
Neuronal Goals: E�cient Coding and Coincidence DetectionNathan Intrator�School of Mathematical SciencesTel Aviv Universitynin@cns.brown.eduAbstract| Barlow's seminal work on minimal entropy codes and unsupervised learning isreiterated. In particular, the need to transmit the probability of events is put in a practicalneuronal framework for detecting suspicious events. A variant of the BCM learning rule [15]is presented together with some mathematical results suggesting optimal minimal entropycoding.Key words: Sparse coding, Non-Gaussian distributions, BCM Theory, Minimal Entropy1 IntroductionThere is no doubt that much of what we do is determined by what has happened in the past. In particular,our ability to understand speech in noisy environment, understand under contextual constraints, or drivea car, is a manifestation of our ability to predict the next phoneme/word in a sentence, predict the nextrequired control movement, or at least adjust our expectations according to the past context. Clearly,this is a fundamental concept without which the system would not function at all, or would be severelydegraded.It is largely assumed that if the role of sensory neurons is to detect features in their input representation,then they should transmit the probability of occurrence of the features they learn to detect. While thissounds very natural and simple, we argue that such coding is not optimal and in fact neurons can andshould transmit additional information.Following Barlow's seminal work on minimal entropy codes and unsupervised learning, we attempt toaddress some fundamental problems concerning neuronal coding, neuronal goals for learning, featuredetection and information transmission. In particular, the need to transmit the probability of eventsis put in a practical neuronal framework for detecting suspicious events. We derive these assertionsfrom basic principles of information theory, from energy conservation considerations, and from someassumptions about neuronal goals.Several other researchers have been interested in these questions. Atick [1] studied information codingpatterns in 
ys and mammalians retinal coding and supports the notion of redundancy reduction throughe�ective information coding. Field et al. [10, 21] inferred about the goal of visual sensory coding fromproperties of the statistics of natural images. Their main conclusions are the need to extract higherorder statistics (i.e., more than linear and pairwise) and the need for sparse coding as a mean to achievee�cient information relay.In this paper we present a unifying theory that combines the need for e�cient feature detection with theneed for e�cient information transmission and a fundamental neuronal goal for suspicious coincidencedetection. We start with a review of Barlow's work on coincidence detection, continue with a review of aBCM neuron in terms of its feature detection ability and information coding properties, and later discusssome regularization properties of these neurons in terms of the probability of events they can becomeselective to and outlier avoidance. We conclude with a motivation from the principle of maximumentropyto the optimality of the code.2 Neuronal goal: Suspicious coincidences detectionBarlow has been arguing for a long time that suspicious coincidences is the basic type of event to whichthe cerebral cortex must attune itself [2, 3, 6, 7]. Assuming that a major task of the brain is to forma statistical model of the world, Barlow asked what kind of events would be worth noting and keepinga record of. Clearly, neither isolated events (the falling of a stone) nor repeated occurrences of events(the ticking of a clock) deserve paying too much attention to. In contrast, a co-occurrence of two eventsmay call for investigation or may justify remembering, but only if this co-occurrence is surprising (i.e.,unlikely), given prior knowledge regarding the occurrence of the individual events. Coincidence detectionis also a key idea in the Compositional Machine framework presented by Geman and Bienenstock [13].Consider the statistical problem of learning which tries to determine whether a compound event suchas C followed by U is a random co-occurrence or a signi�cant association. If it is the latter then C isa conditional stimulus to U, can be useful in predicting it, and in some cases can be useful in detectingthe event U out of several concurrently occurring events. Clearly, we can not determine anything aboutthe combination of C and U before becoming independently selective to each of the events, and having�Current address: Institute for Brain and Neural Systems, Box 1843, Brown University, Providence, RI 02912



estimated their prior probabilities. Hence, Barlow hypothesises that the perception of an event, not onlyshould signal its occurrence, but must also indicate the prior probability of what has been signaled.2.1 Selfridge's Pandemonium and Barlow's Probabilistic PandemoniumThe probabilistic line of reasoning suggests that sensory coding is \... the process of preparing a represen-tation of the current sensory scene in a form that enables subsequent learning mechanisms to be versatileand reliable" [6]. Speci�cally, a representation is useful for learning if it includes records of recurring andco-occurring events. As noted by Barlow, a convenient substrate for such a representation is providedby Selfridge's Pandemonium [23]. In Barlow's Probabilistic Pandemonium, the response strength of afeature-detector demon would be proportional to � logP , where P is the probability of occurrence ofthe feature the demon detects. These signals are then propagated to an association network whichreceives unconditional inputs as well { inputs that follow and are assumed to be related to the conditionalinput. The main innovation in this setup, is the argument that each demon (feature detector) propagatesinformation inversely proportional to the likelihood of the feature that is detected. This is sharply dif-ferent than more conventional feature detectors, such as say Principal Components, in which the outputis proportional to the degree of similarity between the input and the feature (when extracting PC fromthe correlation of inputs matrix), or the amount of variance explained by that feature (when extractingPC from the covariance matrix).In the next section we present the feature extraction properties of a BCM neuron and emphasize itscoding properties and relevance to coincidence detection.3 The BCM feature extraction and codingThe feature extraction method brie
