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Abstract

Partial volume effects are often experienced in diffusion-weighted MRI of biologic tissue. This is when the signal attenuation reflects a
mixture of diffusion processes, originating from different tissue compartments, residing in the same voxel. Decomposing the mixture requires
elaborated models that account for multiple compartments, yet the fitting problem for those models is usually ill posed. We suggest a novel
approach for stabilizing the fitting problem of the multiple-tensors model by a variational framework that adds biologically oriented
assumption of neighborhood alignments. The framework is designed to address fiber ambiguity caused by a number of neuronal fiber
compartments residing in the same voxel. The method requires diffusion data acquired by common, clinically feasible MRI sequences, and is
able to derive familiar tensor quantities for each compartment. Neighborhood alignment is performed by adding piece-wise smooth
regularization constraints to an energy function. Minimization with the gradient descent method produces a set of diffusion-reaction partial
differential equations that describe a tensor-preserving flow towards a best approximation of the data while maintaining the constraints. We
analyze fiber compartment separation capabilities on a synthetic model of crossing fibers and on brain areas known to have crossing fibers.
We compare the results with diffusion tensor imaging analysis and discuss applications for the framework.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction fully described by a single, second-order, symmetric and
positive definite diffusion tensor, D; and related to the
Diffusion-weighted MRI (DW-MRI) measures the appar- normalized attenuation signal, £, by the simple relation [2]
ent water molecules’ self-diffusion along a direction

determined by the applied gradient [1]. To date, diffusion E(qr) = Alqx) - exp(—bq,{Dqk). (1)

tensor imaging (DTI) is the most popular clinical and 4(0)

research tool for analyzing diffusion-weighted images Here A(gy) is a DWI for the kth applied diffusion gradient
(DWIs), thanks to its ability to segment Ofganlzed white direction ¢;. The notation A(0) stands for the nonweighted
maﬁer bundles [2]. The DTI model, however, is ngt accurate image and b is a constant reflecting the experimental
in areas of complex architecture [3], where partial volume diffusion weighting [4]. A second-order symmetric tensor
effects occur. The model is based on a solution for the has a spectral decomposition

diffusion equations that sets boundary conditions of a single
nonrestricted and homogenous compartment. Molecule

displacement is then expected to be normally distributed,
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D= ; 23Ul (U, (2)

for three eigenvectors U, and three positive eigenvalues 1,.
The relation between the eigenvalues determines the
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diffusion anisotropy, using measures such as fractional
anisotropy (FA) [5]:

3((n = (D)2 — (D)) +(is — (D))?)

FA =
2005 + 15+ 23)

) (3)

where (D)=(A;+A>+13)/3. It was experimentally shown that
diffusion in voxels containing homogeneous white matter is
best fitted with cigar-shaped ellipsoids (1,>>4,=43) [3].
Such tensors have high FA, whereas other brain tissue,
namely, gray matter and cerebrospinal fluid (CSF), is best
fitted with isotropic, low FA tensors [3]. Moreover, the
principal eigenvectors of cigar-shaped tensors in white
matter voxels were found to be aligned with the underlying
fiber orientation [3]. This is the basis for tractography, which
use the eigenvector orientation field in order to infer
connectivity between brain areas [6].

Partial volume effects in DWIs occur where attenuation
within a voxel originates from different compartments with
different diffusion profiles. Specifically for brain images,
partial volume appears where different tissue types reside in
the same voxel [7]. Setting homogeneous compartment
boundary conditions for a partial volume voxel results in a
tensor solution that models a mixture of all compartments
[8]. For the case where neuronal fiber tissue has partial
volume with another tissue, the tensor often deviates from
the typical cigar shape to have an oblate shape (11=4,>>15),
or even a spherical shape (A;=A,=13) [8,9]. Fiber
ambiguity is when the neuronal fiber tissue shares the
voxel with other neuronal fiber tissues. The fitted tensor to a
fiber ambiguous voxel has principal orientation not
necessarily aligned with any fiber orientation, and a low
FA value [7]. This makes it harder to segment the voxel as a
white matter voxel and creates a deviation in tracts obtained
by tractography [6].

Extensive research has been undertaken in the past few
years to resolve partial volume effects and specifically to
solve the fiber ambiguity problem. Some approaches are
model based, with diffusion models that account for multiple
compartments (e.g., Refs. [8,10]). Other approaches are
model free and concentrate on extracting the angular
structure of the diffusion distribution (e.g., Refs. [11-14]).
Model-free methods enhance the directionality of the
diffusion profile and then detect peaks in the predicted
probability density function (PDF) that describes the
enhanced profile. Fiber orientations are then expected to
be parallel to the found peaks. In the process of
directionality enhancement, often the shape of the predicted
compartment is changed, and therefore other properties of
fiber compartments (such as anisotropy, width or volume)
are harder to find. All model-based approaches share the
property that the more sophisticated the model, the more
free parameters it has to assess and the more difficult the
inverse problem solution becomes. A comprehensive review
and comparison of both model-based and model-free

approaches can be found in Ref. [15]. All methods require
an increasing number of applied gradient orientations and
increasing sensitivity in terms of higher 5 values. The
method proposed here suggests, and demonstrates, that the
fitting problem of model-based methods can be stabilized by
adding neighborhood alignment constraints. The framework
we offer is applied on the multiple-tensors model, which is a
straightforward generalization of the DTI model and is the
simplest model that accounts for voxels comprising a
number of different compartments. As such, data acquisition
is similar to clinically used sequences, does not require high
b values and enhances the compartment separation abilities
of the fitting.

