signals in noise. 
Information about the distance of the target is extracted by computing the time at which the cross-
correlation between the echo and a replica of the pulse is a maximum. This delay is converted into a 
distance by means of the sound velocity in the particular medium in consideration (e.g. water or air). 
This type of receiver is generally referred to as a coherent receiver.  
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The classical theory of optimal receivers describes the range accuracy of a sonar system via the well-
known Woodward equation, which can be derived by using a variety of methods [1, 4-7].  For small 
SNR's, one of the parameters in the classical equation – i.e. the bandwidth – has to be modified, and 
the receiver is then called semicoherent.  In [8] it was shown that the transition between the two 
types of behaviors occurs at different SNR's depending on characteristics of the pulses such as 
bandwidth and center frequency. With this observation, a novel system based on an adaptive choice 
of the pulse was proposed [8]that can improve accuracy in the case of relatively low SNR, when 
ambiguity in the choice of the correct peak of the cross-correlation function cannot be avoided. 
Due to the nonlinear nature of the time-delay estimation problem, when the SNR drops below certain 
critical values threshold effects take place.  Threshold effects can be characterized by a sharp 
deterioration of the time-delay estimator variance.  Several statistical bounds have been used in the 
past to describe the accuracy of a matched filter receiver performance in between the above-
mentioned SNR critical values.  These include the Cramer-Rao lower bound [9-11], the Barankin 
bound [12], and the Ziv-Zakai bound [13-16].  Such bounds have been applied both to the problem 
of time-delay estimation [5, 17-23] and of frequency estimation [24-26].  In particular, the Barankin 
bound has been used to define the SNR breakpoints corresponding to the change in behavior of the 
optimal receiver as the SNR decreases for the case of a single ping and single echo [17, 19, 20], a 
single ping and multiple echoes [22, 23], and multiple pings and single echo [18, 21]. 
In this paper we analyze the signal-to-noise breakpoint, studying the probability of choosing the 
correct peak from the noisy cross-correlation function with a method similar to the one in [25], 
where the threshold effect was related to the existence of highly probable outliers far from the true 
time-delay value.  This will enable us to extend the result to the case of multiple pings without a 
priori knowledge on the time-delay itself.  This approach is different from that used in previous 
work on the multiple pings and single echo case [18, 21], where the multiple echoes for a single 
object are obtained artificially via multiple receivers and a unique ping.  In fact, the bounds found in 
[18, 21] are valid only if the noise at the different receivers is totally uncorrelated or if the distance 
between transducer and receiver is constant, both conditions difficult to realize in practice. 
Section II introduces two working models for the time delay estimation that are used to compute the 
probability of error form a single observation.  In section III we show that while averaging of 
multiple observations improves accuracy, it does not increase noise tolerance.  In section IV we 
derive a theoretical bound for the probability of correct time-delay estimation within a certain 
accuracy tolerance based on the mode of the observations.  Section V describes a set of Monte Carlo 
simulations confirming the theoretical predictions.  
 
 
 
 

 
 

II. SINGLE PING BREAKPOINT 
 
A. A simplified model for the autocorrelation function: δ-function. 
 
We first present a simple model where the noiseless cross-correlation function of the sonar ping 
is a δ-like function that is zero everywhere except from 0t =  where it is equal to the pulse 
energy (Fig. 1).  This model requires a pulse with infinite bandwidth; therefore it is not realizable 
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in practice.  However, its study will give some insight on the mechanism leading to the sharp 
decay in range accuracy experienced by match-filtered receivers. When white Gaussian noise is 
added to the returning sonar ping, then the cross correlation vector has a Gaussian distribution 
with multidimensional centers at zero for all values that are outside of the bin t=0, and center at 
a=E > 0 for the value of the cross-correlation at t=0, where E is the energy of the noise-free echo 
(see Appendix B for a discussion on the validity of this approximation). Let ix  be the value at 
each bin of the cross-correlated signal and 1x  the value at t=0.  We then have: 
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Using the Gaussian distribution, we can calculate the probability for the event  
which corresponds to the correct echo delay estimation, for a given noise level 
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Note that this probability depends only on / 2σ , which is proportional to the signal to noise 
ration (SNR).  1β α= −  denotes the probability of error, i.e., the probability that the amplitude 
of at least one of the points outside of the correct bin is larger than the amplitude correct peak. 
 