y described below achieves dimensionality reduction by seeking fea-tures that would best distinguish among the members of the set. The potential importance of thesefeatures is related to their invariance properties, or their ability to generalize. Invariance propertiesof features extracted by this method have been demonstrated previously in various recognition tasks[14, 16, 17].From a mathematical viewpoint, extracting features from gray level images is related to dimensionalityreduction in a high dimensional vector space, in which an n�k pixel image is considered to be a vector oflength n� k. The dimensionality reduction is achieved by replacing each image (or its high dimensionalequivalent vector) by a low dimensional vector in which each element represents a projection of the imageonto a vector of synaptic weights.
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Projected distributionFigure 1: The stable solutions for a two dimensional two input problem are m1 and m2 (left) and similarlywith a two-cluster data (right).The BCM feature extraction [8, 15] seeks multi-modality in the projected distribution of these highdimensional vectors. A simple example is illustrated in Figure 1. For a two-input problem in twodimensions, the stable solutions (projection directions) are m1 and m2, each has the property of beingorthogonal to one of the inputs. In a higher dimensional space, for n linearly independent inputs, a stablesolution is one that is orthogonal to all but one of the inputs. In case of noisy but clustered inputs, astable solution will be orthogonal to all but one of the cluster centers. As is seen in Figure 1 (right), thisleads to a bimodal, or, in general, multi-modal, projected distribution.The mathematical results concerning the type of feature detection and coding is given in [15]. One of theresults roughly says:Theorem With n clusters in an n-dimensional space, the only stable solutions are projections whichare orthogonal to all but one of the clusters. There are at most n such solutions and each such solutionoccurs with probability Pi (the probability of cluster i). Moreover, the neuronal activity of a neuron thatbecomes tuned to cluster i (in the linear case) is 1=Pi.This result makes the BCM neuron a good candidate for e�ciently coding events. By adding a monotonetruncated log function on top of the neuronal activity, we get the desired -log probability of events (seethe the discussion of the optimality of this code below). The truncation at zero is required as neuronalactivity is expected to be non-negative.While the activity of a neuron becomes close to the inverse of the probability of the event this is not



always the case. If the event is only partially detected, namely, the probability that the event appears inthe input at a certain time is not close to one, then the activity of the neuron is degraded accordingly.3.1 Interplay between suspicious coincidence and avoiding outliersThe above results points at a potential weakness of the BCM neuron: sensitivity to outliers. Clearly, ifa neuron becomes tuned to an event with vanishing probability (although the probability of such case isgoing to zero as well) its activity may grow unbounded. This fact had motivated us in the past to apply asaturating sigmoidal transfer function to the neuronal activity [15]. Such saturation function should havean upper bound that is larger than 1, and in fact the upper bound will determine the smallest probabilityof events that the neuron can become tuned to. The ability to control the probability of events the neuroncan become tuned to is very important; It is likely that when detailed low-level features are required, theneuron should be able to detect events with very low probability, but when a high degree of generalizationis needed, the neuron should not become tuned to events with very low probability.Once avoidance of outliers is assured, we can add the monotone log function on top of the neuronalactivity for e�cient information relay.4 A Coincidence detection networkIn this section, we present a simple architecture that can serve as a coincidence detection network (CDN)and is based on the BCM neurons described above. The �rst layer of neurons (Figure 2) is composedof feature detectors of events Ai in the input representation. Without loss of generality, we assume thatwhen the dynamic process of learning has stabilized, neuron i becomes selective to event Ai such that themaximal activity of the neuron is around � log(Pi), where Pi is the probability of event Ai. The second
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Figure 2: A suspicious coincidence detection network.layer of neurons receives input from the previous layer, or from other sensory maps, and thus it can onlydetect events which have been found interesting by earlier feature detectors. Thus, the inputs to thesecond layer are much more quiet than the inputs to the previous layer, as the events are now sparselycoded, and compound events are more likely to be found. The second layer of BCM neurons again looksfor multi-modal projected distribution, which indicate clusters in the activity of the �rst layer.With additional sensory input (possibly from other modalities), events Ai and Aj may become correlatedand can be detected by the second layer of neurons (e.g. red apple), then emerging projections in thesecond layer will generate cell activity that is of the form�Xj wj logP (Aj) = � log[�jP (Aj)wj ];such that the resulting neuronal activity represents � logP (B), where B denotes the compound event.The BCM rule for synaptic weight modi�cation e�ectively seeks such projections along which the prob-ability density deviates maximally from a Gaussian distribution.1 The receptive �elds of units trained1Due to the central limit theorem, most projections are Gaussian, and thus can be described completely by their