In the next section, we will elaborate on the theoretical
aspects of variational regularization along with a detailed
description of the framework and its implementation for the
chosen diffusion model. In Section 3, we will describe the
experimental setup, chosen parameters and visualization
techniques used. In Section 4, we will present compartment
separation results for a synthetic data and for human data.
We will also demonstrate how to use the outcome of our
method in order to perform tractography. We will further
discuss our findings in Section 5, concentrating on what our
framework has achieved for different brain tissue types and
its value for future applications. We conclude by summariz-
ing our findings.

2. Theory

Variational methods in the context of DW-MRI were
mainly proposed as a denoising mechanism. A variational
framework solves inverse (ill-posed) problems by defining a
functional over the space of states, e.g., possible approxima-
tions for the data. Minimizing the functional by a gradient
descent method characterizes the best state as a solution to
some partial differential equations (PDEs). These PDEs
describe a “flow” of states towards the best one [16]. The
functionals share the general form:

F(I) = / (aM(I, 1) + R(V1))dQ, )
Q

for some initial state I, out of all states’ domain Q. The
minimum of F is achieved with an optimal state /. The
functional consists of two terms: the data attachment term,
governed by some function M, and the regularization term,
governed by some function R. The relative effect of these
terms is defined by the scalar o. The PDEs are defined by
solving the Euler—Lagrange equations for the functional.
Variational methods were used for DWI denoising [17,18],
as a denoising operator for tensor fields [19], and for
simultaneous fitting and smoothing of tensor fields [20—22].
These methods differ mainly by the functions R and M, and
by different approaches to preserve the tensor attributes
during the flow. A comparison between variational methods



O. Pasternak et al. / Magnetic Resonance Imaging 26 (2008) 1133—1144 1135

can be found in Ref. [23]. The framework we propose here
differs from the methods mentioned above in its purpose.
We apply regularization as a way to allow separation of
diffusion compartments rather than smoothing the tensor
field. Nevertheless, smoothing is a welcomed by-product
of the method and is obtained simultaneously with the
model fitting. A variational framework for fiber compart-
ment separation was also proposed in Ref. [24], although
there the fitting was done using pre-chosen tensor basis,
and the smoothing was done by the variation of the
basis coefficients.

2.1. Multiple diffusion tensors model

Since the DTI model is not sufficient for voxels with
partial volume effects, we chose the multiple diffusion
tensors (MDT) model [8,25], which is the simplest model
that accounts for voxel heterogeneity. The MDT model
assumes a discrete number of homogeneous regions
comprising each voxel. The compartments are assumed to
have slow exchange, i.e., separated by a distance much
greater than the diffusion mixing length. It is further assumed
that molecule displacement within each region has a
Gaussian distribution, i.e., can be fully described by a
tensor. Under those assumptions the diffusion profile of any
compartment is independent of diffusion profiles of other
compartments, and each compartment holds DTI assump-
tions. Therefore, MDT models the signal attenuation with
finite mixture of #» components:

E(vav%c) = Z fiEi(Dian)v (5)
=1

with each component described as

Ei(Di, qx) = exp(—bg{ Diqy). (6)

where f; is the relative weight of E,, the ith component in the
mixture. To ensure that the volume fractions are properly
bounded (f;<[0,1]) and normalized (},;f; = 1), the weights
are calculated through the soft-max transform
i

filn) =, (7)

> e

j=1

where n,€R. With the use of Egs. (2) and (7), the modeled
signal can take the form:

E(T’], j‘a U7 (Jk)
n 3
= filmewp (—bq,f (Z ua),-(Ua),-(Ua)?)qk), (8)

where (4,); (U,)); is the ath eigenvalue (eigenvector) of the
ith diffusion tensor. The inverse problem of MDT fitting is
the attempt to find a best multiple-tensors field with
matching weights for a given measured signal, E (qx)-

Using the least mean square distance to replace M in Eq. (4),
the fitting is equivalent to finding the minimum of:

d
Swr(D.) = [ - (ED.f00) - Ba)a2, O
o) k=1

for d different applied gradient directions, and £ is the image
domain with 3D axis (x, , z). The minimization of Eq. (9) is
ill posed, especially in noisy setup, where the summation of
different ellipsoids often results in similar spherical profiles
[9]. Previous attempts to stabilize the fitting process used
geometric constraints such as fixed eigenvalues and multiple
restarts [25], or extraction of the fiber orientation with the
assumption of two cylindrical symmetric tensors that lie in
the same plane [26].