B. A more realistic model for the autocorrelation function 
 
For a ping with finite bandwidth it is more realistic to modify the model in equation (1) to 
include the finite extension in time of the autocorrelation function (Fig. 2).  In this model the 
autocorrelation function is approximated by a piecewise constant function, with an amplitude 
equal to a within the central interval I∆ of length ∆ , and zero elsewhere.  In this case, we need to 
consider the width of the a priori window of the cross-correlation. The width of the window 
corresponds to the sonar range. While the potential error in delay estimation is reduced when the 
width is reduced, so is the sonar range. If the a priori window has a length of  and the 
sampling frequency is

2L
sf , then there will be 0 2a sN N N L f= + = ⋅

0N
points,  of which 

will be within the central bin (“correct bin”), and  outside the central bin but within the a 
priori window.  Without loss of generality, we consider the case where  and  are integers. 

a = ∆ ⋅

0NaN

sf
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We define a random vector such that the first  random variables correspond to the amplitudes 
of the points within the correct bin, while the last  correspond to the amplitudes of the points 
outside.  As was derived above, for a white Gaussian noise, the joint probability density function 
for the vector of n random variables is given by: 
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The desired probability of time delay estimation within the correct bin of the center of the cross-
correlation function is given by 
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Thus, for a given noise level, the probability that the correct bin is selected is: 
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C. Accuracy breakpoint 
 
Let T be the R.V. whos probability distribution is given by Eq. 4. For SNR value that is above 
SNR , we have seen (Eq. 2) that the probability for falling in the correct bin 0 α is above 0α . Let 
σ∆ be the STD of the distribution of the echo location in the central (correct) bin, and let 0σ be 
the STD of the distribution which is outside the central bin. Now, suppose we sample from the 
original distribution T whose cumulative function is given by equation (5).  For n observations, a 
fraction of α  of the n observations falls in the correct bin on average, while βn fall outside. The 
standard deviation of the distribution will then be give by: 
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We define the breakpoint as the level of noise for which the contribution of T  to the total error 
becomes dominant.  Thus, the RMSE will be significantly larger than the one given by the 
uniform distribution on 

0

I∆ alone when 
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We then define the probability breakpoint to be: 
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it is possible to find the SNR breakpoint as the SNR value for which equation (5) equals the 
value in (8). 
 
 

III. WHY DOES THE MEAN FAIL? 
 

The classical way to fuse information from multiple observations is to average.  As the 
observations are independent and identically distributed, the central limit theorem (CLT) implies 
that the standard deviation (error) of the averaged R.V. should be n  times smaller than the 
error made by each of the n observations separately.  This is indeed the case before the 
breakpoint.  However, this process does not improve the situation after the breakpoint and, in 
particular, does not shift the breakpoint to lower SNR’s.  Thus, while averaging improves 
accuracy, it does not increase noise tolerance.  Below we provide a mathematical analysis which 
explains why the breakpoint does not change. 
The measurement process described above is equivalent to sampling form a uniform distribution 
on the interval I∆  with probability α and from a uniform distribution on the interval 0I , with a 
gap corresponding to I∆ , with probability β. Suppose we sample n times to obtain T T  
and use the sample mean as our estimate for the delay: 
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If δσ is the standard deviation of the δ-like distribution, and uσ is the standard deviation of the 
uniform distribution, then, applying the central limit theorem to the two sums in equation (10) 
we obtain: 
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The root-mean-square error will be significantly larger than the one given by the δ-like 
distribution alone when 2

0n n 2β σ α σ∆> , i.e. when 
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It is observed that this bound does not improve with the number of pings and is equal to the 
bound found for a single ping in equation (7).  This explains why averaging the echo delay 
estimates from multiple pings have not been found useful, and probably led to the wrong 
conclusion that no improvement can be achieved from multiple pings data. 
It should be noted that it is possible to shift the breakpoint by estimating the time delay form the 
averaged cross-correlation functions of all the observations, a process that would require an 
extremely good alignment of the cross-correlation functions.  This is basically equivalent to 
reducing the noise level by averaging the echoes [24] (see also discussion in Appendix A), which 
is not a realistic in a situation where the sonar is not completely still with respect to the target, or 
where it is not practical to store the entire echo waveforms for off line processing.  However, a 
successful implementation of this averaging can be achieved by using multiple receivers [18, 
21].  
 