with the BCM rule are thus tuned to the detection of interesting low-dimensional structure in the high-dimensional input space.5 Minimum entropy codingBarlow considered the question of \what properties should a representation have in order to make itsuitable for use by subsequent learning mechanisms". He argues that not every complete representationwould do, and in particular, a model based on Hebbian synapses can only access some of the informationneeded, but not all. There is an apparent contradiction between the desire to have redundant codingwhich is related to the simplicity of the code and the need for redundancy reduction as a mean for e�cienttransmission. Barlow stresses that a completely non redundant stimuli is indistinguishable from randomnoise [5], thus, requiring a highly sophisticated scheme (probably complex and slow) to decode the signal.Since neuronal code seems highly structured, one can infer that its encoding is highly redundant.Minimal entropy codes satisfy the need to know the prior probability of events described by the code, andthus, if the variables of the sensory representation occur independently of each other, it is then possibleto derive the prior probability of any logical function of these variables from prior probabilities of theindividual variables. Therefore, such a representation allows a simple search for suspicious coincidenceof events. More speci�cally, suppose we have a set of neurons tuned to bars at all orientations. A priori,one can assume that the di�erent orientations are independent, but for a speci�c image, say the character'A', we create a model by noting that several orientations are highly probable at certain locations of thatobject. Barlow goes on to describing a minimum entropy coding which should satisfy two constraints, ithas to be reversible, namely reconstruction of the original input should be possible, and in addition thecode should have minimal entropy. The essence of minimal entropy coding, is to form a factorial code,i.e., to �nd a set of symbols such that each of them occurs independently of the others, so that their jointprobability is a multiplication of their individual ones. In the BCM network factorial coding of events,namely the independence of features detected by di�erent neurons is achieved by the lateral inhibitionarchitecture and reduced space of solutions of BCM neurons. The reduced space of solutions is due tothe fact that for data with n clusters, there are only n stable solutions, each characterized by a synapticvector being orthogonal to all but one of the clusters. This space of solutions is minimal and su�cientfor distinguishing between n clusters. In contrast, a discriminant analysis method for separation betweenn clusters [22, for review], has �n2� possible solutions, i.e., on the order of n2, and is thus, more likely to�nd correlated solutions.Sparse coding, in which di�erent states of the system are represented by neuronal activity with onlya small number of active units, is an outcome of the dynamics of the BCM learning. This is becauseeach BCM neuron conveys events with an activity that is inversely proportional to their probability ofoccurrence [15]. Thus, in accordance with Barlows predictions [4], events that occur with high probabilityare conveyed by a less active neuron than events which occur less frequently. Such events will be conveyedby a neuron that is quiet most of the time, but �res strongly when the event is detected. It follows that inthe BCM coding case, sparse coding is an outcome of the other constraints and not a direct goal by itself.It will be interesting to compare the resulting code with methods that maximize sparsity or kurtosis asa goal for neuronal coding and feature detection [11, 12, 21].6 Optimal neuronal codeWhen seeking optimal neuronal code, we have to bear in mind that the code should preserve spatialrelations between the inputs. In particular, two events that are close to one another in measurementspace, e.g. two views of the same person, should have an internal representation that preserves thiscorrespondence [9, 25]. This requirement nulli�es the use of classical coding theory, since we no longercan use a look-up table that translates the code into symbols to be conveyed from layer to layer, asthe symbol representation does not preserve the metric of the original space. One can assume that theadditional continuity constraint will limit the optimality and information capacity of codes generated bysuch a map.We are now in the following situation: There is a measurement space (X;P ) of vectors in Rk. We seeka continuous function on a compact domain in Rk,fCk :7! R+;that conveys as much information about the measurement space as possible. The function f is foundby learning from a set of observations fx1; : : : ; xNg sampled from X with probability P . We assumethat the activity of a cell is a function of its vector of synaptic weights and the inputs. This de�nes adistribution over the possible values of cell activity. We discretize those values to a given accuracy andthus are assuming that the collection of cell activity values is given by fi; i = 1; : : : ; n, with correspondingprobabilities pi; i = 1; : : : ; n. The mean cell activity is given by�f = nXi=1 pifi; Xi pi = 1; (1)covariance matrix (second-order statistics).