2.2. Multiple diffusion tensors variational framework

The variational-based regularization stabilizes the ill-
posed inverse problem of multiple-tensor fitting by adding a
smoothness assumption. This assumption follows known
facts regarding the diffusion properties of biological samples.
These samples are expected, from physiological considera-
tions, to vary in a piece-wise smooth fashion. Therefore,
adding a regularization term that pursues piece-wise tensor
smoothness, i.e., an edge preserving regularization, should
direct the fitting process to the desired result. The framework
was previously sketched in Ref. [23] and is fully described
next. We apply the regularization via the minimization of the
multiple diffusion tensor variational (MDTYV) functional:

SMDTV(D;f) = OCSMDT + /R(VD)d.Q (10)
Q

We prefer to achieve tensor smoothness implicitly by
separate regularization of the tensor spectrally decomposed
elements, via the minimization of

Smorv (1, 4, U) = aSmpr + /R(VU, Vi, Vn)dQ, (11)
Q

with

R(VU, V2 V) = >~ (B (190,

i=1

+ B (19 (O),1)
3

53> 6319 Gl (12)
a=1

and flow functions ¢, chosen to be ¢,(s) = /1 + /K2,
which lead to anisotropic diffusion-like flow while preser-

ving discontinuities [16]. The scalars fB;, B, B; set the
relative influence for the regularization of each element.
The minimum of Eq. (11) solves the Euler—Lagrange
equations and can be found by the gradient descent scheme
[see Egs. (A.1)—(A.4) in Appendix A], which defines a flow
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from an initial selection of tensor field parameters (U)o,
(A)pe=0p> and (#)[=oj, until convergence. The minimization is
expected to pursue smoothness of fiber orientations (since
only the principal orientation U, is smoothed), smoothness
of fiber shape (by smoothing all eigenvalues) and smooth-
ness of volume fractions over neighboring voxels. Smooth-
ing the spectral elements reduces the problem of tensor flows
to scalars and vectors flows. For vector gradient metric, we

01 oI | oI oI o oI dl
dx i)x+(7y (')y+(')z Jdz

along with a finite difference scheme to approximate partial
derivatives [see Egs. (B.1)—(B.3) in Appendix B]. The
requirement to preserve tensor attributes during the flow is
obtained with an orthonormal preserving flow [19], and the
explicit eigenvalue access provides a mechanism for control
and tuning of biologically driven constraints originating
from the expected shape of the fibers. We use this
mechanism to regularize the principal eigenvector of the
tensors in order to reflect the continuous nature of fibers
along neighboring voxels and to enforce anisotropy and
positiveness for the fiber compartments.

use the Frobenius norm ||VI|| =

2.3. Preserving the orthonormal basis

The PDE flow for the principal eigenvectors [see Eq. (A.2)
in Appendix A] is initialized with an orthonormal basis, but
does not explicitly preserve orthonormality. Changing the
principal eigenvector alone, as dictated by the explicit flow,
causes loss of orthogonality in relation to the remaining
unchanged eigenvectors. The vectors are no longer eigenbasis,
spanning the spectral decomposition of a tensor, unless
matching changes are performed on the second and third
eigenvectors. Preserving the orthonormal basis also demands
that the vectors keep their unit length. To resolve both eigen-
vectors alignment and unit length preservation, we regularize
the eigenvectors by simultaneously rotating each set [19]: For
each vector basis (U),, a rotation mechanic momentum vector
w; is defined as the cross-product of the principal vector with
the principal vector change in the explicit flow:

J (Ul)i

o; = (U)x =2 H (13)

An infinitesimal rotation matrix, I}, corresponding to w;,
is then computed with the Rodrigues’ formula. The flow is
defined by the matrix valued PDE:

((Ua)i) [t+dt] Fi((Ua)i)[,]- (14)

Applying the flow in Eq. (14) on an initial state of tensors
preserves the orthonormal basis during all iterations.

