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Abstract. This paper discusses the role of noisy bootstrapping in
the analysis of microarray data. We apply linear discriminant anal-
ysis, according to Fisher’s method, to perform feature selection and
classification, creating a linear model which enables clinicians easier
interpretation of the results. We present the effects of bootstrap-
ping in improvement of the results, and specifically robustifying
classification with an increased number of genes.

The performance of our method is demonstrated on publicly
available datasets, and a comparison with state of the art pub-
lished results is included. In particular, we show the effect of the
number of features (genes) on the result, as well as the effect of
bootstrapping. The results show that our classifier is accurate and
quite competitive to other classifiers, although it is simpler, and
enables considering a larger set of genes in the classification.

INTRODUCTION

Biotechnologies used for profiling gene expression are advancing rapidly. High
density oligonucleotide chips and cDNA microarrays provide us the capabil-
ity to monitor expression levels of many thousands of genes simultaneously,
thus creating large data sets to investigate. Such data exploration can grant
insight and understanding of cellular processes and gene functionality. One
example is the ability to examine gene variations among tumors. Distinguish-
ing between tumor classes using gene expression values can advance research
of cancer classification and assist applying appropriate treatment success-
fully. This presents a challenging task in supervised learning - extremely
high-dimensional data, with only few observations available.

Large dimensionality of the data makes the learning task more complex. It
is especially difficult when the number of training examples is very small. This
is usually the case when dealing with cDNA microarrays, usually containing



several thousands of values in each observation (gene expression values), and
only a few dozens of observations (different tissues). This indicates the use of
basic supervised learning algorithms, since complex learning machines tend
to over-fit such training data.

In this paper, we present a classification mechanism, based on two simple
techniques - noisy bootstrapping and linear discriminant analysis. Our clas-
sifier is robust, does not require any complicated tuning and performs well
on the data sets we use for validation. We show the use of noisy bootstrap
for creating robust multi-gene models, that perform well on test data.

Our model was applied to several highly studied gene expression data
sets, that are investigated by many groups. This grants further validation to
the competitive results shown by our method.

The data sets used in this paper were introduced in [1, 2, 11], and were
later investigated in numerous publications, dealing with classification or
clustering of gene array data and describing various mechanisms attempt-
ing to tackle the difficulties of such data - graph algorithms [12], support
vector machines [10], genetic and evolutionary algorithms. Most of the pub-
lications also use a gene selection procedure, such as principle component
analysis, partial least squares, or other methods to sort the genes based on
the standard deviation of their expression levels. Several groups applied pre-
dictor aggregation techniques on the gene data (AdaBoost [4], boosting with
decision trees [5] and also bagging for improved clustering [6]).

As will be detailed later, our classification method is based on a simpler
mechanism than most of the above citations - linear discriminant analysis.
This enables us to present a linear model, whereas most of the other publica-
tions produce non-linear models. In particular, we show that a linear model
can be used to achieve results that are comparable to the above mentioned
non-linear models, as long as the classifier’s robustness is maintained (through
bootstrapping). Building linear models has the advantage of enabling simple
interpretation of the resulting model, and this is one of the reasons biologists
and clinicians prefer linear models with no variable transformations.

In contrast to other cases of classification of high dimensional data, inter-
pretation of gene array data requires the use of many genes, some of them
surrogate to others. Minimizing the features set may result in concentrating
on a small group of very influential genes. Potentially, these are genes that
have strong correlation to many biological phenotypes, and thus, they are
not very useful when developing pharmaceutic treatments (as they may lead
to many side effects). It is most desirable to find genes that have a local and
focused influence, relevant to the specific cancer type at question. This is the
motivation behind our attempt to find ways to produce good classification re-
sults while using relatively large amounts of genes (instead of looking for the
smallest set of features sufficient for successful classification). This increases
the amount of interesting genes for clinicians to study for drug development
with potentially minimal side effects.

