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ABSTRACT 
Breast cancer is currently one of the major causes of death 
for women in the U.S. Mammography is currently the 
most effective method for detection of breast cancer and 
early detection has proven to be an efficient tool to reduce 
the number of deaths. Mammography is the most 
demanding of all clinical imaging applications as it 
requires high contrast, high signal to noise ratio and 
resolution with minimal x-radiation. According to studies 
[16], 10\% to 30\% of women having breast cancer and 
undergoing mammography have negative mammograms, 
i.e. are misdiagnosed. Furthermore, only 20\%-40\% of 
the women who undergo biopsy have cancer. Biopsies are 
expensive, invasive and traumatic to the patient. The high 
rate of false positives motivate research aimed to enhance 
the mammogram images, to provide Computer Aided 
Diagnostics tools that can alert the radiologist to 
potentially malignant regions in the mammograms and to 
develop tools for automated classification of 
mammograms into benign and malignant classes (see for 
example [4, 8]). In this paper we present classification 
results of mammographic images from an early stage of 
malignancy using feature vectors based on wavelet 
packets, PCA and the Approximate Karhunen Loeve 
transform. We employ an innovative method that provides 
classification results better than the average performance 
of radiologists. The method was tested using database of 
mammograms from an early stage of malignancy. Correct 
detection is harder and more important at an early stage of 
malignancy. 
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Introduction 
Wavelet and wavelet packet analyses found to provide 
orthogonal transformations with high value of TCG 
(Transform Coding Gain). While other transforms (e.g. 
the Discrete Cosine Transform) may achieve a better 
compression ratio, they do not have the adaptive property 
of the wavelet transform. In other transforms, the rule of 
zeroing small coefficients is applied evenly and globally 
over all detail coefficients while the wavelet transform is 

adaptive in this respect. It allows preserving small 
coefficients that may account for 'important' minute 
features and may be useful for feature extraction and 
classification. In this work, we use three transformations 
to derive feature vectors for the classification of 
mammographic images. 
  
Best Basis and the Joint Best Basis 
The first set of feature vectors is based on the wavelet 
packet analysis. Compared to wavelet analysis, wavelet 
packet analysis provides a finer partition of the frequency 
space. This results in a richer family of basis functions 
(with respect to a certain wavelet function) offering a 
larger number of bases, some of them orthogonal. The 
family of basis functions can be searched for a 'best basis' 
with regard to some information cost function. We will 
use entropy as the cost function, as it will provide a good 
measure of the compression property of the basis. A fast 
algorithm developed by Coifman and Wickerhauser [14] 
searches for the best basis with computational complexity 
of ON(logN) steps where N is the length of the data. This 
basis has the smallest reconstruction error among all 
possible bases in the family of basis functions when the 
signal is reconstructed from a subset of its wavelet packet 
coefficients (a subset with the largest magnitude). 
  
The concept of best basis can be extended to a family of 
signals or vectors. Given an ensemble of vectors, a 
wavelet packet analysis can be applied to the ensemble. 
The wavelet packet coefficients can be used to construct a 
wavelet packet table from which one may derive the  Joint 
Best Basis [14]. This basis best represents the ensemble 
(with respect to some information cost function) among 
all possible bases offered in the joint packet table. 
 
 
 Principal Component Analysis (PCA) 
Also known as the Karhunen-Loeve transform (KLT), is 
the best-known tool for multivariate analysis. It provides 
an orthogonal transformation in which the original set of 
observations is transformed to a new set of de-correlated 
coordinates [5]. This results in a new distribution of the 
population's variance, where most of the variance is 
concentrated in a fewer number of coordinates (called the 
principal components). This reduction of dimensionality 
is useful for compression and in certain cases some 



Mammographic Data Base properties or features of the population may be associated 
with a smaller number of coordinates. In the case of 
multivariate normal distribution, PCA will provide the 
highest TCG (Transform Coding Gain) among all 
orthogonal transformations. 

The method of classification used in this work was 
applied to a set of processed mammograms from a well-
known mammographic database from Nijmegen, the 
Netherlands, which can be found in the Digital Data Base 
for Screening Mammography (DDSM) of the University 
of South Florida Digital Mammography Home Page. The 
mammograms we use consist of 105 ROI's (regions of 
interest) contributed by the University of Bologna, Italy to 
Dr. Nathan Intrator from Brown University. Each of the 
105 ROI's, is of size 128x128 pixels derived from screen 
film mammograms with a pixel size of 0.1 mm and a 12-
bit gray scale and is large enough to contain a few micro 
calcifications or the majority of micro-calcifications in a 
cluster. The mammographic images contain 29 benign 
and 76 malignant regions. The mammograms are from an 
early stage and come from general screening of women 
population and not from a population with pathological 
indicators (e.g. pain, lump in breast, asymmetry in 
breasts). 