2.4. Eigenvalues monitoring

Controlling the range of eigenvalues is not dictated by the
PDE flow derived from Eq. (11), but is desired for diffusion
tensor regularization in order to further restrict the minimiza-
tion into the range of the expected solution. Both eigenvalue
monitoring and orthonormality preserving could be added as

constraints to the energy function, but this would result in
“soft” constraints that are not guaranteed to hold in all
iterations. We therefore chose to explicitly monitor these
changes. The tensor spectral decomposition provides easy
access to eigenvalue manipulation by monitoring the flow in
Eq. (A.1) and projecting improper values to the desired range.
Eigenvalues determine the shape of the modeled compartment,
so we assume that any fiber compartment will follow the
cylindrical shape of fibers as an axially symmetric tensor with
Ax=43, and relatively high FA value. Restricting axially
symmetric tensors eliminates one parameter for estimation
(the smallest eigenvalue) and dictates that the shape of the
tensor is determined by the principal eigenvector and two
eigenvalues. The remaining eigenvectors can lie anywhere on
the plane perpendicular to the principal eigenvector. Therefore,
assigning them with an orientation or enforcing smoothness
constraints is redundant. For axially symmetric tensors, the
ratio A,=1, can be determined from a given FA value, FA, as:

b H

where H is defined as:

) FA
H="2_-1--—-"“ (16)

D) V3 - 2F7

The notation (D) is reduced to (D)=A,+21,. The
anisotropic threshold is maintained after each iteration by
projecting (42)>(41);H/(3-2H) to (A2)~(A1)i1/(3-2H) for
any tensor component i and a threshold FA = minFA.
Eigenvalues are also restricted to a range [minA>0, maxA].
Typical values chosen for thresholds are: minFA=0.3,
mind=0.01 mm?/s, max)=4 mm?>/s. These values are outside
the range of expected FA and eigenvalues in white matter [3].

3. Methods

The MDTV framework was implemented in a MATLAB
(The MathWorks, Inc., Natick, MA, USA) environment. We
have previously demonstrated the separation effect on a
phantom of crossing fibers [23], and here we will further
analyze the separation capabilities on synthetic datasets
created by computer simulations and on a human dataset of a
healthy volunteer. In this section, we elaborate on the details
of the datasets, selected parameters for the fitting process,
and visualization techniques.

3.1. Synthetic data setup

The synthetic datasets consisted of three consecutive
slices simulating two fibers crossing. Each slice was 9x9
pixels and the fibers crossed at the center 3x3x3 cube. The
setup of the synthetic datasets varied by the angle between
the two fibers, by the number of DWI images simulating
different applied gradient orientations and by the signal-to-
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noise ratio (SNR). The DWIs were assigned with gradient
directions chosen by a simulation of symmetric repulsion
forces acting on particles spread over the unit sphere. The
non-DW image was scaled to 1 at the crossing area.
The DWI attenuation was manufactured by substituting the
free parameters in Eq. (5) with the following parameters:
b=1000 s/mm?, (1,)=1.5x10"* mm?/s, (1,)=(13)=0.4x10">
mm?/s, (U)=eye(3), (U),=I"(U), for a chosen rotation angle
and f;=f>=0.5. Rectified white noise was added to the syn-
thesized signal using the following noise simulation:

DWloisy = \/ (DWI + 71)* 472 , (17)
where r; and r, are picked from a normal distribution N(0,0).
Different datasets were produced with ranging o values
corresponding to the SNR range of 5 to 40. The MDTV
framework, MDT fitting and DTI fitting were applied on each
dataset and the results were compared. A dataset was given a
fitting score for a given method by comparing the fiber
orientations found in the nine fiber ambiguous voxels of the
middle slice with the expected fiber orientation. The orienta-
tion fitting score for each voxel was the mean dot product of the
found orientations vs. the expected orientations (equal to 1 if
the found orientations were identical to the expected and lower
than 1 if otherwise). The score for a dataset was the mean score
for the nine voxels. Each experiment consisted of 300 datasets,
all with same angle between the fibers, the same number of
simulated applied gradients and the same SNR. A score for an
experiment was the mean score for the 300 datasets. Two
methods applied on the same experiment were compared by
counting the number of times one method produced a higher
fitting score than the other method, divided by 300.

3.2. Human data setup

MR imaging was performed on a 3-T (GE) MRI system.
The diffusion experiments were performed using a DW-EPI
sequence with the following parameters: 4/0=31/25 ms. The
FOV was 22 cm, matrix size was 128 %128 and slice thickness
was 1.7 mm. Gradient strength was 4 G/cm, resulting in a b
value of 1000 s/mm? measured in 33 noncollinear gradient
directions with four repetitions and 72 axial slices. To avoid
intrinsic pulsative brain motion artifact, the sequence was
gated to the cardiac cycle with effective TR of 30 R-R
intervals and TE of 88 ms. The DWIs were corrected for
motion using SPM2 software (UCL, London, UK). Gradient
orientations were compensated to account for any rotation
applied to the DWIs. The local institutional review board
committee approved the MRI protocol and informed consent
was obtained from subjects.