Using large amounts of features on small training data sets leads to the
problem known as ”curse of dimensionality”. Particularly, in a linear model,



this leads to a singular within-class scatter matrix (SW ). The standard solu-
tion to this problem is regularizing and using (SW +λ∗I)−1 (ridge-regression).
This has the flaw of using the same λ for all variables, and thus, this solu-
tion is sub-optimal. The current prevalent remedy is to normalize the data,
so that all variables have the same standard deviation. This may lead to a
greater problem, since small variability may mean irrelevance and the nor-
malization might actually emphasize the noise. We address the problem
by using a variation of the noisy bootstrap [8], which extends the classical
bootstrap by adding parametric noise and increasing the number of training
patterns. This reduces the variance fluctuations caused by a small number
of samples, and enables extracting many parameter models, which perform
well on unseen test data.

We demonstrate the novel modelling technique on several heavily studied
cancer related microarray experiments, and show that state of the art per-
formance (which was previously achieved by a different method for each data
set) can be achieved by our classifier.

METHODS

The general classification framework described in this paper deals with 3
stages in the classification process - noisy bootstrapping, feature selection
and training the classifer.

The input to the process contains two groups of samples - training samples
(including their classifications) and test samples (which also include classi-
fications - in order to evaluate the performance of the classifier). First, we
estimate the noise in the data and extend the training set by re-sampling
with simulated noise, thus creating new perturbed samples. This enables us
to increase the amount of training samples (the effects of this will be shown
later). Next, we perform feature selection. This is done on the extended
training set (the classifier’s construction must not rely on the test samples
which are used to validate it). The final step is to train a classifier on the
extended data set, and to test its performance on the test samples.

The next sections detail the feature selection and classification techniques,
based on Fisher’s linear discriminant analysis (FLDA). Then the bootstrap-
ping method used to extend the training set is described. Results on several
data sets are presented in a following section, also containing a comparison
with previous results.

The notation used in this paper is as follows: gene expression data on p
genes for n observations will be represented in an n × p matrix X = (xi,j),
where xi,j represents the expression level of gene j in observation i. The
expression levels of a single observation will be noted as x, a p×1 vector. The
target values (class memberships) will be noted as yi, where yi ∈ 1, 2, ...,K,
where K is the number of classes. The target classes can represent different
tumor classes, survival indicators or malignant/normal classifications.

In this paper, the only preprocessing done on the data was standardiza-



tion, i.e., for each gene, the gene expression values were normalized so that
their mean across all observations is 0, and the standard deviation is 1.

Feature Selection

The probability of error in a given classification problem is influenced by the
input dimensionality (number of features per sample), and the number of
training examples. If the distribution of the input space (class-conditional
densities) is known, then additional features reduce the error probability.
However, in most cases there are no such assumptions on the structure of the
input space, and the performance of a classifier starts to deteriorate as the
dimensionality grows over a certain point. This ”curse of dimensionality”
is due to the inherent sparseness of a high dimensional input space. This
becomes the main factor affecting the classification performance.

In the case of gene arrays, the dimensionality of the data is very large
and the number of samples is usually small. It is necessary to choose a small
subset of variables that have the largest influence on the target function - the
class membership. Many of the genes show little change in the expression
levels throughout the different observations. We will look for genes that
behave differently in observations from different classes, thus implying that
they are among the genes governing the target values.

Fisher’s Criterion. In 1936, R.A Fisher proposed a criterion to measure
the separation between two groups in a direction w, as the distance between
the means of the two groups, divided by the sum of their scatters [9]. For-
mally, the criterion is defined as J(w) = |µ̃1−µ̃2|2

(s̃1
2+s̃2

2)
, where µ̃k = wtµk (µi is

the mean of group k), and s̃k
2 =

∑
x∈Ck

(wtx − µ̃k)2 is the scatter of group
k in the direction w. Larger values of J(w) represent stronger separations.

In order to employ Fisher’s criterion for the task of gene choosing, we score
each of the genes according to the separation of the classes considering only
that gene (note that this is a 1-dimensional case, so w has no effect). That is,
if Ck (k = 1, 2) represent the two classes, then for each gene j, we calculate
µ̃k = 1

|Ck|
∑

i∈Ck
xi,j , s̃k

2 =
∑

i∈Ck
(xi,j − µk)2 and Score(j) = |µ̃1−µ̃2|2

(s̃1
2+s̃2

2)
.