 

IV. USING THE MODE 
 

Suppose we divide the a priori window into intervals of length ∆ equal to the size of the correct 
bin, to obtain  intervals2 /m L=  ∆ 1 1, , , mB B BK , with 1B I∆=  representing the correct bin (Fig. 
3). If 1 2, , , mp p pK  are the probabilities for an estimate to fall in each of the intervals and 

 are random variables representing the number of estimates falling in each interval, 
then 

1 2, ,Y Y , mYK
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The joint probability distribution for the number of estimates in each bin is given by the 
multinomial distribution 
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The probability of choosing the correct bin using the mode is the probability that the number of 
estimates falling in the correct bin , is greater than the number of estimates falling in any other 
bin : 
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The sum in equation (15) can be decomposed into two parts: 1) the probability  that more 
that half of the n points falls into the correct bin; 2) the probability  that even if less than 
half of the n points fall in the correct bin, the number of points in it is greater than that of any 
other bin. 
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The first term in (16) can be written as: 
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The probability of an estimate to fall outside the correct bin is uniform over the a priori window 
with probabilityβ, so that the probability for it to fall in any interval of size ∆ is ( 1m )β − : 
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Substituting (18) into equation (17) we obtain 
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whereα  is a function of the SNR through Eq. (5).  The computation of  is more 
complicated. However, it is possible to derive an upper bound ( ) on the SNR breakpoint 
for the time-delay accuracy computed by using the mode of n estimates, as the SNR for which 
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The tighter bound corresponding to the total probability of choosing the correct bin given by Eq. 
(16) will always be lower than the one derived from Eq. (20): 
 
 50%BPSNR SNR>≤ , (21) 
thus, the breakpoint which the mode can achieve will be for a lower SNR than the one calculated 
above, which is already significantly better than the breakpoint achieved by either a single ping 
or by averaging of the echo delay estimates of multiple pings (see Figure 4). 
 
 
 

V. EXPERIMENTAL RESULTS 
 

To test the mathematical results presented in the previous sections, we developed a set of Monte 
Carlo simulations using a cosine packet.  We first analyzed the histograms of the errors in the 
delay estimate of the ideal receiver for different SNR's (figure 5).  For high SNR (≥20dB) all the 
errors are small and follow the Woodward equation that corresponds to values within the central 
bin in figure 5a.  As the level of the noise increases, large errors in the estimates appear.  The 
errors are uniformly distributed over the entire a-priori window, and the relative ratio between 
the correct estimates (central bin) and the level of the uniform distribution decreases with SNR 
(figures 5b, 5c, and 5d).  However, even for high levels of noise the central peak is significantly 
larger that the rest of the distribution. 
Figure 6a shows the performance of ideal receiver for a single ping.  For high SNR the accuracy 
follows the Woodward equation corresponding to a coherent ideal as expected from the theory of 
optimal receivers.  The performance breaks for low SNR around 17 dB.  Figures 6b, 6c and 6d 
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show the analysis of the accuracy breakpoint for different number of pings – 10, 50 and 100 
respectively.  The blue line describes the optimal accuracy that can be achieved using cross-
correlation from multiple pings.  Its breaking point represents the optimal breaking point that 
could have been achieved using stationary sonar and target, and that could be predicted by using 
the Barankin bound as in [18, 21] (see also discussion in Appendix A).  This breaking point 
however is not attainable, as it relies on careful registration of returns from different pings. Such 
careful registration can only be done if the distance between object to target is kept constant, or if 
it is known for each ping in advance.  It can be seen that robust fusion of multiple pings based on 
the mode (light blue, and magenta lines) improves noise resiliency while retaining close to 
optimal achievable accuracy under multiple pings.  In general there is no significant 
improvement in the resiliency to noise when a simple mean of the observations is used due the 
strong contamination of the distribution from outliers (red lines).  This confirms the 
mathematical result presented in section III. 
Figure 7, shows a summary of the results for the different methods.  The breakpoint for the 
averaged cross-correlation function (blue squares) follows the ideal curve obtained by reducing 
the level of the noise ax explained in Appendix B (solid blue line).  The breakpoint of the 
estimate obtained from the mean does not substantially change as the number of pings in 
increased.  A more robust statistics such as the median improves the resiliency to noise as the 
number of pings increases (green triangles).  The best results are obtained by using the mode of 
the estimates from the multiple pings (magenta diamonds). 
 