3.3. Data fitting and parameters

The MDTV and MDT data fitting were achieved by
minimization of the functional Eq. (11). We restricted 3;=[,=
B;=0 for MDT fitting, which reduced the functional to Eq. (9).
DTI results were acquired by least mean squares linear

approximation. Initial guesses for the minimization were
generated in the following way: DTI results were calculated
and the fitting error in each voxel was determined as the least
mean square distance from the signal. The resulting tensors
were spectrally decomposed, and the eigenvalues were
replaced with chosen anisotropic eigenvalues, e.g., [1.5 0.4
0.4]. The new tensors were duplicated to create two identical
components, following which a random rotation was applied
on each tensor. The rotation was performed using Eq. (14)
with a momentum (d#) proportional to the DTI fitting error.
The relative normalized weights, 1, and 7,, were initialized
to 0, i.e., f/1=~=0.5. The fitting was terminated after 400
iterations. Implementation with MATLAB was chosen for
simplicity yet with the price of highly inefficient and time-
consuming methods (5 min per iteration for the human
dataset on an AMD opteron-250 desktop). The values of the
K parameters tune the anisotropic behavior of the ¢
functions. They determine the probability for a given value
difference to be treated as an edge to be preserved. Setting the
parameters is influenced by the expected range of 1, U and 4,
and by an observer perception of important edges. For the
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Fig. 1. Synthetic data. The rate of better MDTV results than MDT (A) results
for varying experiments and SNR shows that, for most experiments, MDTV
provided better results than MDT (>0.5) and that as SNR decreased the rate
tended to increase. The fitting error for MDTV experiments (B) shows that
the score depended on the experimental conditions.
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type of data we expect in brain imaging, we find the following
parameters satisfying: K,=0.25, K,=0.1, K5=0.1. The relative
regularization weights were o=1 and ,=0.02, 3,=0.05, ;=
0.05. The ratio between o and 8 determines the amount of
smoothing that will be performed and again is influenced by
the perception of important edges. The ratio between the
different B values determines the relative speed of each
parameter convergence; optimized selection reduces the total
convergence time.

3.4. Visualization

Principal vector fields are presented as a color-coded
image, with the principal vector components denoted as red,
green and blue values attenuated by FA [27]. Ellipsoid
visualization is used for multiple-tensor fields: each tensor is
assigned an ellipsoid 3D object, colored according to the color-
code scheme. Ellipsoid size is scaled by the relative weight.

The tractography images were produced using an in-
house program, and the resulting tracts were visualized
using MATLAB’s “streamline” function. For DTI, the tracts

A Trace(D)
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were produced by brute-force FACT method [28], follow-
ing the principal orientation starting from each voxel in the
brain. The tracking advances in both symmetric directions,
with subvoxel steps (0.1xvoxel size), and was terminated at
voxels with FA lower than a threshold (typically 0.25).
Each step is made in the direction indicated by the vector
representing the current voxel. Finally, a set of regions of
interest (ROIs) are manually selected according to anato-
mical landmarks. The ROI set restricts areas where the
fibers have to pass or are not allowed to pass. Only tracts
that agree with the set of constraints are plotted. A simple
variation of the tractography technique described above
was used in order to plot tracts out of the MDTV vector
field: each voxel is represented by up to two vectors,
providing two possible tracts from the same voxel. We then
chose the vector creating the smallest angle with the
previously found tract. In this process, only vectors
representing tensors with a relative weight higher than
0.3 were used. The tracking stops when arriving at a voxel
where both tensors have FA lower than a threshold (this
threshold has to be higher than minFA4).

B Color code

ey
PRS-

e

.
s

Fig. 2. Coronal slice. The ellipsoid visualization of the MDTYV resultant tensor field (C) delineated white matter tracts, including intersections, and showed a
difference between CSF and brain tissue. The pons and corpus callosum ROIs are marked with rectangles. Image of Trace(D) (A) and color-coded image (B) for

the DTI analysis are shown as anatomical references.
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4. Results

We examined the framework abilities in a synthetic setup
with varying parameters. We compared MDTV results for
the synthetic experiment with MDT results for the same
experiments. We concluded by applying the MDTV frame-
work to the human brain dataset, with attention focused on
brain areas known to have crossing fibers.

4.1. Synthetic data

The synthetic data simulations investigated MDT and
MDTV fitting for SNR varying datasets, for a varying
number of applied gradient orientations and for varying
angles between two simulated fibers. We used the notation
C(d,0) for an experiment with d diffusion directions and
fibers aligned with an angle 0. We compared the fitting
results for the experiments C(99,90), C(33,90) and
C(33,45). Fig. 1A plots the rate of better MDTV results for
varying SNR values as calculated for the different experi-
ments. Most entries were larger than 0.5, which means that in
most cases MDTV provided better fitting orientations than
MDT. The plot further showed that as SNR decreased the
rate of better MDTV results increased. Fig. 1B shows the
fitting score for the different MDTV experiments: The trends
of the plot show that the score increased if the gradient
number increased, if SNR increased and if the angle got
closer to 90°. The synthetic data results suggest that as the
conditions of the experiment got worse, i.e., noisier, with less
applied gradient directions or with closer aligned fibers, the
performance of MDTV was reduced, but at the same time,
the percentage of better MDTV results than MDT was

A DTI

increased. A possible explanation is that MDT fitting is more
sensitive to the design of the experiment than MDTYV fitting.