After scoring the genes, we sort them by descending scores and consider
(for the classification problem) only the first d (1 ≤ d ≤ p). d can be
determined according to testing results (cross-validation, etc.).

This scoring method is suitable for 2-class classification problems. A
similar scoring method can be applied on multi-class problems. Each gene
will be scored according to the ratio of its Between-Classes-Sum-of-Squares to
its Within-Classes-Sum-of-Squares [7]. For each gene j, we calculate Score(j)

as BSS(j)
WSS(j) =

∑
k∈K

∑
i∈Ck

(x̄k,j−x̄·,j)
2∑

k∈K

∑
i∈Ck

(xi,j−x̄k,j)2
. Again, the genes are sorted according

to their scores, and the d genes with the highest scores are considered in the
classification process.



Classification - Fisher’s Linear Discriminant Analysis

After the dimensionality is reduced, a training algorithm may be applied on
the data. Fisher’s criterion implies an optimization problem - finding w such
that J(w) is maximal. This means finding a linear combination of the gene
expression values (w · x), so that the separation is stronger. Note that this
is a multi-dimensional scenario, differently from the 1-dimensional BSS-WSS
score, which considered each gene separately. If we examine the definition
of Fisher’s Criterion - J(w) = |µ̃1−µ̃2|2

(s̃1
2+s̃2

2)
, then we can obtain J(w) as an

explicit function of w. Let us define the scatter matrix for class k as Sk =∑
x∈Ck

(x−µk)(x−µk)t, the Within-Class scatter matrix as SW =
∑2

k=1 Sk

and the Between-Class scatter matrix as SB = (µ1 − µ2)(µ1 − µ2)t. Now we
can express s̃k

2 = wtSkw, s̃1
2 + s̃2

2 = wtSW w and (µ̃1 − µ̃2)2 = wtSBw.
Thus, the Fisher criterion can be expressed as J(w) = wtSBw

wtSW w , and the w

that maximizes J(w) is w? = S−1
W (µ1 − µ2).

In order to use the Fisher criterion for 2-class classification problems we
need to calculate w? from the data in the training set. Having w?, we cal-
culate y = w? · x for each new test sample x. According to the sign of y, we
determine if x belongs to class 1 or class 2.

An extension of Fisher’s Linear Discriminant enables us to perform clas-
sifications in problems where the data is divided between K ≥ 2 classes (this
elaboration is taken from [7]). Let us extend the definitions of SW =

∑K
k=1 Sk

and SB =
∑K

k=1 nk(µ̃k− µ̃)(µ̃k− µ̃)t, where nk is the number of observations
from class Ck, µ̃k is the mean of class Ck, and µ̃ is the mean of all the data.

The extreme values of wtSBw
wtSW w occur at the w which are the eigenvec-

tors of S−1
W SB . There are at most s ≤ min(K − 1, p) non-zero eigenvalues

λ1, λ2, ..., λs, with corresponding linearly independent eigenvectors v1, v2, ...vs.
After the eigenvectors are calculated, a classification of an observation x can
be made. Let dk(x) =

∑s
l=1((x − x̄k) · vl)2 denote the (squared) Euclidean

distance (in terms of the discriminant variables) of x from x̄k (the mean vec-
tor of the k-th class in the training set). The predicted classification of x will
be C(x) = arg mink dk(x), that is the class whose mean vector is closest to x
in the space of the discriminant variables.

In order to deal with cases where the inversion of the matrix SW is inaccu-
rate, we can regularize it, by adding a certain percentile of its eigenvalues to
its diagonal. Formally, if λ1 ≤ λ2 ≤ ... ≤ λs are the eigenvalues of SW , then
we regularize by using Sreg

W = SW +prctile(< λ1, ..., λs >,α) ·I, (0 ≤ α ≤ 1).
We will refer to this regularized version of FLDA as λ-FLDA.