 
APPENDIX A  
 
In this section we show that estimating the time-delay from the averaged cross-correlation 
functions shifts the SNR breakpoint as if the noise level was reduced by averaging the echoes. 
We model each echo as a sum of two components: 
 
 y u η= +

rr r  (22) 
 
 
where u  is an attenuated replica of the pulse, and r ηr  is white noise with standard deviation equal 
to ησ .  We define the signal to noise ration to be: 
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where E is the energy of the noise-free component ur  measured in Ws, and N0 is the spectral 
density of the noise measured in W/Hz.  If 1/sf dt=  is the sampling frequency, then: 
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and the SNR can be expressed as: 
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The SNR can be expressed in dB as: 
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When averaging n echoes, the standard deviation of the gaussian process generating the noise for 
each echo is reduced by n  due to the central limit theorem.  Thus, the signal to noise ratio 
becomes: 
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If BP1 is the breakpoint corresponding to a single ping, then the breakpoint for the average of n 
echoes will be: 
 
 1 10logn 10BP BP n= −  (28) 
 
 
APPENDIX B 
 
If ( )x t is the pulse and ( ) ( ) ( )y t u t tη= +  is the echo, then their cross-correlation xyφ can be 
expressed as: 
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Moreover if the noise is white then the autocorrelation of the noise: 
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If we treat ( )x t  as a filter acting on the noise ( )tη to generate filtered version of the noise 

( ) xt ηφ φ= , then the autocorrelation Rφφ  is: 
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Thus, the noise on top of the cross-correlation function between the pulse and the noise-free 
component of the echo is not white, since its autocorrelation function is not a δ-function.  
However, since the support of xxφ  is small compared to the length of the a-priori window, we 
approximate Rφφ  with , and consider the noise to be white. (2 tησ δ ∆ )
 
 
 
 

REFERENCES 
 
 
[1] M. I. Skolnik, Introduction to Radar Systems, 1st ed: McGraw-Hill Book Company, 1962. 
[2] M. I. Skolnik, Introduction to Radar Systems, 3rd ed: McGraw-Hill, 2000. 
[3] D. O. North, "An Analysis of the Factors which Determine Signal/Noise Discrimination 

in Pulse-carrier Systems," RCA, Tech. Rept. PTR-6C, June 25 1943. 
[4] A. J. Mallinckrodt and T. E. Sollenberger, "Optimum-pulse-time Determination," IRE 

Trans., vol. PGIT-3, pp. 151-159, 1954. 
[5] D. Slepian, "Estimation of Signal Parameters in the Presence of Noise," IRE Trans., vol. 

PGIT-3, pp. 68-89, 1954. 



 12

[6] P. M. Woodward, Probability and Information Theory, with Applications to Radar. New 
York: McGraw-Hill Book Company, Inc., 1953. 

[7] M. I. Skolnik, "Theoretical Accuracy of Radar Measurements," IRE Trans., vol. ANE-7, 
pp. 123-129, 1960. 

[8] N. Neretti, N. Intrator, and L. N. Cooper, "Adaptive pulse optimization for improved 
sonar range accuracy," IEEE Signal Processing Letters, 2003. 

[9] H. Cramer, Mathematical methods of statistics. Princeton, NJ: Princeton Univ. Press, 
1946. 

[10] C. R. Rao, "Information and accuracy attainable in the estimation of statistical 
parameters," Bull. Calcutta Math. Soc., vol. 37, pp. 81-91, 1945. 

[11] R. A. Fisher, "On the mathematical foundations of theoretical statistics," Phil. Trans. 
Roy. Soc., vol. 222, pp. 309, 1922. 

[12] E. W. Barankin, "Locally best unbiased estimates," Ann. Math. Stat., vol. 20, pp. 477-
501, 1946. 

[13] S. Bellini and G. Tartara, "Bounds on error in signal parameter estimation," IEEE Trans. 
Commun., vol. COM-22, pp. 340-342, 1974. 

[14] D. Chazan, M. Zakai, and J. Ziv, "Improved lower bound on signal parameter 
estimation," IEEE Trans. Information Theory, vol. IT-21, pp. 90-93, 1975. 

[15] L. P. Seidman, "Performance limitations and error calculations for parameter estimation," 
Proc. IEEE, vol. 58, pp. 644-652, 1970. 

[16] J. Ziv and M. Zakai, "Some lower bounds on signal parameter estimation," IEEE Trans. 
Information Theory, vol. IT-15, pp. 386-391, 1969. 