4.2. Human data

We present a single coronal slice from the human dataset
that demonstrates the performance of the MDTV framework.
Fig. 2 shows Trace(D) and color-coded images for the DTI
analysis as anatomical landmarks, together with the ellipsoid
visualization for the MDTV resultant multiple-tensor field.
Unlike the synthetic data, which can be addressed as “ground
truth,” the fiber orientations and diffusivity in the brain data
are not known. Although large fiber bundles have common
shapes and expected tracts, the shapes are still dependent on
the exact orientation of the subject relative to the scanner and,
of course, on the age and physical condition of the subject.
Thus, the results can be verified only by visually comparing
relatively known fiber bundles with other atlas examples. The
human dataset differs from the synthetic and phantom datasets
in that many voxels in the human dataset contain nonfiber
tissue (CSF or gray matter). In these voxels, other types of
partial volume effects (such as gray/white matter interface and
CSF contamination) may occur. The MDTV model does not
account for these effects. The slice presented is slightly
posterior to mid-coronal (slice 77 out of 128) and was selected
to include the pons, where the middle cerebellar peduncle
(mcp) tract crosses the bundle of the corticospinal tracts (cst)
and the corticopontine tract (cpt) [29]. The ROl is denoted by a
yellow rectangle. In Fig. 3, the zoomed DTI color map and the
MDTYV ellipsoid visualization images of the ROI are
presented. Within the pons, we see the transverse pontine
fibers (tpf), which are a part of the mcp, that cross the midline

B Color code
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Fig. 3. Pons. The DTI color code (A) shows the transverse pontine fibers in red and the corticospinal tracts in blue. The ellipsoid visualization for MDTV (B)
shows the intersection between those fibers. Because ellipsoid sizes are weighted by their relative volume fraction, when f approaches 0.5 there are two

components visible, and when f decreases, its ellipsoid visually disappears.
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Fig. 4. Corpus callosum. The DTI color code (A) shows the corpus callosum in red and the corticospinal tracts in blue. The intersection area is black due to low
FA. The ellipsoid visualization for MDTV (B) shows a single component for the genu of the corpus callosum with a second component in the area of intersection.

in a left-right direction and are colored red. In the slice
selected, the tpf intersects the cst in an inferior—superior
oriented, blue-colored bundle. All voxels were fitted to two
tensors, but since the visualization weighs the ellipsoids by
their relative volume, it appears in many voxels as if only a
single tensor was found; these voxels are usually areas with a
single organized white matter bundle. Two ellipsoids in the
same voxel are visible as the volume fraction approaches 0.5.
The ellipsoid visualization shows that in the expected areas for
the tpfand cst crossing, there are two visible fiber components
(elongated ellipsoids): one with left—right orientation and the
other with inferior—superior orientation. Those ellipsoids
continue the trajectories of the cst and tpf from neighboring,
single-fiber population voxels. A second ROI on the same
coronal slice, marked with a magenta rectangle, is superior to
the previous ROI and shows the left-right oriented corpus
callosum (cc) intersection with inferior—superior fiber bundle
consisting of the cst, the cpt and the superior thalamic
radiation [29]. The enlarged area is presented in Fig. 4. The
MDTYV ellipsoid visualization shows a single component at
the closer-to-midline parts of the genu of the cc, and as the
tract gets further from the midline and closer to the cst bundle,
a second component of blue inferior—superior ellipsoids is
found. This ROI nicely demonstrated the ability of MDTV to
recognize areas of single fibers, as seen in the genu of the cc.
This area is visualized either as a single ellipsoid or two very
similar ellipsoids.

Since the pyramidal tracts converge and cross in many
points along the path between the spinal cord and the cortex,

there are many points of ambiguity, where tractography
methods are prone to fail. Indeed, trying to delineate the
pyramidal tracts produces only partial reconstruction of the
whole tract (Fig. 5A). These tracts were selected by placing
two axially positioned seed ROIs (shown in green), one at
the dorsal part of the brain superior to the corpus callosum,
and the other at the ventral part. Both seed ROIs cover an
entire hemisphere and restrict the presentation only to fibers
that cross through that hemisphere along the expected path of
the pyramidal tract. Two additional restricting ROIs were
used to eliminate fibers that cross to the opposite hemi-
sphere. For DTI, only a sketch of the main route of the fiber
is found, as a result many cortical areas known to be
connected with the lower brain parts were not delineated.
Using the same ROI restrictions for the MDTV database
reveals a much more complete view of the fiber (Fig. 5B),
connecting many more cortical areas and resembling the
expected shape of the tract.