  
The third transformation used in this work is the 
Approximate Karhunen Loeve Transform [14], which 
combines the Joint Best Basis, and the PCA transforms. 
Given a vector population X={X1, X2, XN}, first its Joint 
Best Basis is computed, and then the coefficients of the 
vector population are derived in the Joint Best Basis. A 
subset of these coefficients, corresponding to the 
coordinates with the largest variance values, is truncated 
from the complete set of coefficients and PCA is applied 
to the truncated subset of coefficients to further achieve 
dimensionality reduction. The Approximate KLT 
provides a basis that may preserve features of interest 
(due to the Joint Best Basis), while achieving a good 
compression ratio (due to the application of PCA to the 
coefficients in the Joint Best Basis).   
 Indicators for Breast Cancer  
Feature Extraction and Classification The two main indicators associated with breast cancer are 

micro calcification clusters and masses. Micro 
calcifications appear in mammograms as tiny areas (with 
a size of a few pixels in digitized images or about .2mm 
in diameter) that are slightly brighter than the 
background. Micro calcifications clusters are not always 
easy to detect. Radiologists observe them in 30%-50% of 
all malignant mammograms, but in pathological 
examination, 80% of breast carcinomas contain micro 
calcifications [2]. 

In mammographic images, some characteristics such as 
sharpness, regularity of the border lines of the 
calcification points, etc., are important factors in 
discriminating between benign and malignant tissues. 
These characteristics are local both in space and 
frequency, and the conventional Fourier analysis 
techniques are not useful in detecting them. Extracting the 
relevant features from the class of images is the first and 
the crucial step in the classification problem. Images of 
128x128 pixels cannot be analyzed directly due to their 
high dimensionality. We will provide a method for image 
representation that will be useful for feature extraction 
and classification. As feature vectors, we use the 
accumulated variance of an ensemble of vectors 
associated with a mammographic image. 

 
  
Feature vectors based on shift invariant 
statistics  
Since the number of mammograms is not large, there is 
no point in analyzing an image as a whole, e.g. with 
Principal Component Analysis (PCA) or wavelet packet 
analysis, as the high dimensional space for such 
representation is extremely sparse. Rather, we would 
represent each mammographic image by a collection of 
segments sampled with overlapping regions to capture the 
shift invariant statistics of the image. 

  
Formally, given an ensemble of vectors V={v1, v2, vN}, 
and assuming the average of the vector ensemble is zero, 
the variance of the pth coordinate is given by: 
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Most of the background structure in both classes (benign 
and malignant) is similar, and small segments of size 8x8 
pixels are sufficiently large to contain differences relevant 
to classification points (differences between various 
characteristics of calcification points such as shape, 
irregularity, etc.). 

where the sum is over the pth coordinate of the vector 
population. The accumulated variance, AccVar, is a vector 
whose kth entry, AccVar(k), is given by: 
 
 

  
We experimented with 3 methods of deriving feature 
vectors for the mammographic images. In the first, a 
common Joint Best Basis was derived from a very large 
number of segments sampled from a training subset of 
benign and malignant mammograms. Then the mean and 
variance of the wavelet coefficients of the segment 
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METHOD 
 



Classification Framework for 
Mammographic Images 

samples are computed for each class (benign and 
malignant). To classify a test image we first compute the 
wavelet coefficients of the collection of segments 
sampled from the image. We then classify each segment 
based on the distance (normalized by the variance) of its 
wavelet coefficients from the mean of each class. The 
image is classified to be benign if the majority of its 
segments are classified as benign. 

The classification framework involves two steps. The first 
is to find a transformation that provides coefficients 
(feature vectors) that can be used to discriminate between 
benign and malignant images. The second step is applying 
a classifier to the extracted feature vectors. We 
experimented with both Fisher's Linear Discriminant 
Analysis (LDA) and K-nn (K-Nearest Neighborhood, the 
multivariate version). 

  
In the second method, two Joint Best Bases were 
computed, one derived from a large number of segments 
sampled from a training subset of benign images and the 
other from a training subset of malignant images. To 
classify a test image, we first compute the wavelet 
coefficients of its segments in each base, and then classify 
each segment based on the distance of its wavelet 
coefficients in each base from the mean of that class. The 
image is classified to be benign if the majority of its 
segments are classified as benign. 

 
  
Evaluation of Feature Vectors 
To evaluate the performance of each feature vector used 
for classification, we applied the Jackknife method [16]. 
We created 50 sets of training and test images, where we 
use 70% of the 29 benign and 76 malignant mammograms 
for training and the rest for testing the classification 
performance. The results of the 50 experiments was 
averaged and presented as the average error of 
misclassification, the sensitivity, and the specificity of the 
classification. 