Bootstrapping

The standard bootstrapping process [8], is based on re-sampling of the train-
ing data (with replacement), thus creating several training sets (usually the
same size as the original training set). This enables performing the training
process on these pseudo-sets and creating an ensemble of predictors, whose



results are then aggregated. This is common when dealing with data sets
with a small amount of observations, since the ensemble of classifiers creates
a more robust classification model. Gene array data sets usually contain a
small number of high dimensional observations. This implies that the use
of re-sampling techniques might prove useful in supervised and unsupervised
learning problems with such data (examples can be seen in [4, 5, 6]).

Noisy Bootstrap. Noisy bootstrapping is based on re-sampling the data,
and adding noise to the samples. Noise is simulated according to an esti-
mated parametric model built from the training data. From these perturbed
samples, bootstrap training sets are created (again, same size as the origi-
nal training set) and several classifiers are built and aggregated in order to
complete the training process.

In this paper, we present a variation on the noisy bootstrap. Instead of
creating several training sets (with size equal to the original) and aggregating
several classifiers trained on them, we create one large sample set on which a
single classifier is trained. This seems more appropriate in our case, since the
small original sample size can prevent a robust solution of the LDA process
(due to the singularity of the scatter matrix).

As a parametric model of the noise in each class in the data, we assume
a multivariate Gaussian distribution with mean 0, and a diagonal covariance
matrix. For each class k, we calculate the standard deviations of the genes,
observed in samples with yi = k, and use them as the diagonal of the co-
variance matrix of the assumed distribution for class k. We chose a diagonal
covariance matrix since the small amount of samples prevents proper estima-
tion of the correlation between different genes. Note that only the noise is
estimated by a parametric model, while the samples are taken from the ac-
tual training data. After the model is built, new observations are generated
according to it and a larger data set (which includes the original training
set) is created. We refer to the ratio between the amount of bootstrap ob-
servations and the number of observations in the original training set as the
bootstrap ratio.

RESULTS

We examined our classifier on three data sets, which are described in Table 1.
The results shown here were achieved using a Leave-One-Out cross validation
process (LOOCV). Figure 1 shows the results.

An important observation is clear from the results. As we increase the
bootstrap ratio, it enables us to consider more genes in the training process
and still maintain good classification success ratios. The extension of the data
set makes the training process more robust, enabling it to consider more and
more genes. This ”stairs effect” is visually apparent in the FLDA results
plotted in Figure 1.



Data Set Lymphoma (DLBL) [1] Colon (I2000) [2] Leukemia (ALL-AML) [11]
# of genes 4026 2000 7129

# of samples 62 62 72
classes 3 cancer types 2 classes (40 2 cancer types

(11,9,42) tumor, 22 normal) (47,25)

Table 1: Data sets description - shows the number of features (genes),
the number of samples and their division into different classes in each
of the data sets.

Validation of the Results

The datasets used in this paper were previously examined in numerous stud-
ies. In order to test the performance of our classifier, we compare our results
to several published LOOCV results on these datasets. Table 2 presents the
comparisons (we only noted the optimal results for each data set). Our clas-
sifier, using FLDA and noisy bootstrap, performed well with respect to the
others. On the Lymphoma data, our classifier correctly classified all the sam-
ples. On the colon data, our results were 56 correct classifications out of 62,
equal to the results of [12] and [10]. Others report lower success ratios. On
the Leukemia data, we misclassified only 1 sample out of 72, which is equal
to the results of [12], and a little better than the others.

The Leukemia data set [11] was originally divided to a training set (38
obs.) and a test set (34 obs.). This enables another comparison besides the
LOOCV results. We repeated the experiment with our classifier 10 times,

Ref. Method Percent
correct incorrect unclassified

Lymphoma (DLBL)
- FLDA, Noisy Bootstrap 100.0 0.0 0.0

[5] LogitBoost (all genes) 92.0 8.0 0.0
LogitBoost (50 genes) 98.4 1.6 0.0

Colon (I2000)
- FLDA, Noisy Bootstrap 90.3 9.7 0.0

[4] Clustering (CAST) 88.7 11.3 0.0
Nearest-Neighbor 80.6 19.4 0.0
SVM, linear kernel 77.4 12.9 9.7
SVM, quad. kernel 74.2 14.5 11.3
AdaBoost, 100 iter. 72.6 17.7 9.7