5. Discussion

The MDTV framework was designed for fitting of fiber-
ambiguous voxels. However, since there is no restriction on
the volume fraction parameter (other than positivity), the
fitting was also successful in areas of a single fiber. The fitted
two components are either identical in shape with different
volume fractions, or there is one component with a dominant
volume fraction that best describes the data; the remaining
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A DTI \ *f‘tx\&__

Fig. 5. Tractography. The pyramidal tract was obtained by selecting all fibers
that pass in both seed ROIs (green surfaces). The MDTV fiber (B) is much
more complete than the DTI fiber (A), connecting larger parts of the cortex
with the brainstem. This suggests that fiber ambiguity causes pretermination
of tracts.

low-volume component is expected to model the fitting
residual. Visually, the low-volume component disappears in
the ellipsoid visualization. It can be further eliminated from
any post-processing (such as tractography) by introducing a
threshold on the minimal volume fraction value.

The MDTV minimization dictates the minimal FA
(FAmin) that can be obtained for each tensor. This restriction
is sensible for white matter areas, but is certainly questionable
for CSF and gray matter areas. Best results will therefore be
achieved by applying the MDTV framework only on
segmented white matter voxels. Moreover, since MDTV is
expected to find similar fiber orientations to DTI in single-
fiber voxels, results could be further improved by applying
the MDTV framework only on voxels suspected of having
more than one component; DTI results could be used in the
remaining voxels. This should restrict the MDTV analysis to a
much smaller number of voxels and decrease runtime. We
applied the minimization on the complete human dataset
here, without pre-segmentation of white matter, anticipating
poor fitting in CSF or gray matter areas. Despite the fact that
only anisotropic tensors were fitted to the data, the ellipsoid
visualization clearly shows the difference between isotropic
CSF area and the rest of the brain. In isotropic CSF areas, the
fitting resulted in two anisotropic tensors which, together,

visually resemble an isotropic tensor. We therefore suggest
that, in multiple-tensor analysis, the use of FA as white matter
segmentation threshold or tractography stopping criteria is
too inclusive. FA-based tissue segmentation might result in
misidentification of isotropic tissue as neuronal fiber.

Fig. 6 shows voxels whose convergence was constrained
by the minimal FA. Red voxels are those in which only one
of the components reached the threshold, and green voxels
are those in which both components reached the threshold.
The voxels nicely segment the CSF, evidenced by comparing
the 71 image resliced with the DWI image domain. The
fitting did not reach the minimal FA threshold in the rest of
the brain. Red voxels seem to occur mainly in the interface
between white matter and the CSF, leading us to speculate
that we should be able to reduce the partial volume effect
within an isotropic compartment by adjusting the minimal
FA thresholds, restricting one component to be isotropic and
the other anisotropic. This type of partial volume occurs in
cases such as CSF contamination and edematous tissue (see
Ref. [30] for preliminary results). We also note that voxels
expected to be occupied by white matter did not reach the
minimal FA threshold, and therefore their obtained FA values

A minFA

B Anatomy

Fig. 6. FA threshold. FA was constrained by a minimal threshold. (A) Voxels
that reach the threshold at the final iteration. Red indicates that only one
component reached the threshold, and green that both reached the threshold.
The colored voxels match the CSF in a realigned T1 image (B). The red
voxels appear to be in CSF-contaminated voxels.
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(one for each component) can be considered a good tissue
anisotropy description.

We have used the findings that gray matter and CSF
voxels converge to the minimal FA threshold for setting the
tractography stopping criteria. This was set to a higher FA
value than the minimal FA and was combined with a minimal
volume fraction threshold. Such a stopping criteria seems
adequate for the FACT algorithm, providing us with better
fiber delineation. However, it is important to note that the
correctness of tractography results suffers from other
artifacts, such as noise, resolution and other algorithm-
dependent inaccuracies. Nevertheless, it is our belief that
using regularization and better modeling should increase the
stability and correctness of the FACT algorithm. This issue
should be better inspected, along with the question of how
other tractography algorithms are influenced.

A second threshold used in the minimization process is for
minimal eigenvalues. This threshold eliminates the possibi-
lity of negative eigenvalues as fitting results. Although not
physically possible, voxels with negative eigenvalues are
often found in brain scans; we therefore identified voxels
with high probability to have negative eigenvalues and
eliminated them from any further analysis. This elimination
was done by throwing out any voxel with a normalized signal
of 0 or larger than 1 in any of the normalized DWIs (such
voxels appear as white spaces in the ellipsoid visualization).
We note that none of the remaining voxels had an eigenvalue
that came near the minimal eigenvalue chosen.

The addition of regularization terms in the variational
framework stabilizes the minimization process, but does not
prevent local minima entrapment. This is a problem shared by
all variational methods when the functional is not convex.
Additional regularization terms and smart initialization should
reduce the chance of falling in local minima. As mentioned
above, the performance could be enhanced by introducing a
priory structural information such as tissue segmentation
[20,31]. Another improvement for the regularization may
come from incorporating tensor-based PDE flows [32-34].
These are more natural for handling tensors, but adding
anisotropy constraints to such flows remains to be investigated.