We ask the following question: what is the distribution that maximizes the information capacity ofneurons subject to the constraint of a �xed average activity. We assume that the energy dissipated bythe neuron is linearly related to the neuronal activity, and thus would like to study the informationcapacity of neuronal codes with a �xed average activity. We additionally assume that cell activity is nonnegative, so an inactive cell which dissipates the least amount of energy has zero activity. It turns outthat the principle of maximum entropy [18, 19, For discussion], is directly applicable in this case. It givesan explicit relation between neuronal activity (possibly �ring rate) and the corresponding probability forthis activity level, so as to maximize information capacity subject to a �xed mean activity.At a �rst glance, it is not intuitive at all that there is any such connection. We often study the informationentropy of distribution which is given byH(p1; : : : ; pn) = �KXi pi ln pi; (2)where K is a positive constant. However, this case is only applicable when the actual events to be relayedcan be just a set of labels that has to be converted via a look up table at the receiving end to the actualevent transmitted.The maximum entropy principle implies that for maximal code capacity, the relation between the prob-ability of activity and its value is given bypi = exp(��fi)Pj exp(��fj ) ; (3)where � is interpreted as temperature in statistical mechanics formulation. Under these probabilities, theentropy of that speci�c code is given by Hf = ��Xi pifi � Z; (4)where Z is the partition function. If instead of using the optimal probability distribution given by (3),we use a suboptimal distribution given by qi's, then the entropy of the new code is less or equal thatgiven in (4), more precisely [24] Hq = ��Xi qifi +Xi qi log(qi=pi); (5)namely the two entropies di�er by the Kullback-Leibler divergence [20] between the given distribution qand the optimal one p. The latter term is non-negative and is zero if and only if q � p. Thus, betterdistributions will have a small K-L divergence and smaller di�erences between the distributions are moredesirable.This formulation lets us compare between di�erent coding schemes which have the same mean activity.It can be extended to networks of neurons, and it follows that a network of BCM neurons as describedin [15] maximizes entropy under the additional (independent) constraint of sparse coding.7 SummaryMotivated by Barlow's seminal work, we have presented a theory that includes feature detection ande�cient feature coding. One possible application is a fundamental neuronal task of suspicious coincidencedetection. In addition, we have shown a mechanism for probability regularization for the feature detectors,so that they do not become tuned to events occurring with too small probability. The principle ofmaximum entropy was used to demonstrate the optimality of such neuronal code.AcknowledgementsFruitful discussions with Shimon Edelman, �Omer Artun and other members of the Institute for Brainand Neural Systems at Brown University are greatfully acknowledged. This work was partially supportedby the O�ce of Naval Research.References[1] J. J. Atick. Could information theory provide an ecological theory of sensory processing? Network,3:213{251, 1992.[2] H. B. Barlow. Possible principles underlying the transfomations of sensory messages. In W. Rosen-blith, editor, Sensory Communication, pages 217{234. MIT Press, Cambridge, MA, 1961.[3] H. B. Barlow. Cerebral cortex as model builder. In D. Rose and V. G. Dobson, editors, Models ofthe visual cortex, pages 37{46. Wiley, New York, 1985.[4] H. B. Barlow. Single units and sensation. Perception, 1:371{394, 1989.[5] H. B. Barlow. Unsupervised learning. Neural Computation, 1(3):295{311, 1989.
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