  
In the third method, each image was represented 
individually by a large collection of overlapping 
segments. The accumulated variance of the segment 
population in a certain base is a 'signature' of that image. 
In this method the accumulated variance in various bases 
serves as a feature vector in the classification phase. 
Figure 1 is the plot of the accumulated variance in 
different bases of the segment population sampled from 
one of the benign images. 

To compare the performance of the various feature 
vectors, we compare their average results. 
 
  
Experimental Results 
 
Effects of image enhancement  

 

Image enhancement is the first step we apply to improve 
the performance of classification. Figure 2 shows an 
unprocessed and enhanced mammogram along with their 
frequency spectrum. Note that the strong white 
background structure is attenuated in the enhanced 
version, emphasizing the details. In the frequency domain, 
the very low frequency components in the unprocessed 
image are dominant. The low frequency components 
account for the background structure. The high frequency 
components account for the details including the 
characteristics of the calcification points (e.g. intensity, 
sharpness, smoothness or irregularity in the border line of 
the calcification points) and borderlines of masses. The 
enhancement of the image distributes its energy more 
evenly along the frequency spectrum. 
The effect of image enhancement can also be seen in the 
histogram of pixels' intensities. Figure 3 is a histogram 
plot of the third benign and malignant mammograms, 
both for the unprocessed and the enhanced images. The 
enhancement has a normalization effect on the 
distribution of the pixel intensities of the image. 

Figure 1: Accumulated variance of a collection of 
segments sampled from a benign mammogram, in 
different bases 

  
Image Enhancement as a Preprocessing Step  

   
To enhance features of interest and reduce the background 
structure, we apply a variant of local averaging 
normalization. We first remove the DC component at the 
image level, and then apply two local neighborhood 
normalizations to the image. 
  



 
Figure 2: Top row: unprocessed and enhanced 
mammograms. Bottom row: their respective spectrum 

 
Figure 3: Top row from left: unprocessed benign, 
enhanced benign, unprocessed malignant, enhanced 
malignant. Bottom: their respective intensity 
histogram 
Classification results 
Feature vectors based on the Common Joint best basis and 
a set of two Joint Best Bases did not provide useful results 
for classification. The reason for that may be the great 
variance in the location (in the spatial-frequency space), 
of the discriminating features. 
  
The third method, in which each image was represented 
individually by a collection of overlapping segments 
sampled from the image, provided the best results. The 
feature vectors for each image is the accumulated 
variance of the wavelet coefficients of the collection in 
the bases corresponding to PCA, the Joint Best Basis and 
the Approximate KLT transforms. 
  
We experimented with various wavelets, segment size for 
both the unprocessed and processed images. The best 
results were achieved using feature vectors based on the 
db20 wavelet. With this wavelet we achieved a sensitivity 

of 88.1%, specificity of 41.1% and an average error of 
24.2%. 
  
The next table compares the sensitivity and specificity of 
our method to the average performance of radiologists 
and figure 4 provides the results of 50 experiments in 
graphical form. 
 
 Sensitivity Specificity 
Our results 88 41 
Average performance of 
radiologists 

80 20 

 

 
Figure 4: Classification results of  50 experiments. 
From top: average error, sensitivity and specificity 

We emphasize that the mammograms used in these 
experiments are from a general screening of women 
population. Therefore they are harder images (in terms of 
discrimination) when compared to mammograms taken by 
women due to some pathological indications (e.g. pain, 
lumps in the breast, asymmetry in the breasts). 
  
Summary 
We have employed an innovative method to classify 
mammographic images from an early stage of 
malignancy. The method is based on enhancing each 
image and representing it by an ensemble of segments 
that capture its shift invariant statistics. The ensemble is 
used to extract feature vectors based on coefficients in 
various bases: the Approximate KLT basis, the KLT basis 
and the Joint Best Basis. When combined with the knn 
classifier we achieved results that are better than the 
average performance of radiologists. 
  
We experimented with various wavelets and found the 
db20 to provide the best results, compatible with previous 
research that suggested this filter is best for detecting 
calcification points [16]. 
  
The database used in this study was taken from a general 
population of women. Also the tumors in the malignant 
cases are very small and therefore very difficult to detect. 



Radiologists' performance at this stage of the disease is 
significantly lower than the performance of more 
advanced stages. Detection of breast cancer at early stage 
enables treatment which is much more effective, less 
invasive and inexpensive. Having achieved encouraging 
classification results, our method can provide a second 
opinion to radiologists in the diagnosis process. 
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