Another issue that affects the quality of fit is the selection
of the model. In a previous study [23], we have shown that
denoising alone, or any other image enhancement for that
matter, cannot assign correct orientations for more than one
fiber per voxel as long as the DTI model is the model to be
fitted. Since MDTYV relies on the multiple-tensor model, it can
assign more than one orientation for each voxel, and the
recovery of two fiber directions is made possible. The
assumptions behind the MDT model are that any compart-
ment is completely separated from all other compartments,
and that the diffusion within each compartment is homo-
genous and not restricted. Contrary to this assumption, there
are evidences that diffusion within fibers is restricted [35].
The use of higher b values was proposed as a way to amplify
the orientational heterogeneity in multiple compartment
voxels [36], and models that take into account the restricted

component were shown to resolve fiber ambiguity [10]. We
assume that applying the MDTYV data on higher b value data
will yield better fitting results, although the validity of the
tensor model for higher b values is questionable. The number
of fitted components is limited to two by experiments
presented here, and the stability of the fitting for higher
numbers of components remains to be determined. The
MDTV framework described here lays down the map for
variational frameworks for other model-based methods and,
with the correct selection of regularization terms, parameters
and initialization, should produce better results than conven-
tional fitting procedures.

6. Summary and conclusions

The MDTV framework demonstrated that variational
model regularization is helpful in solving the ill-posed
inverse problem of multiple-tensor fit. The synthetic data
results suggest that the MDTV framework can resolve fiber
ambiguity of two crossing fibers within the same voxel, with
better separation than the nonregularized MDT model, for a
wide range of noise levels. Combining the MDTV approach
with existing tractography techniques provides better nerve
bundle delineations in homogenous areas and especially in
partial volume, fiber-ambiguous areas. We have demon-
strated the MDTV framework fitting on human data and
shown intersections in areas that are anatomically known to
have crossing fibers. Using the outcome tensor field of the
MDTV framework should improve the accuracy of any
further processing, allowing new insights to brain architec-
ture. Modifying the framework to account for other partial
volume effects, or other diffusion models, may increase the
accuracy of brain tissue diffusion imaging even further.
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Appendix A. Gradient descent scheme for MDTV

The minimum of Eq. (11) solves the Euler—Lagrange
equations. We find it by the gradient descent scheme. The
result is a system of coupled diffusion-like equations. The
equations for the eigenvalues are
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where F(q;) = E(qi) — E(gy). Those for the eigenvectors
have the following form:

1 d
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where (UA); is the Jjth component of the vector (U,); and (gz);
is the jth component of the vector ¢;. Finally, we obtain the
equations for the weights:
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where 0;~1 if i=j and 0 otherwise. For all the parameters, we
use Neumann boundary condition, and the initial conditions
for any parameter X are

(X)j—o= (X)(q)- (A4)

Appendix B. Finite difference for symmetric vectors

We approximate the calculation of gradients with a finite
difference scheme. Calculation of |V(U),| requires that the
finite difference scheme take into account the symmetric
properties of diffusion orientations. Since the MR signal
decay is influenced by self-diffusion along both directions of
the applied gradient, the choice between (U;); to —(U)); is
arbitrary. However, measuring the variation between vectors
according to the Euclidian distance depends on the sign
chosen. Therefore, the distance from a vector to its neighbor
is computed after locally inverting neighboring vectors [19],
i.e., flipping signs, to create a sharp angle with the chosen
vector. The finite difference scheme for a vector field / with
3D domain axes x, y and z for approximating partial
derivatives over axis x is:

flip, = sign({(x + L,y,z) - I(x — 1,y,2)) .
flip, = sign((flip, I (x + 1,y,2) + I(x — 1,y,2)) - I(x,y,2))
flip; = sign(/(x,y + 1,z) - I(x,y — 1,2))
flip, = sign((flip;/(x + 1,y,z) = I(x — 1,y,z2))

'(ﬂip}I(xvy - I,Z) —I(X,y+ 172)))

ﬁl(x,y,z)_ﬂipll(x+1,y,z)—1(x—l,y,z) B 1
dx 2x ’ ( ’ )
Jl(xay7z) _ ﬂlpZ(ﬂlpl[(x+ 1,y,Z) +1(X7 l,y,Z)) - 21(x,y,z) (B 2)
Px = ' ’
9 (x,y,z) _ Aflip,(flip,/(x + 1,y,2) —I(x — 1,y,2))
axdy 4xy
flips/(x,y — 1,z) — I(x, 1,
N ips/(x,y z) (x,y+ ,z). (B.3)
4xy

The voxel size proportions are x, y and z. By permuting x,
y and z in Egs. (B.1), (B.2) and (B.3), the entire scheme
is defined.
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