[17] I. Reuven and H. Messer, "A Barankin-type lower bound on the estimation error of a 
hybrid parameter vector," IEEE Trans. Information Theory, vol. 43, pp. 1084-1093, 1997. 

[18] S.-K. Chow and P. M. Schultheiss, "Delay estimation using narrow-band processes," 
IEEE Trans. ASSP, vol. ASSP-29, pp. 478-484, 1981. 

[19] R. J. McAulay and E. M. Hofstetter, "Barankin bounds on parameter estimation," IEEE 
Trans. Information Theory, vol. IT-17, pp. 669-676, 1971. 

[20] R. J. McAulay and L. P. Seidman, "A useful form of the Barankin lower bound and its 
application to PPM threshold analysis," IEEE Trans. Information Theory, vol. IT-15, pp. 
273-279, 1969. 

[21] J. Tabrikian and J. L. Krolik, "Barankin bounds for source localization in an uncertain 
ocean environment," IEEE Trans. Signal Processing, vol. 47, pp. 2917 -2927, 1999. 

[22] A. Zeira and P. M. Schultheiss, "Realizable lower bounds for time delay estimation: Part 
2 - Threshold phenomena," IEEE Trans. Signal Processing, vol. 42, pp. 1001-1007, 
1994. 

[23] A. Zeira and P. M. Schultheiss, "Realizable lower bounds for time delay estimation," 
IEEE Trans. Signal Processing, vol. 41, pp. 3102-3113, 1993. 

[24] L. Knockaert, "The Barankin bound and threshold behavior in frequency estimation," 
IEEE Trans. Signal Processing, vol. 47, pp. 2398-2401, 1997. 

[25] D. C. Rife and R. R. Boorstyn, "Single-tone parameter estimation from discrete-time 
observations," IEEE Trans. Information Theory, vol. IT-20, pp. 591-598, 1974. 

[26] B. James, B. D. O. Anderson, and R. C. Williamson, "Characterization of threshold for 
single tone maximum likelihood frequency estimation," IEEE Trans. Signal Processing, 
vol. 43, pp. 817-821, 1995. 



 13

Figure Captions 
 
Fig. 1 - Simple model where the noiseless cross-correlation function of the sonar ping is a δ-like 
function that is zero everywhere (within the a priori window of length L) except from 0t =  
where it is equal to the pulse energy a (top). The bottom figure shows the probability of selecting 
a given time location in the cross-correlation function predicted by this model. 
 
Fig. 2 - A more realistic model for the noiseless cross-correlation function includes the finite 
extension in time of the autocorrelation function.  In this model the noiseless cross-correlation 
function is approximated by a piecewise constant function with an amplitude equal to a within 
the central interval I∆ of length ∆ and zero elsewhere (within the a priori window of length L). 
The bottom figure shows the probability of selecting a given time location in the cross-
correlation function predicted by this model. 
 
Fig. 3 – Model used in the computation of the probability of a correct bin choice in the case of 
multiple pings.  We divide the a priori window into intervals of length ∆ equal to the size of the 
correct bin, to obtain m  intervals 2 /L=  ∆ 1 1, , , mB B K B , with 1B I∆=  representing the correct 
bin. 
 
Fig. 4 – Probability of making the correct choice as a function of SNR for different numbers of 
pings. The arrows indicate upper bounds on the SNR breakpoints. 
 
 
Fig. 5 – Histograms of the errors in the delay estimate in a Monte Carlo simulation for different 
SNR's.  For high SNR (≥20dB) all the errors are small and follow the Woodward equation that 
corresponds to values within the central bin in figure (a).  As the level of the noise increases, 
large errors in the estimates appear.  The errors are uniformly distributed over the entire a-priori 
window, and the relative ratio between the correct estimates (central bin) and the level of the 
uniform distribution decreases with SNR, see figures (b), (c), and (d).  However, even for high 
levels of noise the central peak is significantly larger that the rest of the distribution. 
 
Fig. 6 – RMSE as a function of SNR and number of pings  – 1, 10, 100 and 200 respectively – 
for the Cosine Packet.  Notice how the SNR breakpoint for the average of multiple pings (red 
line) does not decrease with the number of pings. 
 
Fig. 7 –  Breakpoint in dB as a function of number of pings for different methods.  The solid line 
corresponds to the noise reduction due to averaging as discussed in Appendix C. 
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