[12] CLICK (all genes) 85.5 9.7 4.8
CLICK (50 genes) 90.3 9.7 0.0

[5] LogitBoost (all genes) 87.1 12.9 0.0
LogitBoost (50 genes) 83.9 16.1 0.0

[10] SVM 90.3 9.7 0.0
[3] MAVE (50,100,200 genes) 83.9 16.1 0.0

Leukemia (ALL-AML)
- FLDA, Noisy Bootstrap 98.6 1.4 0.0

[4] Nearest-Neighbor 91.6 8.4 0.0
SVM, linear kernel 93.0 1.4 5.6
SVM, quad. kernel 94.4 1.4 4.4
AdaBoost, 100 iter. 95.8 2.8 1.4

[12] CLICK (all genes) 90.3 4.2 5.5
CLICK (50 genes) 98.6 1.4 0.0

[5] LogitBoost (all genes) 97.2 2.8 0.0
LogitBoost (50 genes) 95.8 4.2 0.0

Table 2: Other LOOCV results on the data sets, taken from several
publications.



Method Correct Classifications
FLDA + Noisy bootstrap 33.6 ± 0.5 / 34

[11] 29/34
[10] 30-32/34
[13] 32/34
[5] 33/34
[3] 33/34

Table 3: Test set error rates on the ALL-AML data set. Each row
records the amount of test samples correctly classified by the corre-
sponding method (out of the 34 test samples).

using several values for bootstrap ratios and for d. In 6 of the 10 experiments,
perfect classification was achieved (34 from 34), and in the other 4 experi-
ments, 33 out of the 34 test samples were classified correctly. Table 3 presents
the test set error rates from different published experiments compared with
the results of our method. It can be seen that our classifier achieved good
results on this test set as well, and that no other method managed to classify
all 34 test samples correctly.

CONCLUSIONS

Interpretation of microarray data is becoming essential in the search for new
drugs. Supervised learning algorithms can speed up such interpretation and
assist in focusing on specific genes. In this work we presented a model that
relies on a large number of genes for prediction, yet is still interpretable for
clinicians. The motivation behind that is to enable clinical interpretation
of the results, so that a clinician would have a larger collection of potential
genes to choose from (for drug discovery, etc.). Thus, more target-specific
genes that have the desired therapeutic effect can be chosen and the amount
of side effects will be minimized.

Robust classification has to deal with the ”curse of dimensionality”, which
results from prediction of high-dimensional data with few observations. We
tackled this problem by using a linear model (this was also essential for prac-
tical interpretability of the results) and by using the noisy bootstrap, which
addressed the singularity of the scatter matrix in a form that is more local
to each gene (rather than only adding a single constant to the diagonal, as is
done for example in ridge regression). The noisy bootstrap enables extend-
ing the number of chosen genes while maintaining, and in effect improving,
robust classification performance.

Our classification process represents a basic learning machine with rea-
sonable capacity. This prevents over-fitting to the training set, which is
important when dealing with high-dimensional problems with a small num-
ber of samples. Our results show high success ratios, and the robustness of
the process is demonstrated by their stability with respect to the number
of participating genes. We have demonstrated state of the art performance
on the DLBL, I2000 and ALL-AML data sets ([1, 2, 11] respectively). The
three competing models (SVM [10], CLICK [12] and LogitBoost [5]) showed



stronger sensitivity to the number of features used for classification.
Due to its simplicity, we expect our classifier to perform well on other

microarray data sets, and to demonstrate high generalization capabilities.
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Figure 1: results - LOOCV success ratios vs. number of genes considered, using
FLDA and λ-FLDA. The different lines represent different bootstrap ratios. Each
row includes results on a different data set - Lymphoma (DLBL), Colon (I2000)
and Leukemia (ALL-AML). For the λ-FLDA, a value of α = 0.75 was taken.
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